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1. Introduction. A locally compact group G will be called a Moore 
group if every continuous irreducible unitary representation of G is 
finite dimensional. Let [Moore] denote the class of all Moore groups, 
and let [Z] denote the class of all locally compact groups such that 
G/Z(G) is a compact group, where Z(G) denotes the center of G. 
S. Grosser and M. Moskowitz introduced the classes [Moore] and 
[Z], and made considerable progress on unifying and organizing the 
study of various "compactness conditions" in locally compact groups. 
(See [2], [3], and [4].) Grosser and Moskowitz have shown that 
[Z]C[Moore] , [3, Theorem 2.1, p. 369], and C. C. Moore has re­
cently shown that £?£ [Moore] implies that G is an inverse limit of 
finite extensions of groups HaCz [Z] (see Theorem 3A below). Other 
results on Moore groups are obtained below by introducing the notion 
of Takahashi groups. Let [Tak] denote the class of all locally com­
pact groups G such that the derived group Gf has compact closure, 
and G is maximally almost periodic, i.e., there exists a monomorphism 
from G into a compact group. The main results can be stated as 
follows: 

THEOREM 1. A group G satisfies G £ [Moore] if and only if G con­
tains a characteristic subgroup H such that H has finite index in G and 
H£ [Tak]. 

THEOREM 2. A group G satisfies G £ [Moore] if and only if G is a 
semidirect product G = RnX<t>B, where B £ [Moore] has a compact 
identity component Bei and B contains a normal subgroup H with finite 
index such that Rn X <t>H is a direct product RnXH. 

Theorem 2 may be interpreted as a type of generalized Freuden-
thal-Weil theorem (see Theorem 3C below). Consequences of Theo­
rem 1 are that quotient groups of Takahashi groups are Takahashi 
groups, and (closed) subgroups of Moore groups are Moore groups. 
(This behavior is a pleasant contrast to results such as the following: 

(1) Closed subgroups of [Z]-groups need not be [Z]-groups. 
(2) G/H need not be in [MAP] even when G E [MAP] and H is a 

closed characteristic subgroup of G.) 
I t follows that the class [Moore] is stable under subgroups, quo­

tient groups, inverse limits, and finite extensions; hence the class 
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[Moore] constitutes a very well-behaved common generalization of 
compact groups and abelian groups. (See Theorem 3A for the ap­
propriate notion of inverse limit.) Theorem 1 also implies that every 
Takahashi group is a Moore group, and hence rounds out the Taka-
hashi duality theorem [9] by showing that the dual structure is based 
on the set of all equivalence classes of irreducible unitary representa­
tions. The inclusion [Tak] C [Moore] helps to clarify the relation­
ships between a large number of "compactness" conditions which are 
summarized in §5. 

2. Definitions and notation. Notation and terminology are taken 
from Grosser and Moskowitz for those groups which are discussed in 
[2], [3], and [4]. Let [MAP] denote the class of locally compact 
groups which are maximally almost periodic. The classes [MAP], 
[Moore], [Tak] and [Z] are discussed in the introduction. We will 
also use the following classes: 

[Kur] = Kuranishi groups = locally compact G such that <•?£ 
[MAP], and G/Ge is compact, where Ge denotes the identity com­
ponent of G. 

[FC]~ = class of locally compact G such that every conjugacy class 
has compact closure. 

A list of definitions of a large number of related properties is avail­
able in §5. (See [4] for a more detailed discussion.) 

3. Background material. 

THEOREM 3A (CHARACTERIZATION OF MOORE GROUPS). A group G 
satisfies G £ [Moore] if and only if there is a family {Ka} of compact 
normal subgroups of G such that CiKa = e, and each Ga = G/Ka is a 
finite extension of a group iZ"«G [Z]. In particular, the class [Moore] 
is stable under finite extensions. 

PROOF. This is as yet an unpublished result of C. C. Moore. Use is 
made of a nonseparable version of Thoma's Theorem [lO]. 

THEOREM 3B (CHARACTERIZATION OF KURANISHI GROUPS). A 

group G satisfies G £ [Kur] if and only if G is a semidirect product 
G = Rn X <t>K, where Rn is a vector group, and K is a compact group which 
contains a subgroup H such that H has finite index in K, and Rn X 4>H is 
a direct product RnXH. 

PROOF. The structure theorem for the most general G E [Kur] was 
obtained by Murakami [8, Theorem 1, p. 120]. (See also [6, Corol­
lary XII . I , p. 56], and [7, Lemma 2, p. 41]). Murakami develops a 
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nice application to the study groups with equal left and right uni­
formities. 

THEOREM 3C (FREUDENTHAL-WEIL) . A connected group G satisfies 
GG [MAP] if and only if G=RnXK% the direct product of a vector 
group and a compact group. 

PROOF [l, Theorem 16.4.6, p. 303]. 

THEOREM 3D (STRUCTURE THEOREM FOR GROUPS GG [FC]~). G 

satisfies G G [FC]"" if and only if there is a compact normal subgroup K 
such that G is an extension e—>K—>G-*VXD—>e, where V is a vector 
group, and D 6 [FC]~ is discrete. It follows that every G G [Tak] satis-
fies G = RnXH, where the identity component He is compact. 

PROOF. T O appear. The proof uses [4, Corollary 3.22, p. SO]. 

THEOREM 3E (STABILITY THEOREMS). Various results show that an 
appropriate group G contains an n-dimensional normal vector group if G 
contains a normal subgroup of the form RnXH. See [2, Lemma 1, p. 
328], [6, Theorem X, p. 34], and [4, Theorem 1.1 ]. This existence of 
stable vector subgroups also applies to many situations where G acts as 
a group of automorphisms of RnXHt rather than just action by restric­
tion of inner automorphisms. 

4. Proof of Theorems 1 and 2. 

PROOF OF THEOREM 1. To establish that [Tak]C [Moore], start by 
assuming that G is discrete, and then move on to the case where G is 
a Lie group with an abelian identity component. The case where G 
is a Lie group can then be handled by studying the restriction of inner 
automorphisms to the compact semisimple group (Ge)'. (Use [5, §6 
and Corollary 6.5, p. 122].) Every G G [Tak] satisfies GG [SIN], 
and hence there are arbitrarily small compact normal subgroups with 
Lie group quotients. Conversely, if GG [Moore], then use Theorem 
3A and the inclusion [ Z ] C [ F D ] ~ . (See definition 5.2, and also [2, 
Corollary 1, p. 331].) The subgroup H can be chosen as the union 
of all conjugacy classes which have compact closure. 

PROOF OF THEOREM 2. Use Theorems 1, 3D and 3E to obtain a 
normal subgroup RnXM of finite index, where J l /G[Tak] , and Rn 

is normal in G. The subgroup P of (topologically) periodic elements 
of RnXM must satisfy PCM, and P is closed by [4, Theorem 3.16]. 
Moreover, [4, Theorem 3.16] shows that G/P is a finite extension of 
a torsion free abelian group A *=RnXD where the dual group Û is 
compact connected. Apply Theorem 3E to the action of G on the 
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dual group (i?n)* XD*, and thus obtain an isomorphic copy Di of D 
such that A — RnXD\ with both factors stable under G. Let H be the 
inverse image in G of D\, and then define B by applying Theorem 3B 
to the Kuranishi group G/H. 

5. Definitions and relationships. 

5.1. [FC]~=class of locally compact groups G such that every 
conjugacy class of G has compact closure. 

5.2. [FD]"~ = class of locally compact groups G such that the 
derived group G' has compact closure. 

5.3. [FIA]~ = class of locally compact groups G such that the 
group of inner automorphisms has compact closure 
in the group Aut[G] of all homeomorphic auto­
morphisms. 

5.4. [ IN]=class of locally compact groups G such that the 
identity eÇG is contained in some compact neigh­
borhood which is invariant under all inner auto­
morphisms of G. (This is called the invariant 
neighborhood property.) 

5.5. [Kur] = Kuranishi groups = locally compact [MAP] groups 
such that G/Ge is compact, where Ge denotes the 
identity component of G. 

5.6. [MAP] = maximally almost periodic groups = locally com­
pact G such that there exists a monomorphism from 
G into some compact group. 

5.7. [Moore] = Moore groups = locally compact G such that every 
continuous irreducible unitary representation of 
G is finite dimensional. 

5.8. [Mur] = Murakami groups = [MAP]H [SIN]. 
5.9. [P i ]= class of all discrete groups. 
5.10. [P 2 ]= class of locally compact G such that the center 

Z(G) contains a vector group V=Rn such that 
G / F £ [ P i ] , that is the identity component Ge is 
an open vector group (perhaps trivial), and 
GeCZ(G). 

5.11. [P3] = class of locally compact G such that there exists a 
compact normal K with G/KÇ: [P2]. 

5.12. [P4] = class of locally compact G such that there exists a 
characteristic subgroup H of finite index in G such 
that HE [Pa]. 

5.13. [P5] =class of all locally compact G such that there exists 
an open normal H with ü £ [P*]. 
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5.14. [SIN] = subclass of [IN] consisting of those G such that 
every neighborhood of e contains an invariant 
neighborhood of e. (This is called the small invari­
ant neighborhoods property.) 

5.15. [Tak] =Takahashi groups = [MAPH [FD]- . 
5.16. [UM] = class of locally compact unimodular groups. 
5.17. [Z]=class of locally compact G such that G/Z(G) is 

compact, where Z(G) denotes the center of G. 
5.18. Relationships. The table below displays relationships between 

the various properties. (Many of the relationships 
indicated below are theorems from [2] and [4].) 
Here an asterisk is to be interpreted as blocking an 
implication arrow, otherwise for properties X and 
Y which are horizontally or vertically adjacent, 
the interpretation is X=$ F if F is either to the right 
of X or below X. (For instance, [Tak]=»[FD]~ 
=»[FC]-=^[P3]=>[P4]=»[IN]=>[P5] is a typical 
string of implications.) An implication of the form 
[X]=> [Pj] may be regarded as a structure theorem 
for groups G £ [ X ] . 

[Tak] 

[FD]-
[Kur] * 

[Moore] [Mur] 

[MAP] 

[FIA]-

[FC]-

[Pa] 

[P<] 
* 

[SIN] 

[IN] 
* [MAP] 

[IN] [UM] 

[P*] 

[Z] [Tak] 
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TWO SIDED IDEALS OF OPERATORS 

BY HORACIO PORTA 

Communicated by Paul Halmos, September 30, 1968 

1. Let X be a Banach space, and B(X) the Banach algebra of all 
bounded linear operators in X. The closed two sided ideals of B(X) 
(actually, of any Banach algebra) form a complete lattice L(X). 
Aside from very concrete cases, L(X) has not yet been determined; 
for instance, when X = lp, l ^ p < « > , L(X) is a chain (i.e., totally 
ordered) with three elements: {o}, B(X) and the ideal C(X) of com­
pact operators (see [3]). On the other hand, it is known [2, 5.23] that 
for X = Lp, Kp < oo, the lattice L(X) is not a chain. A treatment for 
X a Hubert space of arbitrary dimension can be found in [4]. We aim 
to exhibit here a Banach space X such that L(X) is both "long" and 
"wide." Precisely, we have 

PROPOSITION. There exists a real Banach space X with the properties: 
(i) X is separable, isometric to its dual X*t and reflexive; 
(ii) it is possible to assign a closed two sided ideal a($) C.B(X) to each 

finite set of positive integers SF, in such a way that the mapping $-j>a($) 
is injective and inclusion preserving in both directions: ^ C g if and only 
tfa(S)Ca(S). 

The example is described below, in §3. 

2. In the sequel, all Banach spaces are real (the complex case can 
be dealt with similarly). If X, Y are Banach spaces, m(F, X) denotes 
the set of operators T£:B(X) that can be factorized through F, i.e., 
such that T = SQ for suitable bounded linear operators Q;X-*Yt 

S: Y—>X. If Y is isomorphic (as a Banach space) to its square FX F 
(X means cartesian product), then (see [6, Proposition 1.2] or [2, 
Theorem 5.13]) m(F, X) is a two sided ideal of B{X). a(Y, X) will 
denote the (uniform) closure of m(F, X); thus, if F is isomorphic to 
FX F, a( F, X) is a closed two sided ideal otB(X). 

In all that follows, subspace means closed lineal subspace; a sub-


