A NOTE ON THE STRUCTURE OF MOORE GROUPS

BY LEWIS C. ROBERTSON

Communicated by George D. Mostow, September 23, 1968

1. Introduction. A locally compact group G will be called a Moore group if every continuous irreducible unitary representation of G is finite dimensional. Let [Moore] denote the class of all Moore groups, and let [Z] denote the class of all locally compact groups such that G/Z(G) is a compact group, where Z(G) denotes the center of G. S. Grosser and M. Moskowitz introduced the classes [Moore] and [Z], and made considerable progress on unifying and organizing the study of various "compactness conditions" in locally compact groups. (See [2], [3], and [4].) Grosser and Moskowitz have shown that $[Z] \subset [Moore]$, [3, Theorem 2.1, p. 369], and C. C. Moore has recently shown that $G \in [Moore]$ implies that G is an inverse limit of finite extensions of groups $H_{\alpha} \in [\mathbb{Z}]$ (see Theorem 3A below). Other results on Moore groups are obtained below by introducing the notion of Takahashi groups. Let [Tak] denote the class of all locally compact groups G such that the derived group G' has compact closure, and G is maximally almost periodic, i.e., there exists a monomorphism from G into a compact group. The main results can be stated as follows:

THEOREM 1. A group G satisfies $G \in [Moore]$ if and only if G contains a characteristic subgroup H such that H has finite index in G and $H \in [Tak]$.

THEOREM 2. A group G satisfies $G \in [Moore]$ if and only if G is a semidirect product $G = R^n \times_{\phi} B$, where $B \in [Moore]$ has a compact identity component B_{\bullet} , and B contains a normal subgroup H with finite index such that $R^n \times_{\phi} H$ is a direct product $R^n \times H$.

Theorem 2 may be interpreted as a type of generalized Freudenthal-Weil theorem (see Theorem 3C below). Consequences of Theorem 1 are that quotient groups of Takahashi groups are Takahashi groups, and (closed) subgroups of Moore groups are Moore groups. (This behavior is a pleasant contrast to results such as the following:

- (1) Closed subgroups of [Z]-groups need not be [Z]-groups.
- (2) G/H need not be in [MAP] even when $G \in [MAP]$ and H is a closed characteristic subgroup of G.)

It follows that the class [Moore] is stable under subgroups, quotient groups, inverse limits, and finite extensions; hence the class

[Moore] constitutes a very well-behaved common generalization of compact groups and abelian groups. (See Theorem 3A for the appropriate notion of inverse limit.) Theorem 1 also implies that every Takahashi group is a Moore group, and hence rounds out the Takahashi duality theorem [9] by showing that the dual structure is based on the set of all equivalence classes of irreducible unitary representations. The inclusion $[Tak] \subset [Moore]$ helps to clarify the relationships between a large number of "compactness" conditions which are summarized in §5.

2. **Definitions and notation.** Notation and terminology are taken from Grosser and Moskowitz for those groups which are discussed in [2], [3], and [4]. Let [MAP] denote the class of locally compact groups which are maximally almost periodic. The classes [MAP], [Moore], [Tak] and [Z] are discussed in the introduction. We will also use the following classes:

[Kur] = Kuranishi groups = locally compact G such that $G \in [MAP]$, and G/G_e is compact, where G_e denotes the identity component of G.

[FC] $^-$ = class of locally compact G such that every conjugacy class has compact closure.

A list of definitions of a large number of related properties is available in §5. (See [4] for a more detailed discussion.)

3. Background material.

THEOREM 3A (CHARACTERIZATION OF MOORE GROUPS). A group G satisfies $G \in [\text{Moore}]$ if and only if there is a family $\{K_{\alpha}\}$ of compact normal subgroups of G such that $\bigcap K_{\alpha} = e$, and each $G_{\alpha} = G/K_{\alpha}$ is a finite extension of a group $H_{\alpha} \in [Z]$. In particular, the class [Moore] is stable under finite extensions.

PROOF. This is as yet an unpublished result of C. C. Moore. Use is made of a nonseparable version of Thoma's Theorem [10].

THEOREM 3B (CHARACTERIZATION OF KURANISHI GROUPS). A group G satisfies $G \in [Kur]$ if and only if G is a semidirect product $G = R^n \times_{\phi} K$, where R^n is a vector group, and K is a compact group which contains a subgroup H such that H has finite index in K, and $R^n \times_{\phi} H$ is a direct product $R^n \times H$.

PROOF. The structure theorem for the most general $G \in [Kur]$ was obtained by Murakami [8, Theorem 1, p. 120]. (See also [6, Corollary XII.I, p. 56], and [7, Lemma 2, p. 41]). Murakami develops a

nice application to the study groups with equal left and right uniformities.

THEOREM 3C (FREUDENTHAL-WEIL). A connected group G satisfies $G \in [MAP]$ if and only if $G = R^n \times K$, the direct product of a vector group and a compact group.

Proof [1, Theorem 16.4.6, p. 303].

THEOREM 3D (STRUCTURE THEOREM FOR GROUPS $G \in [FC]^-$). G satisfies $G \in [FC]^-$ if and only if there is a compact normal subgroup K such that G is an extension $e \rightarrow K \rightarrow G \rightarrow V \times D \rightarrow e$, where V is a vector group, and $D \in [FC]^-$ is discrete. It follows that every $G \in [Tak]$ satisfies $G = \mathbb{R}^n \times H$, where the identity component H_\bullet is compact.

PROOF. To appear. The proof uses [4, Corollary 3.22, p. 50].

THEOREM 3E (STABILITY THEOREMS). Various results show that an appropriate group G contains an n-dimensional normal vector group if G contains a normal subgroup of the form $R^n \times H$. See [2, Lemma 1, p. 328], [6, Theorem X, p. 34], and [4, Theorem 1.1]. This existence of stable vector subgroups also applies to many situations where G acts as a group of automorphisms of $R^n \times H$, rather than just action by restriction of inner automorphisms.

4. Proof of Theorems 1 and 2.

PROOF OF THEOREM 1. To establish that $[Tak] \subset [Moore]$, start by assuming that G is discrete, and then move on to the case where G is a Lie group with an abelian identity component. The case where G is a Lie group can then be handled by studying the restriction of inner automorphisms to the compact semisimple group $(G_{\bullet})'$. (Use [5, §6 and Corollary 6.5, p. 122].) Every $G \in [Tak]$ satisfies $G \in [SIN]$. and hence there are arbitrarily small compact normal subgroups with Lie group quotients. Conversely, if $G \in [Moore]$, then use Theorem 3A and the inclusion $[Z] \subset [FD]^{-}$. (See definition 5.2, and also [2, Corollary 1, p. 331].) The subgroup H can be chosen as the union of all conjugacy classes which have compact closure.

PROOF OF THEOREM 2. Use Theorems 1, 3D and 3E to obtain a normal subgroup $R^n \times M$ of finite index, where $M \in [Tak]$, and R^n is normal in G. The subgroup P of (topologically) periodic elements of $R^n \times M$ must satisfy $P \subset M$, and P is closed by [4, Theorem 3.16]. Moreover, [4, Theorem 3.16] shows that G/P is a finite extension of a torsion free abelian group $A = R^n \times D$ where the dual group \hat{D} is compact connected. Apply Theorem 3E to the action of G on the

dual group $(R^n)^{\hat{}} \times D^{\hat{}}$, and thus obtain an isomorphic copy D_1 of D such that $A = R^n \times D_1$ with both factors stable under G. Let H be the inverse image in G of D_1 , and then define B by applying Theorem 3B to the Kuranishi group G/H.

5. Definitions and relationships.

- 5.1. $[FC]^-$ = class of locally compact groups G such that every conjugacy class of G has compact closure.
- 5.2. $[FD]^-$ = class of locally compact groups G such that the derived group G' has compact closure.
- 5.3. [FIA] = class of locally compact groups G such that the group of inner automorphisms has compact closure in the group Aut[G] of all homeomorphic automorphisms.
- 5.4. [IN]=class of locally compact groups G such that the identity $e \in G$ is contained in some compact neighborhood which is invariant under all inner automorphisms of G. (This is called the invariant neighborhood property.)
- 5.5. [Kur] = Kuranishi groups = locally compact [MAP] groups such that G/G_{\bullet} is compact, where G_{\bullet} denotes the identity component of G.
- 5.6. [MAP] = maximally almost periodic groups = locally compact G such that there exists a monomorphism from G into some compact group.
- 5.7. [Moore] = Moore groups = locally compact G such that every continuous irreducible unitary representation of G is finite dimensional.
- 5.8. $[Mur] = Murakami groups = [MAP] \cap [SIN].$
- 5.9. $[P_1]$ = class of all discrete groups.
- 5.10. $[P_2]$ = class of locally compact G such that the center Z(G) contains a vector group $V = \mathbb{R}^n$ such that $G/V \in [P_1]$, that is the identity component G_{ϵ} is an open vector group (perhaps trivial), and $G_{\epsilon} \subset Z(G)$.
- 5.11. $[P_3]$ = class of locally compact G such that there exists a compact normal K with $G/K \in [P_2]$.
- 5.12. $[P_4]$ = class of locally compact G such that there exists a characteristic subgroup H of finite index in G such that $H \in [P_3]$.
- 5.13. $[P_5]$ = class of all locally compact G such that there exists an open normal H with $H \in [P_3]$.

- 5.14. [SIN] = subclass of [IN] consisting of those G such that every neighborhood of e contains an invariant neighborhood of e. (This is called the small invariant neighborhoods property.)
- 5.15. $[Tak] = Takahashi groups = [MAP \cap [FD]]$
- 5.16. [UM] = class of locally compact unimodular groups.
- 5.17. [Z] = class of locally compact G such that G/Z(G) is compact, where Z(G) denotes the center of G.
- 5.18. Relationships. The table below displays relationships between the various properties. (Many of the relationships indicated below are theorems from [2] and [4].) Here an asterisk is to be interpreted as blocking an implication arrow, otherwise for properties X and Y which are horizontally or vertically adjacent, the interpretation is $X \Rightarrow Y$ if Y is either to the right of X or below X. (For instance, $[Tak] \Rightarrow [FD] \Rightarrow [FC] \Rightarrow [P_3] \Rightarrow [P_4] \Rightarrow [IN] \Rightarrow [P_5]$ is a typical string of implications.) An implication of the form $[X] \Rightarrow [P_j]$ may be regarded as a structure theorem for groups $G \in [X]$.

BIBLIOGRAPHY

- 1. J. Dixmier, Les C*-algèbras et leurs représentations, Gauthier-Villars, Paris, 1964.
- 2. S. Grosser and M. Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317-340.
- 3. ——, Representation theory of central topological groups, Trans. Amer. Math. Soc. 129 (1967), 361-390.
- 4. —— Compactness conditions in topological groups. I, II, J. Reine Agnew. Math. (to appear).
- 5. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- 6. K. H. Hofmann and P. Mostert, Splitting in topological groups, Mem. Amer. Math. Soc. No. 43, (1963).
- 7. M. Kuranishi, On non-connected maximally almost periodic groups, Tôhoku Math. J. 2 (1950), 40-46.
- 8. S. Murakami, Remarks on the structure of maximally almost periodic groups, Osaka Math. J. 2 (1950), 119-129.

- 9. S. Takahashi, A duality theorem for representable locally compact groups with compact commutator subgroup, Tôhoku Math. J. 2 (1952), 115-121.
- 10. E. Thoma, Über unitäre Darstellungen abzählbar, diskreter Gruppen, Math. Ann. 153 (1964), 111-138.

University of Washington, Seattle, Washington 98105

TWO SIDED IDEALS OF OPERATORS

BY HORACIO PORTA

Communicated by Paul Halmos, September 30, 1968

1. Let X be a Banach space, and B(X) the Banach algebra of all bounded linear operators in X. The closed two sided ideals of B(X) (actually, of any Banach algebra) form a complete lattice L(X). Aside from very concrete cases, L(X) has not yet been determined; for instance, when $X = l^p$, $1 \le p < \infty$, L(X) is a chain (i.e., totally ordered) with three elements: $\{0\}$, B(X) and the ideal C(X) of compact operators (see [3]). On the other hand, it is known [2, 5.23] that for $X = L^p$, 1 , the lattice <math>L(X) is not a chain. A treatment for X a Hilbert space of arbitrary dimension can be found in [4]. We aim to exhibit here a Banach space X such that L(X) is both "long" and "wide." Precisely, we have

PROPOSITION. There exists a real Banach space X with the properties:

- (i) X is separable, isometric to its dual X^* , and reflexive;
- (ii) it is possible to assign a closed two sided ideal $\alpha(\mathfrak{F}) \subset B(X)$ to each finite set of positive integers \mathfrak{F} , in such a way that the mapping $\mathfrak{F} \rightarrow \alpha(\mathfrak{F})$ is injective and inclusion preserving in both directions: $\mathfrak{F} \subseteq \mathfrak{F}$ if and only if $\alpha(\mathfrak{F}) \subseteq \alpha(\mathfrak{F})$.

The example is described below, in §3.

2. In the sequel, all Banach spaces are *real* (the complex case can be dealt with similarly). If X, Y are Banach spaces, $\mathfrak{m}(Y,X)$ denotes the set of operators $T \in B(X)$ that can be factorized through Y, i.e., such that T = SQ for suitable bounded linear operators $Q: X \to Y$, $S: Y \to X$. If Y is isomorphic (as a Banach space) to its square $Y \times Y$ (\times means cartesian product), then (see [6, Proposition 1.2] or [2, Theorem 5.13]) $\mathfrak{m}(Y,X)$ is a two sided ideal of B(X). $\mathfrak{a}(Y,X)$ will denote the (uniform) closure of $\mathfrak{m}(Y,X)$; thus, if Y is isomorphic to $Y \times Y$, $\mathfrak{a}(Y,X)$ is a *closed two sided ideal* of B(X).

In all that follows, subspace means closed lineal subspace; a sub-