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1. Introduction. Let 3C;, =1, 2 be two Hilbert spaces of the same
Hilbert dimension, {(3C,), the algebra of all bounded linear operators
on 3¢;. If Sis any invertible, bounded linear mapping of 3¢; onto 3¢,
the mapping A —SA4.5-!is an algebraic isomorphism (called “spatial”)
of £(3¢;) onto &(5C;) which is a *-isomorphism (adjoint-preserving) if
and only if S is unitary. This isomorphism y—or its restriction to a
norm-closed *-subalgebra % of &(3¢;) such that B=y¢(A) is also a
norm-closed *-algebra—affords the most accessible illustration of an
isomorphism of C*-algebras which is not a *-isomorphism. Of course,
the &(3C;) are *-isomorphic, under some other maps—but what of U
and B? Even for W*-algebras, the question has remained open: if
A and B are algebraically isomorphic, are they necessarily *-iso-
morphic? See, e.g. [7, p. 1.53, Problem (i) ].

In this note, the above question is answered affirmatively for the
more inclusive class of C*-algebras [Theorem 3].

Theorem 2 gives the structure of isomorphisms of C*-algebras,
showing that each is, in a certain canonical sense, spatial in nature.
The Invariance Theorem 1 stems from the theory of analytic func-
tions in Banach algebras, and is employed with Theorem 2 to prove
Theorem 3.

The proofs will be sketched. Full details will appear elsewhere.

The author wishes to express here his gratitude to Professor Rich-
ard V. Kadison, who directed his attention to the problem of Theo-
rem 3, and without whose advice and encouragement this work would
not have been done.

2. Preliminaries: Representation theory. By C*-algebra we mean
an abstract complex Banach *-algebra % with || 4*4|| =||4%(| ||4]|| for
all A& (B*-algebra). A representation (*-representation) of ¥ on
the Hilbert space 3C is a homomorphism (*¥-homomorphism) of ¥ into
€(30), the algebra of all bounded operators on 3C. A *-representation
is of norm at most 1, and its image is norm-closed. A *-representation
¢ on 3C is cyclic if there exists a vector x in 3¢ (cyclic vector) such that
the closure [¢p(A)x] of {p(4)x| ACU} is 5e. It is drreducible if every

1 This work has been partially supported by the National Science Foundation
under grants NSF GP-1604 and NSF G 19022.
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270 in 3C is cyclic. A *-representation is fasthful if it is a *-isomor-
phism, in which case it is an isometry.

A classical theorem of Gel’fand-Neumark [2], as strengthened and
elegantly set forth in [3], asserts that every C*-algebra has a faith-
ful *-representation as a C*-algebra of operators on a suitable Hilbert
space.

An element 4 €Y is self-adjoint if 4 =A4%*, positive if self-adjoint
with positive spectrum. The positive elements form a cone in ¥,
linearly spanning 9.

A state of U is a positive linear functional p with p(I) =1. The left
kernel, 9,, of the state p is the set of 4 in A such that p(4*4) =0. By
the Schwarz inequality for p, 9, is a left ideal. /4, is therefore a left
-module in a natural way, and the algebraic representation of 9 on
A/d, is denoted ¢,. We define on /9, a positive-definite inner product
(A+9,, B+9,)=p(B*4), and after verifying that ¢,(4) is bounded
for each A&, we extend ¢,(4) to a bounded operator on 3¢,
= (A/9,)~, the completion of the prehilbert space %/J, in its norm
” ”,, We call the map thus defined on 9 to &(5¢,) again ¢,; ¢, is a
cyclic *-representation of % on (9/49,)~, with cyclic vector I-+4,; it is
called the representation due to p.

We say p is a pure state of I if p is an extreme point of the weak-*
compact, convex set of states of %. We denote the set of pure states
of A by ®(Y). If and only if p is pure, 9, is a maximal left ideal, ¢, is
irreducible, and %/9, is complete in the inner-product norm defined
above [5].

In [5], it is shown that the correspondence between maximal left
ideals and pure states is one-one: a maximal left ideal 9 is contained
in the null space of a unique pure state, p, and 4 =4,.

3. Positive inner automorphisms.

THEOREM 1. Let 3C be a Hilbert space, and let $ be a norm-closed linear
subspace of &(3C), T a positive invertible operator in $(3C). Then if 8 is
invariant under T-1- T, 8 is invariant also under A—A log T— (log T) A4,
and under T—*-T* for all real numbers s.

Spectral theory defines L=1log T and T*=exp (sL), for each real
s as self-adjoint operators; we put 7°(4) =T—*AT* for 4 in &(3¢). In
the Banach algebra &(8(3¢)), with unit element denoted by ¢, we com-
pute to show that lim,., s~'(e—7*) =ad L, wheread L(4)=AL—LA.
It follows that 7*=exp(s-ad L) [4, p. 283, Theorem 9.4.2].

Next we prove that 7 (=71) has a positive real spectrum, and so
has a logarithm approximable by p,(7), (p.) a sequence of real poly-
nomials. Call this logarithm A.
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The proof that ad L=A employsaresult of E. R. Lorch [6, p. 421],
4, Theorem 5.5.5] characterizing the periods of the exponential func-
tion in a commutative Banach algebra. From ad L=A we have
pa(r)—ad L, so that the invariance of a closed subspace 8 under 7 im-
plies the invariance of 8§ under ad L, then under exp(s-ad L) =7* for
all real s. This proves Theorem 1.

4. Isomorphism and *-isomorphism.
P

DEerFINITION. The atomic representation a of a C*-algebra is the
direct sum @,cpa) ¢, of the representations due to pure states of 2.
aacts on =@ ,epemAd, by a(4)((x,)) = (¢p(4)(x,)). @ is known to be
a faithful, hence isometric *-representation of 9 [8].

THEOREM 2. Let Y be an algebraic isomorphism of C*-algebra U onto
C*-algebra B, and let o (resp. B) be the atomic representation of A (resp.
B) on the Hilbert space 3¢ (resp. K). Then BYa~! can be extended to an
isomorphism of ¥(3C) onto L(R) of the form A—SAS™! for some S in
(3, K).

In the proof, we make use of the fact that y is necessarily bounded
[l, p. 15, Exercise 5]. The isomorphism y carries each maximal left
ideal g of A onto a maximal left ideal 9’ =y¢/(9) of B, inducing a linear
map Sy of the quotient space A/ onto B/9’. When these quotient
spaces are considered as Hilbert spaces, Sy is shown to be bounded,
with ||Sgl| £|[¥||. Thus S= @ {Sg|g is a maximal left ideal of U}
= @repa Sg, is @ map in (3¢, K), with INIESI = a
We identify 9 (resp. 8) with its image under & (resp. 8), and compute
to see that Y(4)=SAS~! for 4 in Y. This proves the theorem.

Now let S= VT@/2 be the polar decomposition of .S, with V uni-
tary in €(3¢, %), and T=S*S in &(3¢). Then V=ST-0/?, Again
identify % with (%), B with B(B).

LeEMMA, VATV*=9.

ProoF. If ACGY, VAV*=ST-QUDATAUDS1=o(T-AUDATAD), 1t
suffices to show that 7-@/2Y T/ =9, By Theorem 1 this is equiva-
lent to T AT=U. But for AEA, TIAT=5"(S*)"14S*S=y!
((SA*S™)*) =y~ (Y (A*)*) €A

The observation that A—VAV* is a *-isomorphism completes
the proof of

THEOREM 3. If two C*-algebras are algebraically isomorphic, then
they are *-isomorphic.
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REMARKS. (1) Professor Kadison has pointed out to the author the
following corollary to Theorem 2:

Let A and B act faithfully and irreducibly on Hilbert spaces 3 and
K respectively, and let the isomorphism ¢ of A onto B have the property
that ¢ carries the annihilator 9 in U of some nonzero vector xS IC onto
the annihilator 9’ in B of some nonzero vector y& K. Then ¢ is spatial:
¢(4) =SA S for some SSL(3C, K).

We normalize x and y, and put S(4x)=¢(4)y. S is well defined,
since if Ax=0, ¢(4)y=0. S is linear, and is bounded: In fact, the
representation of 9 on 3C is unitarily equivalent to that of % on /4,
with an analogous comment for 8 on XK. Identifying 3¢ with /9, &
with B/9’ via these equivalences, we see that S as defined above is the
Sg in the proof of Theorem 2, so that ||S|| =|l¥ll, IS =llv—.
Clearly, S has the desired property.

(2) Since a closed two-sided ideal in a C*-algebra is necessarily
selfadjoint [9], the structure of continuous homomorphisms of one
C*-algebra onto another is given by a trivial extension of Theorem 2.
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