
BAXTER ALGEBRAS AND COMBINATORIAL 
IDENTITIES. II 

BY GIAN-CARLO ROTA 

Communicated August 20, 1968 

1. Introduction. The problem of obtaining an analog of the Baxter-
Bohnenblust-Spitzer formula for cyclic permutations was suggested 
to me by Mark Kac. Its solution is presented here; the method leads 
in fact to similar identities for any group of permutations; the main 
result is identity (7) of §5. The tools of the proof are the result of I, 
which reduces computations with Baxter operators to computations 
with symmetric functions, and Möbius inversion on the lattice of 
periods of a group action (definition below). 

To be sure, the present results are more of combinatorial than of 
probabilistic interest; further applications, with special regards to 
the Baxter algebras arising in probability, will be given in the third 
part. 

The author gratefully acknowledges the encouragement of M. Kac 
and H. P. McKean. 

2. Notation. A partition T of a set S is a family of disjoint non­
empty subsets of 5, called blocks, whose union is S. Partitions are 
ordered by refinement: w^a if every block of w is contained in one 
block of a. The letter 0 denotes the partition where each block has 
one element. For the statement of the Möbius Inversion Formula 
we refer to the author's paper; little beyond the statement is needed. 
Bracketed statements and formulas denote partial results. Some 
details are omitted, but enough are given so that the full proof can 
be reconstructed. 

3. Generating functions. A function is a function from a finite set 
of integers to the positive integers N. We associate to every 
function ƒ: S—>N a formal power series in the variables x), i £ S , 
1Ûj < °° i as follows. 

Let 

M(f) = U4(i); 
ies 

if A is a set of functions, then let 

M (A) = £ M(f). 
feA 

Call M (A) the generating f unction of the set A. 
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(1) Let C and B be the sets of functions from 5 and T to N, re­
spectively, where Sr\T = 0f and let A be their product; then M(A) 
= M(B)M(C). 

UA and B are any sets of functions, then M (A \JB) = M (A)+M (B). 
(2) Let U(S) be the set of all functions on 5 each of which takes 

only one value, then 

M(U(S)) = z(n*A-

(3) Let T be a partition of S, and let B(w) be the generating func­
tion of the set of functions ƒ : S—>N such that every restriction ƒ | B 
takes only one value, for every block B of 7r. From (1) and (2) we infer 

B(w) = II M(U(B)). 
Bev 

For example, if T = 0, then B(0) is the generating function of the 
set of all functions on S, and B(0) = Ylies (x\+xl+xl+ * * • )• 

(4) Let A be the set of one-to-one functions; then 

M(A) = E n 4> 
tes 

where the sum ranges over all products, each product appearing only 
once, and the factors #J.t., i(ES, in each product being distinct. 

For example, if S= {i, l^i^n}, then M(A) = ^JX\XX\2 • • • x%n, 
where the sum ranges over all distinct sequences (fa, fa, • • • , kn) of 
distinct integers. 

The formal power series M (A) are "polarized forms" of the elemen­
tary symmetric functions. 

4. Möbius inversion. Let G be a group of permutations of the set S, 
and H be a subgroup of G. Associate to H a partition T of S as follows : 
two elements a, bÇzS belong to the same block of ir, whenever there 
is a permutation pÇzH such that p(a) =b. The partition TT is called 
the period of the subgroup H. A partition x which is the period of 
some subgroup H of G is called a period of the group action (G, S). The 
set of all periods is a lattice P(G, S). Given a function/: S—>N, the 
period of the group of all pGG s.t. f(p(s)) =f(s) for all s(ES is called 
the G-period off. For example, if G is the group of all permutations of 
S, then the G-period off is called the co-image of/ (cf. Mitchell, also 
called the kernel). 

(1) Let 7r£P(G, S), let B(w) be the generating function of the set 
of functions ƒ : S—>N whose co-image is some partition <r such that 
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<r^7r, and let B'(TT) be that of the set of functions whose G-period is 
some partition r such that r ^ w. Then B' (ir) =B(T). For, if r and <r are 
respectively the G-period and the co-image of/, then r^a. 

For 7r£P(G, 5), let -4(G, x) be the generating function of the set 
of functions whose G-period is T. Clearly 

(2) B{r) = B'(T) - £ 4(G, »), r, x £ P(G, 5). 

By Möbius Inversion in the lattice P(G, S) we infer A(G, r ) 
= S T ^ T M (r, Tr)B(ir), where /x is the Möbius function of the lattice 

P(G, S). Setting r = 0, we obtain 

(3) i 4 ( G , 0 ) « E M(0,T)£(T) . 
*€P(G,<S) 

5. Main result. Let A (w) be the generating function of the set of 
functions whose co-image is ir. If F is a formal power series in the vari­
ables x)$ l^i^n, 1 g j < oo, let T*(70 be the polynomial obtained by 
setting to zero all variables x) for j>k. Let 5 = {l: l^i^n} and let 
^ife(G,7r) = r J k(4(G,7r)).Let 

(1) A(G, T) = (^i(G, TT), ^2(G, T ) , i4,(G, * ) , - • • ). 

The sequence A(w) is similarly defined, and belongs to the Standard 
Baxter Algebra generated by the free sequences xl = (x\, x\t x\, • • • ), 
x2, - - • , xn. In fact, an explicit expression can be given for A(T) : Let 
Bi, B2, - - • , Bk be the blocks of ÎT, and set x(B) = H»e* **• Then, 

(2) A ( T ) - Z P(x(Bpl)P(x(Bp2) • • • *(*(**)) . - O ) , 

the sum ranging over all permutations p of {l, 2, • • • , k}. (The 
verification is easy.) For the special case 7r = 0 we obtain 

(3) A(0) = £ ) P(&lP(p*P( • • - P**») • • •»)), 

where A (0) is the generating function of the set of all one-to-one func­
tions (cf. §3, (4)). Similarly, set B(T) = CBI(TT), J52(TT), 58(7T), • • • ), 
where Bk{ir) = TkB(w). Then B(ir) belongs to the Standard Baxter 
Algebra (cf. §3, (3)): 

(4) B ( T ) - Px(B0Px(B2) • • • Px(Bk). 

Let <r be a partition of 5, and let cr = sup {w: 7rg<7, 7rEP(G, S)}. 
Then o—-»£ is a closure relation on the dual lattice of P(G, S). If the 
co-image of/ is <r, the G-period of/ is â. Hence, A (G,7r)=U{ ff: 7-r} A(<r), 
irÇzP(G9 S). Applying the operator Tk to both sides, 
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(5) Ak(G,x)~ £ Ak(„) 
{e: ô—v) 

whence we conclude that A(G, x) = 2 t « »-*) A(o) is an element of 
the Standard Baxter Algebra. 

To §4, (3), apply Tk, obtaining 

(6) Ak(G,0) = E M(0,7r)2?*0r); 
»eP(ö,f) 

this in turn gives the following identity, in the Standard Baxter alge­
bra: 

(7) A ( G , 0 ) = £ M(0, * ) £ « = £ A(cr). 
T € P ( ( 7 . S ) {a:«r-0j 

In virtue of the Theorem proved in I, identity (7) expresses the equal­
ity of two expressions involving only a Baxter operator P and generic 
variables x1, x2, • • • , xn, and is therefore valid in any Baxter algebra. 

EXAMPLE 1. Let G be the symmetric group. Then A and B in (7) 
are given by (3) and (4), and we obtain the classical Bohnenblust-
Baxter-Spitzer formula 

£ P(x*lP(x*2 • • • (Px*n) • • • )) 

(8) P „ 
- E M (0, *)Px(BàPx(Bà • • • P*(A), 

where the #»• are the blocks of TT, and the sum ranges over all parti­
tions of {1, 2, • • • , w}. The Möbius function of the lattice of parti­
tions is known (cf. the author's paper), it is 

M(O,T) = n (-DFtB)-w) - Di, 

where v(B) denotes the size of the set B. Replacing in (8), the classi­
cal version is obtained. 

EXAMPLE 2. Let G be a cyclic group of order n acting transitively 
on 5 = { l , 2 , • • • , « } . Then P(G, S) is isomorphic to the lattice of 
divisors of the integer «, and M(0> IT) —Ji{n/k) if x is a period with k 
blocks, where /z is the classical Möbius function. Formula (7) is 
trivial if n is a prime, and is significant when n has a large number of 
divisors. 

Other interesting possibilities arise when G is a product of sym­
metric groups, and when G is the alternating group. The reader may 
enjoy working them out by himself. 
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