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0. I t is well known (cf. [ó], [7], [8]) that the topological vector 
spaces 3D and 8' (of test functions and distributions with compact 
support, respectively) exhibit several surprising similarities in their 
topological character; and yet the definitions of these spaces do not 
indicate why this should be so. The situation changes if we consider 
their Fourier images 3} and g'. Thus, for instance, L. Ehrenpreis 
noticed [7, pp. 161-163] that, outside a certain neighborhood of the 
real subspace in O , "the topologies of f> and g' are the same." 
Ehrenpreis also showed that this property is important in the study 
of hypoellipticity and other questions (cf. [6, pp. 63-65]). The main 
objective of this note is to provide a simple explanation of the 
relationship between the spaces 2D and 8'. Our approach, which is also 
based on the Fourier transform, can be briefly described as follows: 
We shall construct functions &(£"), f = H ^ G ^ n , of the form k(Ç) 
— JLSS^-C*

 es(Ç)—where es(Ç) are certain exponentials, and the index 
5 corresponds to the order of differentiation in 8'—such that (i) 
if 3C denotes the family of all such functions k, then the space s ' can 
be characterized, both algebraically and topologically, in terms of 
majoration of its elements by the functions in 3C; (ii) moreover, if 
instead of considering the complete "Laurent" series k= X X - » ' ' * » 
we take only their "Taylor" parts, i.e., k+= X)*°°=o * * * » then the 
family 0C+= {k+}kex defines similarly the space 3D. From here it is 
easy to deduce the above mentioned observation of Ehrenpreis as 
well as some other facts. However, in the present note we state 
explicitly only what seems to be a new description of the convex hull 
of singular support of a distribution. Finally it should be mentioned 
that we shall discuss most of these questions in the frame of a more 
general distribution theory due to A. Beurling (cf. [4]). In doing so 
we shall not only gain in simplicity and generality, but some new in­
formation about the Beurling classes 8W, 8^ will be obtained as well. 
As the proofs are rather technical, they will be published elsewhere 
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(cf. [2], [3], where some further applications are also given). The­
orems 1 and 2 below answer the questions formulated in the end of 
[5]. 

1. If w is a nonnegative subadditive function defined on Rn and 
satisfying conditions (ce), (/3), (7) of [4], then by regularizing co if 
necessary, we can always assume co to be smooth and ^ 1 . Let {Ks} 
be any strictly increasing sequence (i.e. K8(Z'mt K8+i) of compact 
sets, UsziK9 = Rn. The space £>w is defined as 3Dco = lim ind5H>0o £>u(Ka) 
where each 

£>»(£.) = {0 G L\Rn) : supp <i> CK* and 

Ikllx = f\$(Q\ **<*>#< «(vxx»}. 

(The Fourier transform of a function (^^^(R91) is defined here by 
$(£) ~ ƒ <t>(oc)e~ix^ dx.) The space 8W is the set of all functions cj> on Rn 

such that for each compact set K, the restrictions to K of <t> and of 
some ^E£>co agree. The topology on 8W is given by the seminorms 

* - » inf |M|X ( V X > 0 ; V £ ) . 

If S£, is the strong dual of 8W, let S)w and 8« denote the Fourier trans­
forms of the spaces £>w, 8 j . For further information on the spaces 
3)«, 8W, etc., see [4], where also the following characterization of 8W 

can be found (Proposition 1.5.2) : 8W is the set of all functions <f> such 
that if ^(E£>a» then ^<£££>a>. The topology in 8W is given by the semi-
norms <j>—>||^0||x (VX>0; V^G3D„). In other words, 8w may be con­
sidered as the space of all multipliers on 3DW. For our purposes, how­
ever, it is also important to characterize the space 8„ as the space of 
all convolutors of 2D„: 

PROPOSITION 1. The space S£, consists of all elements 3> in £)£, whose 
convolution $ * <£ with any element c/> of 3Do, is again in 3DW. The topology 
of 8̂ , is the compact open topology induced on 8£, from the space 
L(3DW, 3DW) of all continuous endomorphisms of £>w. 

Proposition 1 generalizes a result of Ehrenpreis valid for the 
Schwartz spaces £), 8' [7, Theorem 5.15]; its proof is also similar. 

Let G be the class of all functions / which are concave, increasing, 
continuously differentiable on [O, 00) and such that / ( 0 ) ^ 0 and 
0</ ' ( s ) g (2s + 1)-"1 for all s^O. Let h be a continuous function on Rl, 
— 00 <inf h(s)Sh(s) /* 00, and such that its restriction to [O, 00) is 
in C. Let e(s) be a function on R1, 0 <e(s) g 1 for all 5, and so rapidly 
decreasing to zero when s—* — 00, that the inverse function p(s) to 
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— log €(—5) is defined and p G 6 . Finally, let ju>0. Then the series 

*(*; «; *»; f) = Z «(«^w^-w*)-*» (f = £ + it, e O) 

is locally uniformly convergent in Cn. Each function fe of this form 
will be called a majorant. Let 3CW be the family of all majorants 
obtained by varying the parameters h, /x and e. If (I denotes the space 
of all entire functions in Cn with the topology 3 of uniform convergence 
on compact sets, let d(3C«) be the subspace 

Le a:\\g\\k = supB(|g(r)|/*G0) < 00 ( v * e J C ) 1 

equipped with the topology 3(3CW) given by the norms || «11*, &£3CW. 
Since each majorant k is a positive continuous function in Cn, the 
natural embedding 6(3Cco)C® is continuous. Similarly, for each 
kEKo, let k+ be its "Taylors-part, i.e., fe+= X)." 0 €(5) exp( • • • ). If 
3C+ is the family of all k+, feGSCc, then the subspace &(&„) of d and 
its topology 3(3CJ") are defined in an obvious way. 

THEOREM 1. AS topological vector spaces <jfc(3Cw) and g£, are identical; 
similarly a (3C) = £)w. 

For the proof of the second identity, cf. [ l ] , [S]. The proof of the 
first one uses Proposition 1 and also some estimates of the following 
type: 

LEMMA 1 (CF. [5]). Let h be a function in 6, and p its inverse, p(0) = 0. 
Then, for any a > 0, 6 ^ 1 , 

( 00 00 \ 

J2 eaHs)~h% X ea8~bp(8) j g 4(3 + a)eaHa). 
In the terminology of [7], the first part of Theorem 1 states that 

the Beurling space 8W is an analytically uniform space (a.u. space) 
and the family 3CW is an a.u. structure for 8W. Sometimes it is easier to 
work with another a.u. structure 3C* whose elements are integrals 

/

oo 

€(*)exp[ |* | A(*) -sca(t)]ds. 
- 0 0 

In particular, we need the following lower estimate for functions k*. 

LEMMA 2. Let X(E(3, a>0, b>0. If r is the root of the equation 
\'(r)=b/a, then 
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f00 1 
( 1 ) I <**(•>-*• ds > ea\ir)~br 

Jo ~ b 
and r ̂  a/2b, If A = linv»,» X(s) < oc, //^^ /or each 8, 0 < ô < 1, //bre are 
constants C, 2 swcfe £to£ if \ rj\ ^&o(£), £&ew 

eh|XGO-»(É)« J 5 :> C ' e (A-5 ) | i f l+»« ) ( l -8 ) . 

~oo 

if lim^oo \(s) = oo, then any positive number can be taken as A in (2). 

From here it is easy to derive: 

PROPOSITION 2. Let « G e , «(£)/a(|£|)—»0 / ö r |£|~~*°° a w ^ 
-^a" { f : M e<*( |£ | )} . Then outside Ra the topologies of SDW and è'„ 
are the same. More exactly, if &£3C*, then there is a majorant fei£Xw 

such that k = kt and ki(£)/k(Ç) is bounded on Ra. 

Proposition 2 generalizes to Beurling spaces, a result due to 
Ehrenpreis and mentioned in §0. I t also has analogous consequences; 
however, these will not be discussed here. 

Finally the next assertion complements Theorem 1 and is often 
useful : 

PROPOSITION 3. For each & £ oC with fx = 0, let W(k) be the set of all $ 
in £>'„ such that for some integer N and C>0, | ê ( f ) | SCeNu^k^)forall^ 
Then the system {W(k)} jt£x+ defines a basis of neighborhoods in 8 ,̂. 

REMARK. Actually the integer N in Proposition 3 depends only on 
<ï>: either the infimum of all such N is — °°, which is exactly the case 
of sing supp<ï> = 0 , i.e.,<£(E3}co; or in all such inequalities we can take 
N= (order of $) + 1 . This can be seen by Lemma 2. 

2. In the rest of the article, only the Schwartz spaces £>, 8' are 
considered, i.e., co(£) =log(tf+| £| ). If S(R) denotes the ball 
(x£2t!w: | # | <R}, then it is immediately clear how to generalize §1 
for functions and distributions on S(R). Thus, for each R>0, the 
corresponding families X(R) and 3Z+(R) can be defined. Given 
$ £ 8 ' , let 

3C($) = {h: for all f | ê(f) | S CeN«&k(h; e; 0; f) 

for some C, N, e and * £ K+(R)}. 

H R($) = 'mf{R:supp$CS(R)},then 

(3) R($) = inf lim/*(>)> 
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as can be easily seen by the Paley-Wiener theorem. Thus formula (3) 
is not of particular interest. However, it is quite remarkable that by 
reversing the order of inf and lim in (3), we obtain (after a slight 
modification) the analogous formula for the singular support. For 
fixed 8 > 0 and $ E £ ' , let 3C($; 5) be the class of functions in 3C(<£>) 
whose derivatives are uniformly small, i.e., for some so depending 
only on ô, sh'(s) ^ 5 for all s^s0(ô). 

THEOREM 2. For each ^ G S ' , let r(<£) =inf {i?:sing supp 
Then 

(4) r($) = lim lim inf h(s+N). 

The proof is based on the use of the inverse Fourier transform 
and, for this reason, does not seem to apply to Beurling classes. One 
can also derive a similar formula directly for the supporting function 
of the set sing supp <E>. As it is easy to see, the function inf h(s-\-N) 
occurring in formula (4) is increasing in both variables s and ô. There­
fore both limits in (4) can be replaced by suprema and their order 
reversed. The proof of Theorem 2 and some of its applications will 
be given in [3]. 
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