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1. Notation. The object of this note is to announce some results on 
representations of complex semisimple Lie groups and Lie algebras. 

© is a semisimple Lie algebra over C, the field of complex numbers. 
®, considered over i?, the field of real numbers, is denoted by ®0. 
^ is a Cartan subalgebra of ®, W, the Weyl group of (®, Ï)). We use 
the standard terminology in the theory of semisimple Lie algebras 
(Jacobson [3] and Harish-Chandra [2(a)], [2(b)], [2(c)]). P 0 is a 
positive system of roots, fixed once for all and £0= {#i, • • • , ou}, 
the associated fundamental system, n = ]C«ep0 ®~a; tt, considered as 
a Lie algebra over JR, is denoted by tio. ï)o = X)« R'Ha. 

Fix a square root ( —1)1/2 of — 1 in C. ïo is a compact form of ® 
containing ( —1)1/2 ï)0. ®o = ïo+ï)o+tto is an Iwasawa decomposition of 
®o and G = K-A+-N the corresponding decomposition of G. 
c(X-*Xc) is the conjugation of ® corresponding to the compact form 
ïo. Let ® denote the Lie algebra ® X ® over C, and let 

i:X-*(X°,X) ( I G ®). 

(®, 1) is a complexification of ®0. For any X G © let X = (X, X), 
® = {X: ® G ® } . 3 ( 3 ) is the universaLenveloping algebra of ®(®) 
and 5 the subalgebra of 3 generated by ®. For any dominant integral 
X, ju£ï)* 7T\ denotes the associated irreducible representation of ® 
and 7r\" tha t of ® (under the isomorphism X-+X) ; 7r(X, fx) is the irre­
ducible representation 7rxX7rM of ® (Kronecker product). 

2. A theorem on finite dimensional representations. We have: 

THEOREM 1. Let X, /x£t)* be dominant integral, j/=X—JU* and v° the 
unique dominant integral element in the orbit w-v. Then the representa­
tion 7T> of ® occurs exactly once in the restriction of 7r(X, /X) to ®. 

3. The homomorphisms hq. For Z G © and a £ 3 we write 
[X, a] =Xa—aX. a is said to be of rank 0 if [iT, a ] = 0 for all H&). 
Let 9£ be the subalgebra of 3 generated by Ï). Suppose Q is any positive 
system of roots. Then, for any a £ î 3 of rank 0, there is a unique 
(5Q(G) in 3Ê such that a ss (3Q(Ö0 mod^« G Q S®a-a—>§g(a) is a homo-

1 The present work was done during 1963-1965 when the authors were at the 
Indian Statistical Institute, Calcutta. 
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morphism (of the algebra of all zero rank elements) onto 36. We 
identify 36 with P(f)*) in a natural fashion. 

Let 0 be the centralizer of © in $ . Given co£fi we can find unique 
elements £(0) and £(&) of rank 0 in 3 such that 

co - J(0)- + E ï ( A ) - - ( H ^ • • • (#«,)*< 
ft>0 

modulo 3fn, where ft = C-(i-tt0). We define /IQ(CO; -, • ) as the poly­
nomial on Ï)*XÏ)* given by 

A«(«;X, 0 = fofe(o))(p) + Z ffouf(*))Wx(H^)»» • • • H3at)"'. 

co— /̂IQ(CO; • , • ) can then be proved to be a homomorphism of ti into 
P(Ï)*XÏ)*). If V is the space on which 7r(X, JU) of Theorem 1 acts and 
if Vo is the subspace transforming according to 7iyi under 7r(X, JU)(5)> 

then for co£0 and vÇzVo, 7r(X, jLt)(co)y=/iQ(co; X, p)z; where Q is a 
positive system in which v is dominant. 

Let 25= £ « € p 0 ce and for sGW, X£ï)*, let sA\ = s\+sÔ-Ô. 

4. The representations #x,„. We shall now define a class of in-
tegrable irreducible representations of Q (by integrable we mean that 
they are the infinitesimal forms of representations of the group G; 
(cf. Harish-Chandra [2(b)], [2(c)]). Let *>£{)* be integral and ffî, the 
unique maximal left ideal of 5 containing all X&, "E^—v{H^)'l 
08GQ). 

THEOREM 2. Let v, X£ï)*, v integral, and let Q be a positive system 
under which v is dominant. Then there exists a unique maximal left 
ideal of $ containing W:v and o) — hQ(o)\ X, v) • 1 for all co£0. The repre­
sentation ft\,v of 3? defined by the maximal left ideal is integrable. In the 
restriction of f\,v to $, the representation 7i> occurs exactly once, and 
for any dominant integral p£t)*, 7r~ cannot occur unless v is a weight 
of 7TP, in which case, TJ occurs with a multiplicity ^dv

p where dv
p is the 

multiplicity of v in TP. If X and JU=(X—*>)* are dominant integral, 
it\,v is equivalent to 7r(X, JU). Finally, for fixed X, v, all the representations 
ftaA\,8v are equivalent. 

5. The rings 9?„ for dominant integral v. Let v be dominant 
integral. Let $tv be the range of the homomorphism co—»hp0(co; • , v ). 

W,= {s:se W,s-v = v], 

it = {p:pePQ)*),sA-p = p for all* G ÏT,}. 

THEOREM 3. Ht9Qlf. Ifv = 0 or if v is in general position, 9Î„ = If. 
For general v, let 3 o 00 be defined by 
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3o00 *= {a: a £ 3 , a is of rank 0 and 

(ad XaJ'+K*) " 0; for i « 1, . . . , /} 

(where Xa is a nonzero element of ®a and Vi=*v(Hctt)). Then 

9 1 F « ^ - { 8 P . ( 3 O ( - W ) ) } . 

By case considerations we can show that dtv = if for all v. But we 
do not possess a uniform proof of this fact. 

6. Representations of class 0. An integrable representation of 
3f, say 7T, is said to be of class 0 if its restriction to 5 contains the 
trivial representation of $ . We can show that every integrable irre­
ducible representation of class 0 of 3? is equivalent to some #x,o. We 
shall say that fx.o is complete if for each p such that 0 is a weight of 
irp, TJ occurs with multiplicity equal to d°p in the restriction of #x,o 
to 5-

THEOREM 4. For a X£f)*, 7rx,o is complete if and only if for each root 
cx(EPo, (K+o)(Ha)(£Z* where Z* is the set of nonzero integers. 

Let 8 be the 3" m °dule ( 3 is the center of 30 of linear maps from 
the representation space Vp of wp into $ which intertwine irp and the 
adjoint representation, let d — d?p and let { i i , • • • , Ld} be a basis of 
the free module 8 (cf. Kostant [4]). Let {»i, • • • , Vd\ be a basis of 
the 0 weight subspace of V', and let Kp be the dXd matrix of elements 
of T£ whose (i—j)th element is §p0(L&j). 

THEOREM 5. The multiplicity ra(p, X) ofirj in #x,o is given by 

m(py X) = min {rank Kp*(\), rank KP(SQ\)} 

where so(~W is such that s0Po~ —-Po, p* = — s0p. 

7. Representations of G. Let G be the simply connected group 
corresponding to ©0. Let log denote the inverse of the exponential 
map from A+ onto ï)0. For any integral *>£ï)* let \f/v (exp( — l)lf2H0) 
= exp( — l)1/2-ï>(iT0)(Ho£ï)o). 4>v is a character of M, the connected 
component of the centraliser of A+ in K. Let Jp = 82(K), 

$ W = {ƒ: ƒ 6 $ , Rr(k)f = *_(*)ƒ for all k G M} 

(y integral, Rr the right regular representation of K). Following 
Harish-Chandra [2(b), p. 240] we define, for each ££ï)*, the repre­
sentation TztV in $£>(y) by setting for all ƒ £ $ ( ? ) 

(**,,(*)ƒ)(*) = exp[(£ + 2ô)(log o+(*"1, *))]-/far l(*)) 
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(kÇzK, xGG); here, for 3>EG, and fc£i£, y-k = <ry(k)-a+(yt k)-n(y, k) 
where ay(k)QK, a+(y, k)ÇzA+, n(y, k)Ç~N. v° is the dominant in­
tegral element in W*v, &(v)vo is the set of all elements in $Q(V) which 
transform under the left regular representations of K according 
to 7i>. 

THEOREM 6. The representation 7r£,„ of G in $>(v) is homogeneous. 
Let Sfr(y\ Ç) be the smallest closed sub space of $(v) invariant under 
TT^V(G) and containing &(v)vo. Then there exists a unique maximal 
closed subspace § ' (v; £) of 1Q(V; £) invariant under wç,v(G) and not 
containing &(V)VQ* &(V\ £) is orthogonal to &(v)vo and the representation 
of G defined by w^v in $è(v\ £)/§'(?] £) is irreducible and the associated 
representation of$j is equivalent to Tt\,v where \ = §( Î>+£)—S. 

The question as to when the TT^,V are themselves irreducible is a 
crucial one; (cf. Bruhat [ l]) for y - O w e have a complete answer to 
this question. 

THEOREM 7. For 7T£,O to be irreducible it is necessary and sufficient 
that 7j%(Ha)$:Z* for each root a. In particular, all unitary representa­
tions of the principal nondegenerate series, whose restrictions to K con­
tain the trivial representation of K, are irreducible. 
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