
ON THE ENUMERATION OF PLANAR MAPS 

BY W. T. TUTTE1 

A planar map is determined by a finite connected nonnull graph 
embedded in the 2-sphere or closed plane. It is permissible for the 
graph to have loops or multiple joins. It separates the remainder of 
the surface into a finite number of simply-connected regions called 
the faces of the map. We refer to the vertices and edges of the graph 
as the vertices and edges of the map, respectively. The valency of a 
vertex is the number of incident edges, loops being counted twice. 

A vertex-map is a planar map having exactly one vertex and no 
edges. Clearly a vertex-map has only one face. A map with exactly 
one edge is called a link-map or a loop-map according as the two ends 
of the edge are distinct or coincident. Thus a link-map has exactly 
one face and a loop-map exactly two. 

Two planar maps are combinatorially equivalent if there is a homeo-
morphism of the surface which transforms one into the other. To 
within a combinatorial equivalence there is only one vertex-map, 
one link-map and one loop-map. But the vertex-map, link-map and 
loop-map are combinatorially distinct from one another. 

Consider a planar map M which is not a vertex-map. Each face of 
M has an associated bounding path in the graph. We can consider this 
to be the path traced out by a point moving along the edges of the 
graph in accordance with the following rules. Normally in any small 
interval of time the point traces out a simple arc. On one side of this 
directed arc, let us say the right side, there is locally nothing but 
points of the face. Having started along one edge, the point continues 
along it, without reversing direction, until it comes to the far end. 
If this end is monovalent, the point then proceeds back along the 
same edge. This behaviour at a monovalent vertex constitutes the 
only exception to the rule of simple arcs in short intervals of time. 

The bounding path is the cyclic sequence of positions of the moving 
point, some of which may be repeated. We restrict it to a single cycle 
by the rule that it may not traverse any edge twice in the same direc­
tion. When the distinction between right and left has been made for 
a map, the above rules determine the bounding path of each face 
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uniquely. Figure I shows the bounding path in a map of one mod« 
erately complicated face F. 

FIGURE I 

An edge A can occur at most twice in the bounding path of a face 
F. If it does occur twice it does so in opposite directions, and it must 
be an isthmus of the graph. A vertex can appear more than once, but 
this happens only for cut-vertices. 

The edges traversed by the bounding path of a face F are said to be 
incident with F. The valency of F is the number of edges incident with 
F, isthmuses being counted twice. A face of valency m is called an 
ni-gon. 

It is natural to ask how many combinatorially distinct planar maps 
there are with n edges, or with k vertices and I faces, or with some 
other specification. Such problems are difficult. It is easier to study 
the analogous problems for the "rooted" planar maps which we now 
proceed to describe. 

A planar map is said to be rooted when one edge is specified as the 
root9 a direction is assigned to the root, and the two sides of the root 
are distinguished as "left" and "right." Two rooted maps are regarded 
as combinatorially equivalent if there is a homeomorphism of the 
surface which transforms one into the other but preserves the root, 
its direction and its right side. Since there are homeomorphisms of 
the closed plane that interchange right and left, the choice of the 
"left" side of a root is arbitrary. 

We now state and discuss a very general enumerative problem on 
rooted planar maps. We shall solve it however only in special cases. 
In any rooted planar map let us distinguish the face on the right of 
the root as the outer face. The other faces are the inner ones. Let 

A(m; nh n2, nZy • • • ) 

denote the number of combinatorially distinct rooted planar maps 
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in which the outer face is an m-gon and the number of inner i-gons 
is rii ( i = l , 2, 3, • • • ). 

I t is convenient to say that a vertex-map has exactly one rooting, 
though the foregoing definition of a rooted planar map is not applica­
ble to this case. We express this convention by writing 

MO; ) = 1. 

We now introduce an indeterminate x and write 

00 

a(nh n2, n9, • • • ) = ]C A(m'> nh ^2, m, • • • )xm. 

Next we introduce infinitely many more independent indeterminates 
yi, yi, ^3, • • • 1 and define the generating function 

a(nh »2 , »8, • • • )yi ^2 ^3 

The formal sum is over all possible sets of values of the wt-, with only 
a finite number nonzero. The formula has terms representing maps 
with no inner faces at all, including a unit term for the vertex-map. 
We proceed to obtain an equation for/. 

The terms of ƒ fall naturally into three classes. The first class con­
sists solely of the constant term 1. 

The second class consists of the terms representing maps, having 
at least one edge, in which the root is an isthmus. Figure II represents 
such a rooted planar map. A is the root and F is the outer face. 

FIGURE II 
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If we delete the root, the graph separates into two distinct com­
ponents, either or both of which may determine vertex-maps. 

Suppose the component containing the positive end z of A has at 
least one edge. I t determines a map Mz which has a face Fz containing 
F, A and the other component of the graph. The bounding path of Fz 

is that part of the bounding path of F which extends from the occur­
rence of A directed to z to the occurrence of A directed from z. We 
can convert Mz into a rooted planar map with outer face Fz by choos­
ing as root the edge B which is traversed by the bounding path of F 
immediately after that path traverses A to zy and by assigning B the 
direction in which the path traverses it on this occasion. 

Let the negative end of A be y. The second component contains y 
and determines a planar map My which can be rooted in much the 
same way as Mz, if it is not a vertex-map. We define the root as the 
edge C traversed by the bounding path of F immediately before it 
traverses A from y to z, assigning to the root the direction of this 
traversal. 

In virtue of the above construction, each rooted planar map cor­
responding to a term of the second class decomposes uniquely into a 
pair of rooted planar maps My and Mz, either or both of which may be 
vertex-maps. The inner faces of the original map M are those of Mv, 
together with those of MZy and the valency of the outer face of M 
exceeds by two the sum of the valencies of the outer faces of Mv 

and MZ. 
Conversely, given two rooted planar maps My and Mzy we can 

combine them with an extra edge A to form a rooted planar map M 
from which they can be recovered by the above construction. We 
deduce that the formal sum of the terms of ƒ of the second class is the 
power series x2p. 

The terms of ƒ of the third class correspond to maps, having at 
least one edge, in which the root is not an isthmus. Consider such a 
map M. Let its outer face F be an w-gon, and let the inner face F' 
incident with the root be an i-gon. The root is an edge A directed from 
y to z. (See Figures III and IV.) 

When we delete the root A, we obtain from M a new planar map 
Mi in which F and F' are united with A to form a new face F\. The 
remaining faces of M\ are the inner faces of M other than F'. 

We can convert Mi into a rooted map with outer face Fi in the 
following way. If m> 1, as in Figure III , we take the root of Mi to be 
the edge B which is traversed by the bounding path of F immediately 
after it traverses A, and we give B the direction of this traversal. 
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H m = l but i> 1, as in Figure IV, we take the root to be the edge B 
which is traversed by the bounding path of F' immediately before it 
traverses A. In the remaining case Mi is a vertex-map and we may 
consider it rooted by convention. 

FIGURE IV 

Conversely, given a rooted map M\ with an outer mi-gon, we can 
construct a map of the third class from it by adding a new edge A 
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separating the outer face into an rn-gon and an i-gon, where Wi = 
m +i—2. The new edge is to be directed to the negative end of the old 
root and to have the ra-gon on its right. We then take A as the new 
root and the w-gon as the new outer face. Note however that this 
construction is possible, for a given i*z 1, if and only if m\ à i— 1. 

The maps which correspond to terms of the third class, and which 
have a given value of i, are thus enumerated by the function 

where [/]»~i denotes the sum of those terms of ƒ in which x occurs at 
least to the (i — l)th power. 

Combining the above results we obtain the identity 

(1) / = 1 + x*f + £ **-<y,[/]i-i. 

As a very simple exercise on this result, let us calculate the number 
T(n) of rooted planar maps with n edges, but with no faces other than 
the outer one. These maps are the "rooted plane trees" of n edges [2]. 
If we write/o for the sum of the terms of ƒ not involving any of the yiy 

then T(n) is the coefficient of x2n in/0. But, by (1),/o is given by the 
quadratic equation 

(2) /o = 1 + x'fl 

It follows that T(n) = (2«) !/»!(» +1)1-
We can now equate the coefficients of yi in (1) and so obtain an 

expression for the coefficient of y^ in/, as a function of x. Next we can 
find the coefficients of y\ and yty^ and so on. We can in fact regard (1) 
as a recursion formula by which the functions a(wi, th, riz, • • • ) can 
be computed. 

The special case of (1) in which each yi with an odd suffix i is set 
equal to zero has a solution of simple form. This special case, though 
with a difference of terminology, is discussed in [4], The "Eulerian 
maps" of that paper are the duals of the maps whose faces have even 
valencies. 

The general solution of (1) is not yet known. It is possible however 
to obtain a parametric solution for the special case in which yi is 
replaced by yz\ where x, y and z are independent indeterminates. 
We denote the function ƒ, after this substitution, by 

f(x, y, z) = X) fwv&y*-
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Thus fpqr is the number of rooted planar maps with an outer £-gon, 
with q inner faces, and with (p+r)/2 edges. I t is clear that only a 
finite number of terms of f(x, y1 z) correspond to a given value of 
p+r. Hence we obtain a well-defined power series ƒ (s, y, z) in y and z 
when we replace x by z in ƒ(#, y, z). 

Let us write fpXp for the formal sum of those terms of ƒ(x, y} z) in 
which the index of x is p. Then, by (1), 

00 00 

f(x9 y, s) - 1 - x2f2(x, y, z) = ] £ x^yz* ]C fnXn 

CO W+l 

= £ ƒ» E «M*-<3** 

(3) n-° r 
00 

= opys 23 U(xn+l ~ sn+1)/(# ~ 2) 
n«-0 

= xyz(xf(x9 y} z) - *ƒ(*, y, *))/(* - z). 

Let us denote the numbers of vertices, edges and faces of a planar 
map by ao, OL\ and «2, respectively. Then 

^ = « 2 — 1 , p + r = 2ai = 2«o + 2«2 — 4, 

by the Euler polyhedron formula. Thus 

I t therefore seems convenient to transform to new variables u, v and 
w as follows. 

u = x/z, v = yz2, w = s2. 

# = uw1/2, y = v/w, z = wlf2. 

We write 

ƒ(#, y, 3) = F = F(u, vyw) = ^2 Fpiiutvhvi. 

Thus Fpij is the number of combinatorially distinct rooted planar 
maps with an outer £-gon, with i + 1 faces and with j + 1 vertices. 
We note that in each term of F the index of u does not exceed the sum 
of the indices of v and w. Thus for given values of i and j only a finite 
number of the coefficients FPa are nonzero. For any real or complex 
number X we define F(X, v, w) as the formal power series in v and w in 
which the coefficient of 11V is ^p FpijK

p. By the observation just 
made this sum is a polynomial in X. 

The difference equation (3) can be rewritten as 
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(4) F - 1 - u2wF2 = uv(uF - F ( l , », w))/(« - 1). 

This equation determines F uniquely in the sense of the following 
theorem. 

THEOREM 1. Let S(u, vt w) be a formal power series in v and w whose 
coefficients are real functions of a real variable u, all defined in the inter­
val 1 — e < u < 1 +efor some fixed positive €, and all continuous at u = 1. 
Suppose further that S(u, v, w) satisfies the identity 

(S(u, v, w) — 1 — u2wS2(u, v, w)) X (u — 1) 

= uv(uS(u, v, w) — S(l, v, w)) 

for all values of u in the interval. Then S(u, v, w) = F(u, v, w) for all 
such values of u. 

PROOF. We have S{u, v, w) = S0+Siv+S2V2+ • • • where the Si 
are independent of v. They are formal power series in w whose coeffi­
cients are real functions of u continuous at w = l. Let 7\- denote the 
series obtained by putting u = 1 in Si. 

From the given identity we have, when U9*l, 50-~l— u2wS% = 0, 
whence 

So = (1 - (1 ~ 4:u2w)l'2)/(2u2w). 

Thus So is uniquely determined, by continuity when u = l. But sup­
pose the Si have been found as far as i — m. For any value of u, other 
than 1, in the relevant interval we can equate coefficients of vm+l 

in the given identity and so obtain an expression for 

Sw+i(l - 2u2wSo), i.e. Sm+i(l - 4w2w)1/2, 

in terms of the Si and 2\- with i^m. Then Sm+i is determined for all 
values of u, other than 1, in the given interval. The result can be ex­
tended to the case u = 1 by continuity. 

We deduce that S(u, v, w) is uniquely determined by the given 
conditions. Since F(u, v, w) satisfies these conditions the theorem 
follows. 

We can obtain a parametric solution of (4) in the following way. 
From now on we interpret v and w as complex variables. We define 
independent parameters 5 and t in terms of them by the following 
equations 

(5) v = s(s + 2 ) / 4 ( J + t + l)2 , w=*t(t + 2)/4(j + t + l)2 . 
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The parameters 5 and t are functions of v and w, analytic in a suffi­
ciently small neighbourhood of (0, 0) [l, I, § 188, and II, Part I, 
§ 104]. 

We write 
(6) h = 4(* + * + l)/(* + 2)(/ + 2). 

THEOREM 2. h = F(l, v, w). 

PROOF. If this theorem holds, it follows from (4) that F(u, v, w) 
is one solution for X of the quadratic 

(7) AX2 + BX + C = 0, 

where 
A = u2(u — l)w, 

B = u2v — u + 1, 

C = u — 1 — uvh. 

Putting U=u/2(s-\-t+l) and using the above definitions of Ay B 
and C we find that 

B* - A AC = U\s* + 4s* + (-16/2 - 16/ + 4)*2 

+ (-32/8 - 80/2 - 48/)* 
+ (-16/4 - 64/8 - 80/2 - 32/)) 

+ U*(-4s* + (-4/ - 12)s2 + (lot2 + lot - S)s 

+ (16/3 + 48/2 + 32/)) 

+ U2(6s2 + (8/ + 12)* + 4) 

+ i7(-4* + ( - 4 / - 4 ) ) 

+ 1 
= (U(s + It + 2) - 1)2(1 - 2sU + (s2 - 4*/ - 4/(Z + 2)) U2) 

= (2* + 2/ + 2)-4((« - 1)(2* + 2/ + 2) - us)2Q\ 

where 

Q2 = u*(S + 2)2 - 4(W - l)(s + / + l)(u(t + 1) + S + t + 1) 

and 0 = 2 when s = / = 0. 
When Q2 is expanded as a polynomial in s and /, the term not in­

volving s or / is 4. We deduce that for all real values of u the function 
Q is an analytic function of s and / in the neighbourhood of (0, 0). 
The coefficient of sH° in Q is found to be 2 — w, and that of sH1 is 1 —w2. 
Thus when w = lwe have <2 = 5+2. 

We may now write 
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4(s+t+l)*(-B-(B*-4:AC)l'2) = 4(u-l)(s+t+iy--u2s(s+2) 

-2(u-l)(s+t+l)Q+usQ. 

I t can be verified that when the expression on the right is expanded 
in powers of 5 and t the terms of zero degree in / have zero coefficients. 
Hence for each positive u, other than 1, there is a function Xu of 
s and t which is analytic in the neighbourhood of (0, 0), which satisfies 

(8) AXI + BXU + C = 0, 

and which is given by the following equation 

2u2(u-l)t(t+2)Xu = A(u-l)(s+t+iy-2(u-l)(s+t+l)Q 

-4us(u(s+2)+Q)~'Ku--'lKs+t+l)(u(t+l)+s+t+l)i 

that is, 

(s+t+1) ( K 2us(u(t+l)+s+t+l)) 
(9) X t t = - - < 2 ( H - / + 1 ) - G — " 't • 

We use this formula to define Xu when u = l. We observe that Xx 

is an analytic function of s and t in the neighbourhood of (0, 0) and 
that, by continuity, it satisfies (8). But when we put w = 1, Q is trans­
formed into s+2, and it follows from the above formula, together 
with (6), tha t Xt = h. 

An application of Theorem 1 now shows that the function Xu 

given by (9) is identical with F(u, v, w) for 0<u<2. Theorem 2 
follows. We deduce also that F(u, v, w), for complex variables u, v 
and w, is the expansion of the expression on the right of (9) in powers 
of u, v and w. 

Another formulation of the definition of h runs as follows. The 
parameter/i = 5 + ^ + 1 is given by the equation 

M = (1 + 4 V ) 1 / 2 + (1 + W ) 1 / 2 ~ 1, 

by (5). We then have 

h = ((1 + 4V) 1 / 2 - 1)((1 + 4W/*2)1'2 - l)/4*w/i* 

= ((1 - 4» - ±w)trl - M~3) / (8IW). 

The coefficient h^ of v{w' in h is the number of rooted planar maps 
with i + 1 faces and j+l vertices. By topological duality we have 
hij = hji. This is related to the definition of h as a function symmetri­
cal in v and w. 
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The author has calculated the first few terms of h, with the follow­
ing result. 

k = 1 + * + 2s2 + 5s3 + 14s4 + 42s5 + 132s6 

+ 429s7 + 1430s8 + 4862s9 + 16796s10 + • • • 

+ w(l + 5s + 22s2 + 93s3 + 386s4 + 1586s5 

+ 6476s» + 26333s7 + 106762s8 + 431910»» + • • • ) 

+ w2(2 + 22» + 164s2 + 1030s3 + 5868s4 + 31388s6 

+ 160648s6 + 795846s7 + 3845020s8 + • • • ) 

+ w3(5 + 93s + 1030s2 + 8885s8 + 65954s4 + 442610s5 

+ 2762412s6 + 16322085s7 + • • • ) 

+w4(14 + 386s + 5868s2 + 65954s3 + 614404s4 

+ 5030004s5 + 37460376s6 + • • • ) 

+ w>6(42 + 1586s + 31388s2 + 442610s8 + 5030004s4 

+ 49145460s5 + . . . ) + . . . . 

The calculations were checked by the use of the formula 

£ * « = 2(2»)l3»/(»K» + 2)l) 

which is a consequence of [3, § 5]. It can also be derived from equa­
tions (5) and (6) by putting s = t and v = w, and then using La­
grange's expansion. 
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