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If 9 is a C*-algebra and & and § are uniformly closed two-sided
ideals in ¥ then so is 3 +§. The following problem has been proposed
by J. Dixmier [1, Problem 1.9.12]: is (§+§)+=3++F+, where o+
denotes the set of positive operators in a family & of operators? He
suggested to the author that techniques using the duality between
invariant faces of the state space S(¥) of 9 and two-sided ideals in ¥,
as shown by E. Effros, might be helpful in studying it. In this note
we shall use such arguments to solve the problem to the affirmative.

By a face of S(A) we shall mean a convex subset F such that if
PEF, w&ESH) and aw=p for some ¢ >0, then wEF. F is an invariant
face if pEF implies the state B—p(4*BA)-p(4*4)~! belongs to F
whenever p(4*4) 0 and 4 €. We denote by F* the set of operators
AEY such that p(4) =0 for all p&F. If FCA, S+ shall denote the
set of states p such that p(4)=0 for all AEZ. E. Effros [2] has
shown that the map 3—&* is an order inverting bijection between
uniformly closed two-sided ideals of 9 and w*-closed invariant faces
of S(A). Moreover, (34)*=%, and (F*)'=F when F is a w*-closed
invariant face. If & and § are uniformly closed two-sided ideals in
A then (S‘f\"ﬁ)i'—conv(f}L %1), the convex hull of &* and %"‘ and
(S+F*=3*NF*. If 4 is a self-adjoint operator in ¥ let 4 denote
the w*-continuous affine function on S() defined by 4(p) = p(A)
It has been shown by R. Kadison, [3] and [4], that the map 4—A4
is an isometric order-isomorphism of the self-adjoint part of % onto
all w*-continuous real affine functions on S(%). Moreover, if & is a
uniformly closed two-sided ideal in ¥, and ¢ is the canonical homo-
morphism of ¥ onto A/, then the map p—pe-y is an affine isomor-
phism of S(/J) onto *. Thus the map Y(4)—A|3* is an order-
isomorphic isometry on the self-adjoint operators in A/&. We shall
below make extensive use of these facts. For other references see

[1, §1].

ToEOREM. Let U be a C*-algebra. If & and § are uniformly closed
two-sided ideals in U then

@+ =3+ + T+

In order to prove the theorem we may assume ¥ has an identity,
denoted by I. We first prove a
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LeMMA. With the assumptions as in the theorem let A belong to
(S+3F)*, and let €>0 be given, e<1. Then there exist B in S+ and C
in §t such that 0S A —B—CSel.

Proor. We may assume ||4]|<1. Let ¢ denote the canonical
homomorphism of ¥ onto A/F. Then Y(F+F) =¢(F). Now ¢(4)=0.
Therefore there exists B;EJ* such that ¢ (Bi)=y(4). Then
B|3t=0 and Bi|g*=4|F* Since (INF)‘=conv(F:, FY,
B (3NN =<A|(INF)*. Let ¢ denote the canonical homomor-
phism of ¥ onto A/FNF. Then 0 <¢(B1) =¢(4). Let f be the real con-
tinuous function f(x) = (¢/3)? for x < (¢/3)?, f(x) =x for x> (¢/3)2. Let

S = f(A)712B,f(4)72
Then SEJt, and
0 = ¢(5) = f(¢(4))"*p(B1)f(¢(4))~/
€Y = flo(A)) 7 2p(A)f(d(A4)) 712
= ¢().

Let g be the real continuous function g(x) =x for x <1, g(x)=1 for
x>1. Since g(0) =0, g(S) is by the Stone-Weierstrass theorem a uni-
form limit of polynomials in S without constant terms. Since SEJ,
and & is uniformly closed, g(S)E3+. By (1)

2 #(2(S)) = g(¢(S)) = ¢(S).
Let
B = (f(4)'* — (¢/3)1)g(S)(f(4)'"* — (¢/3)1).

Since g(S) &3+ so is B. Now (f(x)2—e/3)2<x for x=0, and g(S) =1I.
Hence 0SB=<A. By (2)

$(B) = (f(6(A)M — (¢/3)6(1))$(E(S)) (F(#(A)) V2 — (¢/3)$(I))
= 6(B) — (¢/3)[f(6(4))126(S) + &(S)f($(4))2 — (¢/3)$(S)].
Since Hf((b(A))l“” =1, qu(S)” =<1, and e<1
1Bl 3N+ — Bi| (3N )| = [|6(B) — ¢(BY)|| < e
In particular,
3) 18] §+— 4| g4l = ||1B] §+ — B:| §l| s e

Apply the preceding to 4 — B instead of 4 and to § instead of J.
Choose CiEF such that C; <A — B, and

(4) €| St — (4 =B |3 e
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Since Ci|§+ =0, (3) implies
®) [Ci] G+ = (4= B)| gl se
By (4) and (5)

”¢(Cl) — ¢(4 — B)|| = ||C1] conv(S, FL)
— (4 — B)| conv(3t, )| S e
Let D=A—(B+Ci). Then D=0, and ||¢(D)|| Se. Let & be the real

continuous function k(x)=0 for x=<e¢, h(x)=x—e for x>e. Then
¢ (h(D)) =h(¢(D)) =0, and E(D)E(INF)+*CF*. Furthermore

©6) D — e = (D) = D.
Let C=Ci+k(D). Then CEFt, and by (6)
0= B+C=B+C1+D=A4=B+Cy+h(D)+el=B+C+el.

The proof is complete.

ProoF oF THEOREM. Let 4 E(S+F)*. Multiplying 4 by a scalar
we may assume 0 <4 < 1. By the lemma choose BoEJ+, CoEF* such
that

0= A4A—By—Co= 27

Then ||BJ|| =||4]| =1, ||Co||<||A”SI Suppose inductively Bo, B,
+, Ba_y are chosen in &+ and Cy, Cy, * + -, Cp—y are chosen in Ft
such that || Bj|| =24, || C{l| =24, and

n—1 n—1
0<A4A—> Bj— > C;< 2.
Jo=0 J==0
Apply the lemma to A — > %= Bj— D ¢ C; and to e=2-""1,
Then there exist B, &S+, C,E+§ such that
n—1 n—1

) 04— Bj— >, Cj— B, — Cy S 2],

J=0 Ju0
or
04— B;— Zc, 2-n-1],
=0 j=0

Moreover, by (7) || Ba|| <27, || Ca|| £2-7; the induction argument is
complete. Let
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Then BEZH, CEST, and

l4-=B~C|=tlim||4 -2 B— > ¢ £ lim 2+ =0.
n— o je=0 je=0 n—o
Thus 4 =B+CEFt+§Ft, and (§+F+TCTIH+F+. Since the con-

verse inclusion is trivial, the proof is complete.
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