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In this paper we discuss two more aspects of a general problem 
described amply in [4], a paper whose various conventions we con­
tinue to use. In particular manifolds and submanifolds are to be 
taken in the differentiable sense, and a differentiable mapping 
ƒ: Mm—>Rr from an m-dimensional manifold with boundary into 
r-dimensional euclidean space is called ordinary if its rank at each 
point is the maximum possible. 

1. Factoring through immersion. The following Lemma will be 
used in the proof of the next theorem. 

LEMMA: Let f: Rn—>Rn be a C1 f unction such that the following three 
conditions hold. 

(1) f(xi, • • • , Xn) = (yi(xi, • • , xn), • • • , yn(xi, • • , *„))» 
(2) m • • - i 0) = (0, - • - , 0), 
(3) setting K*^ {(xh • • » , *„)£jRn | ff»-0} andi?_= {(yh • • • , yn) 

CzRn\yn^0}, we have f \ (Rn—K*) is ordinary} f\K* is an em­
bedding and f{Rn) C-R-. 

Then f or any point x+ in R(>) = {(xi, • • • , xn)^Rn\xn>0} and for 
any point x~ in i?(<)*= {(#i, • * • , xn)CE.Rn\xn<0} we have 

!ƒ(*+)• !ƒ(*-)< o. 

PROOF. The hypothesis implies that the hyperplane P 
= {(yi, ' ' • ,yn)ERn\yn = 0} is tangent tof(K*) a t (0) = (0, • • • ,0) , 
hence expanding Jjf(x), the determinant of the Jacobian matrix of/, 
near (0) in terms of the last row we obtain Jf(x)=A(xi, • • • , xn) 
+B(xi, • • • , xn)(dyn/dxn) where A is the sum of the first (» — l) 
terms and 5(0 , • • • , 0 ) ^ 0 . Since ƒ | (Rn — K*) is ordinary it is suffi­
cient to prove the Lemma for some x+ in R(>) and some x~ in R(<). 
Deny this. Then for #„5^0, ]f(x) is either always positive or always 
negative, and we may assume for definiteness that J5(0, • • • , 0 ) > 0 
and Jf(x)>0 for all x=(xi, • • • , xn), Xn^O. (For the case J / > 0 
and JB(0) < 0 see the note below.) Further we may assume by continu­
ity that on some neighbourhood C of (0), say C= {xE:Rn\ \\x\\^a}, 
B is positive. Also we may assume that f(Ca), where Ca 

= {xEi? n | |HI = # } , is a t a positive distance d from P. This may be 
accomplished for instance by composing ƒ with an appropriate dif-
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feomorphism of Rn(yu • • • > 3 0 to yield another mapping having the 
same properties as ƒ plus this latter property. Next, let m: R-+R be a 
C00 function such that : (al) \m(t)<d/2t (a2) m(0)=0, (a3) w ' (0 )>0 , 
and (a4) tn'(t)^Q. (Note: If J / > 0 and B<0 use -m(t).) Now 
consider the following alteration g of ƒ given by g(xu * • • » xn) 
= (yi(*i> • • • , *n), • • • » y*-<i(xu • • • • * 0 , y*(*i, • • • » #*)+**(**)). 
Then Jg(aOteJ/(aO+J3(#i» • • • , xn)m'(xn), and g| C has the follow­
ing properties: (bl)||g(x) ~ / (#) | | <d/2 for any x on Caf (b2) g| (CH2£*) 
=ƒ) (CnK*), (b3) Jg(0) ^ 0 , and (b4) Jg(«) > 0 for « in C-K*. Each 
(bi) follows from the corresponding (ai). 

Finally consider the composite map (png) \ C where pn is the projec­
tion map pniyii • • • , y*t)=yn. From (b3) it follows that maximum 
png\ C is greater than zero. From (bl) it follows that this maximum 
is not attained on Ca; and from (b2) it follows that this maximum is 
not attained on K*C\C. From (b4) it also follows that this maximum 
is not attained on the open set C—(K*r\Ca) either. This contradic­
tion establishes the Lemma. 

THEOREM 1. Let N be a compact n-dimensional manifold, and let K 
be a compact (n — 1)-dimensional submanifold of N. Assume further 
that: (1) There exists a differentiable mapping f : N~^>Rn such that both 
f\(N-K) andf\K are immersions {i.e. ordinary) and (2) at least one 
of the following three conditions (a), (b), and (c) is satisfied: (a) Both 
K and N are orientable, (b) N is orientable and K is connected, (c) each 
component of K is simply connected. Then ƒ can be factored into an 
immersion of N into Rn+1 followed by a projection of i£n+1 onto Rn. 

PROOF. We first show that the normal bundle V of K in N is a 
product bundle. This is well known for cases (a) and (c), and is 
readily verified. Deny this is so in case (b), then since K is connected, 
it is not hard to see that N—K must be connected. Now let P be a 
plane of support of f(N) in Rn, let y be a point of contact, and let x 
be a point of N (necessarily in K) such that f(x)—y. Next let 
(yu ' ' ' > yn) be a coordinate system in Rn about y, and such that : 
y*=(0, • • • , 0), P is the plane (yi, • • • ,yrt-i> 0), and the line 
(0, • • * , 0, yn) is perpendicular to P . By (1) of the theorem we may 
choose a coordinate system (xi, • • • , xn) in a neighbourhood E of x 
in N such that x= (0, • • • , 0), K* — KC\E corresponds to the points 
(xi9 • • • , xn-u 0)i and f\K* is an embedding. Then using the same 
notation as in the Lemma, the hypotheses of the Lemma are satisfied 
and hence its conclusion holds. This together with the facts that 
N—K is connected, and that ƒ | (N—K) is ordinary are easily seen to 
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imply that N is not orientable. This contradicts (b) and implies that 
Fis a product bundle. (Actually, assuming iVin (1) is orientable implies 
K has an orientable component.) Hence in all cases, K has a neigh­
bourhood F in N of the form KXR, in which K corresponds to the set 
KXO. Now let h: R->R be a C00 function such that A'(0)^0 and 
h(t) = 0 for all t with 11\ > 1. Now define a function H: N-^R"*1 by 
H(z, t) = (ƒ(*, 0 , A(0) f °r (0, 0 in KXR = F, and for * in N- F define 
jff by H(x) = (ƒ(#), 0). The newly defined map H is the required im­
mersion, while the projection is the obvious one. 

(For a good discussion of factoring maps through immersions when 
n = 2t the reader is referred to [2].) 

COROLLARY. If N is orientable in Theorem 1, then w(N)~l and 
w(K) = 1, so that in particular both N and K have even Euler charac­
teristics. 

2. Relationship with vector fields. Next we recall that if the 
standard w-sphere Sn is projected onto the hyperplane Rr through the 
origin, n^r, and if p denotes this projection, then the set of critical 
points of p is Sr~l and p | Sr~l is an embedding. In the following theorem 
the analogous situation is investigated for an arbitrary manifold. 

In this section let N denote a connected ^-dimensional manifold 
with boundary (perhaps empty) and let No denote N with a point 
deleted. 

THEOREM 2. Let K be an (r —1) -dimensional compact submanifold 
with boundary of N, n^ r, and suppose that there exists a differentiable 
mapping f \ N—>Rr such that: (A) f\ {N—K) andf\ K are ordinary, and 
(B) f(K) is a submanifold of Rr. Then N0 admits r — 1 linearly inde­
pendent vector fields. 

PROOF. Let f(K) be the union of its components J î, • • • , F8. 
Let yi be a point of Fit and set g = ƒ | K. Then since g is an immersion 
S~l{y%) is finite consisting say of the points x], • • • , x\\ For each 
x?t let D{ be a closed w-disc in N containing x\ in its interior and such 
that the D{'s are disjoint. (Note: If x is a boundary point of N replace 
"disc" by "half-disc".) Now about each y{ let Di be a closed disk in Fi, 
sufficiently small so that r"K#*)CU*Pj. Finally let L denote f (K) 
with the interior of each Di removed, and let M denote N with the 
interior of each Di removed. 

Since ƒ(K) is an (r — 1)-dimensional submanifold of i?r, it follows 
from Alexander duality that r(Rr) admits a nonvanishing field of 
vectors normal to f(K) with respect to some Riemannian metric on 
Rr. This field induces a cross section c of r(Rr)\L. Now the only 
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obstruction to extending c to a nonvanishing cross section v defined 
on Rr is an element of Hr(Rr, L; Trr-i(S

r~'1)) = 0. Thus v determines a 
line subbundle V of r(Rr), and using the Riemannian metric on Rr 

we may write r(Rr) = V® W where Wis an (r —l)-plane subbundle of 
r(Rr), Next consider the composite mapping h given by r(M)-^r(Rr) 
—*W, where the first mapping is given by df the differential of/, and 
the second is the projection induced by the Whitney sum decomposi­
tion. Note now that (A) of the proposition together with the way in 
which we constructed L and M imply that h maps fibers linearly onto 
fibers. Hence r(M) decomposes into the Whitney SUm Tn—r+l®7"r—1 

where r r_i is an (r — l)-plane bundle over M induced from W by ƒ. 
Since Rr is contractible W is trivial and hence so is r r - i . Thus M 
admits r — 1 linearly independent vector fields. Finally, since the Dj

t
Js 

are closed and disjoint they may all be gathered inside one disc of N, 
and the theorem follows. 

COROLLARY. Let K be an (»—-1) -dimensional compact submanifold 
of the real n-dimensional projective space Pn, n>8. Then there exists no 
differentiable mapping f \ Pn—>Rn subject to: (A) / | (Pn—K) and f\K 
are immersions and (B) ƒ(K) is a submanifold of Rn. 

PROOF. By Theorem 2, the existence of an ƒ implies the existence of 
n — 1 linearly independent vector fields over PJJ. Using Sanderson's 
lemma [l, p. 332], it suffices to prove either that Pn does not admit 
n — 1 linearly independent vector fields over Pw~1C-Po, or that P71""1 

is not immersible in Rn. Then the Corollary follows from well known 
facts concerning immersions of P m . A proof can for instance be given 
as follows: For 8<nS2A-l see [3]; for w ^ 2 r ~ - l , n^2r

t r^4 the 
result follows from examining the Striefel-Whitney classes; for n~2r 

— 1, f ^ 4 [l , Theorem 9.5, p. 331] applies since Pf~x contains 
P2*~ + 2 ; and for n = 2r, r ^ 4 the result follows from [5]. 

REMARKS. The above results and those in [4] are by no means com­
plete or best possible, and should be regarded merely as being typical. 
There is however a worth while generalization of Theorem 2 which 
we shall discuss since it allows ƒ | K to have additional self-intersec­
tions. 

THEOREM 2'. Suppose that K is a k-dimensional compact submanifold 
with boundary of N, n^ r, and assume that there exists a differ entiable 
function f: N-±Rr such that: (A) ƒ( (N—K) and f\K are ordinary, 
(B) in some triangulation T of Rr, f(K) is the underlying space of a sub-
complex of T, and lastly (C) there exist r—k linearly independent cross 
sections dt • • • , cr-k of r(Rr)\ (f(K)—S) (where S is a finite subset of 
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f(K) possibly empty) such that f or any x in Kr\f~l(f(K)--S)9 if Tx 

denotes the fiber ofr{K) over x and if dg: r(K)~>T(Rr) is the differential 
°f g="f\K> then Ci(ƒ(#))» • • * » cr^h(f(x)) and dg(Tx) span the fiber of 
r(Rr) over f(x). 

Then No admits k linearly independent vector fields. 

PROOF. For the j / s of the proof of Theorem 2, take a finite set Q 
containing S and such that IP (f(k) — Q) = 0. Construct the £>fs as 
before, and replace the D / s by open stars of the y»'s in some fine 
enough subdivision of f{K). Define L and M as before. Then since the 
Stiefel manifold Vr,r-k of r — k frames in r-space is k — 1 connected, 
and since K is ^-dimensional the only obstruction to extending C\\L} 

• • • , cr-k | L to independent cross sections vi, • • • , vr~k over Rr is an 
element of Hk+1(Rr, L; TCk{Vrir-k)) which is zero by our choice of the 
set Q. The vjs define a subbundle F of r(Rr), and the rest is as before. 
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