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1. Introduction. The results of [2] on the structure of the symmet­
ric algebra or universal enveloping algebra over a complex reductive 
Lie algebra, as a module for the adjoint group, are generalized to the 
symmetric space case. In particular one obtains a separation of vari­
ables theorem (freeness over the ring of invariants). Also multiplici­
ties of the various representations are given as well as the degrees of 
the homogeneous subspaces on which they occur. We use the notation 
of [3]. 

2. Sections and the principal normal TDS. 
2.1. Now if u is a principal normal TDS in g then one can show 

that any nonzero element in uC\§> is necessarily regular. In fact up 
to a scalar it is ^-conjugate to the unique element w £ g defined by 
the relations 

(1) wEar\[$, g ]and 
(2) (w, a») = l where {ai, • • • , ad} = 2 is the set of simple roots. 

In particular w can be embedded in a principal normal TDS u. 
Let such a u be fixed. Then u has as a basis a principal normal 

5-triple {x, e, ƒ) where w=(e+f)/2. 
Now let g be the Lie subalgebra of g generated by a and u. 

THEOREM 1. g is a reductive Lie subalgebra of g and a is a Cartan 
subalgebra of g. {Also g is semisimple in case g is semisimple). More­
over the roots AÇct' of g is exactly the subset A*CA of all restricted roots 
# £ A such that </>/2 is not a root. Furthermore the Weyl group of (ff, a) 
is just the Weyl group of g associated with a ("baby Weyl group"). 

Finally u is a principal TDS of g in the sense of [ l ] . 

REMARK 1. If u is chosen so that u is the complexification of 
u n g # (and it can be so chosen) then g is the complexification of 
QR*= 6 ^ 9 # and %R is the normal real form of g. That is g is defined 
and split over R. (It is a maximal such subalgebra of g.) 

2.2 Now in [2] a cross-section was found for the set of all regular 
elements (called quasi-regular in [2] but henceforth called regular 
since the case a t hand here generalizes the case in [2]). In fact by 
Theorem 8 in [2] ƒ+g* is a cross-section of the set of all regular 
elements in g. On the other hand if we consider the complex Cartan 
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decomposition g = 1+Ç where t = f H g and p = pH § then since a is a 
Cartan subalgebra of Q it follows that g* = pe and that furthermore if 
# E p then # is regular in p if and only if it is regular in g. But one can 
also show that pe = p6 (so that / + 8 e = / + p e ) since x is regular in p if 
and only if it is regular in p. Applying the results of [2], (see Theorem 
8) we can prove 

THEOREM 2. Let (x, e,f) be any principal normal S-triple. Thenf+p* 
is a cross-section f or the set of all regular elements in p. That is any ele­
ment inf+$e is regular and every regular element in p is Ke-conjugate to 
one and only one element inf+p6. Furthermore the affine spacef+pe has 
dimension r ( = dim a) and if S'(f+pe) is the affine algebra of this mani­
fold then the map J'—»S'(f+pe) {where J' = (S')^0) given by restriction is 
an algebra isomorphism. In particular where J' = C[ui, • • • , ur] one 
has that the differentials dui, i = 1, 2, • • • , r are linear independent f or 
every regular element # £ p . 

2.3. As a consequence of the last statement of Theorem 2 we can 
apply the theory of §1 in [2] to determine the -KV-module structure 
of S'. By Proposition 3 in [3] the ideal J'+S' defines the variety 9lCp. 
But more than that one has 

THEOREM 3. The ideal J'+S' in S' is radical and hence is the ideal 
associated with the variety ïfl of all nilpotent elements in p (i.e. J'+S' 
= {f£S'\f(x)=Oforallxevi)). 

Now let S be the symmetric algebra over p regarded as a Xe-module 
in the obvious way. Let J = SKQ and let J+ be the ideal in ƒ of all 
elements without constant term. To each element v£:S one naturally 
associates a differential operator dv on p with constant coefficients. 
A polynomial ƒ G S'on p is called harmonic in case dvf = 0 for all vÇzJ+. 
Let H'QS' be the space of all harmonic polynomials on p. Clearly i ï ' 
is a .KVsubmodule. Theorem 3 then yields 

THEOREM 4. The map J'®Hf—»S' defined by u®f—>uf is a Ke-
isomorphism. 

2.4. Now if tf(Ep then the orbit Ox = Ke-x is an algebraic variety 
and if R(Ox) denotes the ring of all everywhere defined rational func­
tions, then R(0X) is a Xe-module where if gÇzR(Ox), aE:K.Q, and 
yÇ=.Ox, one has (a-g)(y) =g(a~1-y). The correspondence f-*f \ 0X 

clearly defines a ^ - m a p £'—>R(Ox) and hence by restriction to H' a 
#*-map H'-*R(Ox). 

Since / ' reduces to the constants on Ox it follows that the image of 
H' is the same as the image of S'. But if 0X is closed then the latter 
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is onto. Hence by Theorems 4 in [3] and 4 here one has 

PROPOSITION 1. If x& one has a surjection 

H' -> R(Ox) -> 0. 

On the other hand, we can prove the following theorem which plays 
an important role in applications to representation theory. 

THEOREM 5. If 'xÇzfàone has an injection 

0->H'-+R(Ox). 

Now let MB be the centralizer of a in KB. 
I t is then immediate that if #£ct is regular (i.e. <t>(x) 9^0 for all roots 

0 £ A ) then the isotropy subgroup of K$ a t x is MB so that Ox=K$/M$. 
But now let T be the set of all equivalence classes of irreducible holo-
morphic finite dimensional Xfl-modules F such that Vy

Me^Q. For each 
7 £ T fix a module Vy in the class y and let l(y) =dim Vy

M*. One then 
knows that R(Ox)=R(Ke/MB) is completely reducible as a iÜVmodule 
and only elements in T occur and that in fact Y G T occurs with multi­
plicity l(y). But now # £ § n ( R and hence by Proposition 1 and 
Theorem 5 H' is isomorphic to R(Ox) as a JTf-module yielding the 
.S^-module structure of H' and hence of S' by Theorem 4. But 5 is 
equivalent to S' as a ^ - m o d u l e and consequently one can prove 

THEOREM 6. Let S be the symmetric algebra over p and let J = SK$. 
Next let H CIS be the sub space spanned all power xk where # £ p is nil-
potent. Then where <g> is realized by multiplication one has S = J®H. 
Furthermore H is a Ko-module and for any Y £ r let Hy be the space of 
all elements vÇEH which transform under KB according to y. Then 

H = ©Ter Hy 

and in fact y occurs with multiplicity l(y) ( = dim Vyo) in Hy (so that 
in particular Hy is finite dimensional). 

2.5. Now S is more than just a .KV-module. I t is a graded Xe-module. 
Since one knows the graded structure of J to determine the latter it 
is enough to determine the graded ^ - s t r uc tu r e of H. Let Y G T . Al­
though Hy is, in general, not uniquely a direct sum on irreducible 
Xe-modules there clearly exists a unique monotonie sequence of 
increasing nonnegative integers di(y), i = l, 2, • • • , l(y), such that 
there exists an irreducible jKVmodule HytiQHy, homogeneous of 
degree di(y) and such that Hy= St (»î Hy%i. 

Generalizing Theorem 17 of [2] we will see that the integers di(y) 
can be obtained from the abstract i^e-module Vy in the manner now 
to be described. 
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Nowiî ,C5'isaspaceofpolynomialson^.Let-F7 = Homij:ô((Fy)',iî /) 
where (Vy)' is the dual to Vy. But since H' and H are nonsingularly 
paired it follows that Fy is an / (7)-dimensional vector space. 

Now, for each x(Ep, we define a linear map 

P,:Fy->Vy 

by the relation 

<?.(*), g) ='UK*) 

holding for all gÇz(Vy)
f and cr£i<V Hence to each #£)) we can asso­

ciate a subspace Vy(x)QVy by putting Vy(x) =px(Fy). 
As a consequence of Theorem 5 one has 

THEOREM 7. For any xÇzfàthe map f3x is a linear isomorphism so that 
Vy(x) is an l(y)-dimensional subspace of Vy. Moreover if xGCRHS then 
Vy(x) = Vye where K% is the centralizer of x in Ke and Vy*d is the space 
of KX

Q invariants in Vy. 

REMARK 3. In [2] one had that Vy(x) = Vye for all #£61 . This was 
true because in [2 ] the orbit of any x £ (R was a normal variety. In the 
case at hand this is not true and one can only conclude that Vy(x) 
QVyd, the latter having possibly a larger dimension than l(y). One 
notes, however, that one can obtain Vy(x) for all #£(R from Vy(x) 
where #£(RP\S (in which case Vy(x) = Vye) since (RP\S is dense in (R 
and the map x—>Vy{x) is continuous from (R into the Grassmannian 
of all l(y) dimensional subspaces of Vy. 

For the purpose of obtaining the integers di(y) we need only con­
sider Vy(e) where e is a principal nilpotent element (i.e., ^£(RP\9l). 
One knows (Proposition 3) that for any nilpotent element ƒ (Ep there 
exists z £ f such that [z, f] =ƒ. Now of course Vy is a ï-module so that 
z operates on Vy. 

THEOREM 8. Let yÇY be arbitrary and let ^ £ p be a principal nil-
potent element so that Vy(e)ClVy is an l(y)-dimensional subspace. Let 
s £ f be any element such that [z, e]=e. (Such an element exists by Propo­
sition 3.) Then Vy(e) is stable under the action of z. Moreover z isdiago-
nalizable on Vy(e) and the eigenvalues are exactly the nonnegative inte­
gers di(y), i = l, 2, • • • , l(y), defined above describing the graded 
structure of Hy. 
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Remark (i) a t the end of Theorem 1 is incorrect. E is a normal 
family, but it need not be compact. The conclusion of part (i) of 
Theorem 2 should read 

lim infjP_00(w1^2 • • • np)
1/np ^ 4R. 


