MAPPING CYLINDERS AND THE ANNULUS CONJECTURE

BY L. S. HUSCH1

Communicated by R. H. Bing, October 14, 1968

Suppose f is an embedding of the n-sphere S^n into the (n+1)-sphere S^{n+1} ; f is said to be locally flat at $x \in S^n$ if there is a neighborhood U of f(x) in S^{n+1} such that the pair $(U, U \cap f(S^n))$ is homeomorphic to (E^{n+1}, E^n) where E^i is Euclidean i-space; i.e., there exists a homeomorphism $h: U \to E^{n+1}$ such that $h(U \cap f(S^n)) = E^n = E^n \times 0 \subseteq E^n \times E^1 = E^{n+1}$. Brown [2], [3] has shown that if f is locally flat at each point of S^n , then the closure of each complementary domain of $f(S^n)$ in S^{n+1} is homeomorphic to an (n+1)-cell. One of the outstanding unsolved problems in topology of manifolds is the annulus conjecture. Suppose f, g are two locally flat embeddings (i.e., f and g are locally flat at each point of S^n) of S^n into S^{n+1} such that $f(S^n) \cap g(S^n) = \emptyset$. The connected submanifold A^{n+1} of S^{n+1} whose boundary is $f(S^n) \cup g(S^n)$ is called a pseudo-annulus. The annulus conjecture is that A^{n+1} is homeomorphic to $S^n \times [0, 1]$. If f, g are both either piecewise linear or differentiable maps or if $n \le 2$, then the conjecture is true.

This paper was motivated by an attempt to construct a counter-example to the annulus conjecture. Let $p: S^n \to S^n$ be a continuous map. The mapping cylinder of p, Map (p), is the decomposition space formed from the disjoint union $(S^n \times [0, 1]) \cup S^n$ by identifying (x, 1) with p(x) for each $x \in S^n$. The idea was to find a map $p: S^n \to S^n$ such that Map (p) is an (n+1)-manifold which is not homeomorphic to $S^n \times I$; for example, one might attempt to construct such a p by using a variation of Bing's example [1] of an upper semicontinuous decomposition of S^3 which yields S^3 but some of whose nondegenerate elements are spheres. By Proposition 2, Map (p) would be a pseudo-annulus and hence a counterexample. However, we show that this is impossible in dimension 3; i.e., if Map (p) is a manifold, then it is homeomorphic to $S^3 \times I$.

The author expresses his gratitude to Professor R. H. Bing who shortened many of the original arguments. Chris Lacher has obtained similar results.

Let $p: S^n \to S^n$ be a continuous map such that Map (p) is an (n+1)-manifold. Let $\pi: (S^n \times I) \cup S^n \to \text{Map}(p)$ be the natural projection.

¹ Research supported in part by National Science Foundation grant GP-8615.

PROPOSITION 1. The boundary of Map (p) is the union of the two n-spheres $(S^n \times 0)$ and $(S^n \times 1)$.

PROOF. Suppose M has one boundary component. Note that M is homotopically equivalent to S^* . In the exact sequence

$$H_n(\partial M) \xrightarrow{i_*} H_n(M) \longrightarrow H_n(M, \partial M)$$

 i_* is the zero map and by Poincaré Duality, $H_n(M, \partial M)$ is isomorphic to $H^1(M) = 0$. Hence $H_n(M) = 0$, a contradiction.

Proposition 2. Map (p) is a pseudo-annulus.

PROOF. By attaching an (n+1)-cell to each boundary component of M, one obtains a closed manifold S. It is easy to see that S is the union of two open (n+1)-cells and hence by [2], S is an (n+1)-sphere in which M appears as a pseudo-annulus.

PROPOSITION 3. If $n \neq 4$, then p is a cellular map; i.e., if $x \in S^n$, then $p^{-1}(x) = \bigcap_{i=1}^{\infty} C_i$ where C_i (\subseteq interior C_{i-1}) are closed n-cells in S^n .

PROOF. Let U be a contractible open subset of S^n . Define $g: p^{-1}U$ $\rightarrow U$ by $g = p \mid p^{-1}U$. Map (g) is a contractible open subset of Map (p) for Map $(g) = r^{-1}U$ where r is the canonical deformation retraction of Map (p) onto image $(p) = S^n$. Thus Map (g) is an (n+1)-manifold. Since U is collared in Map (g) [3], Map (g) – U is contractible. But Map (g) - U deformation retracts to $p^{-1}U$ and hence $p^{-1}U$ is contractible. By Lacher [5, Theorem 2] for any open subset V of S^n , $p: p^{-1}(V) \to V$ is a proper homotopy equivalence. Let $x \in S^n$, then $x = \bigcap_{i=1}^{\infty} D_i$ where D_i (\subseteq interior D_{i-1}) are closed *n*-cells in S^n . Since $p^{-1}(x) = \bigcap_{i=1}^{\infty} p^{-1}D_i$, if we want to show that $p^{-1}(x)$ is cellular, it is sufficient to show that there exists an *n*-cell C_i in p^{-1} (interior D_i) for each i such that $p^{-1}(x)$ is contained in the interior of C_i . From above $p: p^{-1}$ (interior D_i) \rightarrow interior D_i is a proper homotopy equivalence; since interior D_i is 1-connected at infinity, p^{-1} (interior D_i) is 1-connected at infinity. For n=3, p^{-1} (interior D_i) is an open 3-cell by Edwards [4]. For $n \ge 5$, we apply Stallings [7]. It is now easy to find C_{ℓ} .

THEOREM. If $p: S^3 \rightarrow S^3$ is a continuous map and Map (p) is a manifold, then Map (p) is homeomorphic to $S^3 \times I$.

PROOF. By Proposition 3, p is a cellular map. By Price [6] there exists a pseudo-isotopy $H: S^3 \times I \rightarrow S^3 \times I$ (i.e., H is level preserving and the map $H_t: S^3 \rightarrow S^3$, defined by $H(x, t) = (H_t(x), t)$, is a homeomorphism for $t \in [0, 1)$) such that H_0 is the identity map and $H_1 = p$.

Define ϕ : Map $(p) \rightarrow S^3 \times I$ by $H\pi^{-1}(x)$. It is easily seen that ϕ is a homeomorphism using the fact that π is an open map.

REFERENCES

- 1. R. H. Bing, Decompositions of E³, Topology of 3-manifolds and related topics (Proc. The University of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 5-21.
- 2. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 3. ——, Locally flat embeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341.
- 4. C. H. Edwards, Jr., Open 3-manifolds which are simply connected at infinity, Proc. Amer. Math. Soc. 14 (1963), 391-395.
- 5. R. C. Lacher, Cell-like mappings of ANR's, Bull. Amer. Math. Soc. 74 (1968), 933-935.
- 6. T. M. Price, Decompositions of S³ and pseudo-isotopies, Notices Amer. Math. Soc. 15 (1968), 136.
- 7. J. Stallings, The piecewise linear structure of euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481-489.

University of Georgia, Athens, Georgia 30602