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1. Introduction. The reduction theory of von Neumann has been 
reformulated and modernized by many authors (cf. [ l ] , [5]). 

However, in all of them, a PF*-algebra has been considered as an 
operator algebra on a Hubert space. Therefore in order to construct 
the reduction theory, the notion of the direct integral of Hubert 
spaces has been used and it makes the theory very complicated. On 
the other hand, the author [ó] showed that a TF*-algebra can be 
intrinsically characterized as a C*~algebra with a dual structure as a 
Banach space; therefore it can be imagined that the reduction theory 
can be space-freely developed. Along this line, the author [7] gave a 
new approach to the reduction theory. This approach gives an exact 
formulation for the problem of extending the reduction theory to 
nonseparable cases and moreover suggests the possibility of the ex­
tension of the theory to more general Banach algebras, because of 
the use of general theorems in functional analysis (the Dunford-Pettis 
theorem [2] and Grothendieck's theorem [s]). However, the proof 
given in the lecture notes [7] was still complicated. In this note, we 
give a simple proof for the fundamental theorems in the new approach 
in a more general form and in addition we state some related prob­
lems. 

2. First of all, we state some facts concerning the tensor product 
of Banach spaces. Let E and F be two Banach spaces, E®F the 
algebraic tensor product of E and F. A norm a on E ® F is said to be 
a cross norm, if for every x&E and y(EF, a(x®y) — \\x\\ \\y\\. E®aF 
denotes the completion of E®F with respect to a. The "least cross 
norm" X is obtained by the natural algebraic imbedding of E® F into 
L(£*, F), where L(E*9 F) is the Banach space of all bounded linear 
operators of E* into F. If under this mapping, TUÇ:L(E*, F) cor­
responds to a tensor u— X X i xj®yj> then for # * £ £ * 

n 

Tux* = 52 (%h %*)yj-
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We define X(^) = || Tu\\. X is the least cross norm of all cross norms 
a having cross norms a* as dual norms. The greatest cross norm y 
is defined by y(u) =inf ]Ci=i ||x;'|| IWI> where the inf is taken over all 
representations of u. y is also a cross norm and Y^X. (Concerning 
these facts we shall refer to [8].) If Lx(0, /x) is the Banach space of 
all complex valued integrable functions on a measure space 12 with 
the measure /x, and E is a Banach space, then Grothendieck [3] 
showed that L 1 ^ , /x) ® 7 £ = L1(£> 12, n), where LX(E, 12, /x) is the 
Banach space of all E-valued strongly integrable functions on the 
measure space (12, /x). 

If E is separable, then by the Dunford-Pettis theorem [2], for any 
ttGC^KŒ, jtx) ®7E)*, there is a unique E*-valued essentially bounded 
weakly* measurable function fx(t) on 12 such that 

*(* ® v) = f (Hi), £)v(t)dvi(t) 

and 

ess. sup 11̂ (011 = \\x\\9 

where £ G £ and rj^L1^ /x). 
Under such mapping #—>ƒ*, (L^O, J U ) ® 7 £ ) * is isometrically iso­

morphic to L°°(E*, 12, /x), where Lw(E*y 12, /x) is the Banach space of 
all £*-valued essentially bounded weakly* measurable functions on 12. 

Therefore, by the Dunford-Pettis theorem and Grothendieck's 
theorem, the dual of Ll(E, 12, /x) is L°°(£*, 12, /x). 

Now suppose that E* is a Banach algebra. 

THEOREM L Let E* be a Banach algebra such that E is separable and 
the multiplication in £ * is separately Ö"(E*, E)-continuous, then the 
Banach space L°°(E*, 12, /x) is also a Banach algebra under the point-
wise multiplication. 

PROOF. I t is enough to assume that jix(12) = 1. Take x, ;y G£°°(£*, 12, /x). 
For / £ E , put (Rbf)(a)=f(ab) for a, &£E*. Since the multiplication 
is separately cr(£*, E)-continuous, Ry^fCzE. We shall consider a 
vector valued function /—>Rywf on 12. For aÇ.E*, we have (Ry(t)f)(a) 
=f(py(t)) = (LJ)(y(t)), where (Laf)(b)=f(ab) for 6, aGE*. Hence 
U W ) ( a ) = <y(0, *(*)>. where g(t)=Laf for all / G & Since g(0 
Ç:Ll(E, 12, /x), (Ry(t)f)(a) is measurable for all aÇiE*, so that t~^Ry^f 
is weakly measurable. Since E is separable, t—>Ry(t)fis strongly meas­
urable. Hence for rj^L1^, jtx), t—>7](t)Ry(t)f is strongly measurable. 
Since the set of all finite linear combinations of E-valued functions of 
the forms rj(t) ƒ is norm-dense in Ll(E, 12, /x) and the function y]{t)Ry^f 
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belongs to LX{E, 0, jit), there is a sequence (hn) for h^Ll{E, Q, /x) 
such that hn—>h in Ll(E, Q, /x) and Ry(t)hn(t) is an E-valued function 
belonging to LX(E, Q, jit) for all w. Then \\RV(t)hn(t)—Ry(t)h(t)\\ 
= IHI ||*n(0 •—K*)||- Since there is a subsequence {n}) of (w) such that 
11*^(0--AW||"~*0 a-e»> the above inequality implies the strong meas-
urability of the function Ry(t)h(t); since ||i?y(o*(0|| = IMI ll*W||» it be­
longs to Ll(E, ti, ju), so that (x(t), Ry^)h(t))== {x(t)y(t)t h(t)) is meas­
urable. 

Therefore x(t)y(t) is weakly* measurable and | |^(0y(0| | 
= IIXW|| II^WII* This completes the proof. 

Now we shall show some examples. 
Let M be a l/F*-algebra whose associated space ikf* is separable, 

then (M*)* = M and the multiplication in M is separately <r(M, Af*)-
continuous, so that L°°(M, 0, JLC) is a Banach algebra; moreover we 
can easily show that it is a C*-algebra (in fact, xÇzL^iM, £2, ju) implies 
$—>#(/)* is weakly* measurable, because * (#(*)*» *?(*)ƒ) 
= [<*(*), hOO]"ƒ*>]", where rj^GL1^ n), /<~M*; hence we define 
x*(0=#(0*> then x*G^°°(-M, £2, M) and moreover | |x*x||=ess. sup 
||*(Q**(/)| |=ess. sup | | * (0 | |HMI 2 ) -

Hence we have 

COROLLARY 1. Let M be a W*-algebra with the separable associated 
space M*, then L™(M, O, /JL) is a W*-algebra under the pointwise 
multiplication and its associated space is ^(M*, 0, ju). 

Next, let Rbe a separable reflexive Banach space, N be a weakly 
closed Banach algebra of bounded operators on R and B(R) be the 
Banach algebra of all bounded operators on R, then B(R) is the dual 
of R®yR* and N is a <r(B(R)9 R®yR*)-closed subalgebra of B(R); 
therefore N is a Banach algebra such that there is a separable Banach 
space E as follows: £ * = iV and the multiplication in N is separately 
cr(iV, E)-continuous, so that LW(N> 0, p) is a Banach algebra such that 
L«(N, fl,M) = (LKE, Q,M))*. 

PROBLEM 1. Can we drop the assumption that the multiplication is 
separately <x(E*, E)-continuous in Theorem 1? 

PROBLEM 2. Can we drop the assumption of separability in Theo­
rem 1? 

Problem 2 is extremely interesting in the case of " £ * = £ ( § ) , " 
where B(!Q) is the T^*-algebra of all bounded operators on a non-
separable hilbert space § . I t is closely related to the problem as to 
whether we can extend the reduction theory to the nonseparable case 
[7]-

Now we shall apply the above result for the reduction theory. 
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Let B be the IF*-factor of type In (wâXo), then its associated 
space £* is separable, so that L^{B% 0, jtx) is a T^*-algebra and 
&{B*, 0, /x) is the associated space of Z/°°(5, 0, /x). 

Now we shall show 

THEOREM 2. LW(B, 0, /x) is a homogeneous type In W*-algebra with 
the center L°°(S2, JU) • 1, where 1 is the identity of B. 

PROOF. We shall prove the case of n = k$o, because other cases are 
analogous. 

For a£B, we define â(t)=a for all /GO, then âG£°°(-B, Q, /x). If 
(ei\i= 1, 2, • • • ) be a maximal family of orthogonal minimal projec­
tions in B} then ëi(t)x(t)ëi(t)~\i(f)ei for xG£°°C£, Œ, /x) and Xt(/) 
GI°°(Î], /x). Hence £,• is an abelian projection and clearly £<ey = 0 for 

Moreover for l y G i 1 ^ , M) and / G - ^ * ( /èO) , the vector valued 
function 0(0 —y]{t)f belongs to L 1 ^ * , 0, /x)- Then 

oo \ oo r\ /• 

Z «i, * ) = Z <«<! *) = Z I <«<! 4>(f))dn(t) 

00 / » 

- Z I (eit 
f)ri(t)dfx(t). 

Since ƒ(eO ^ 0 and 2 £ i ƒ(*<) ^ / ( S ^ i 6») ̂ / ( l )» by the dominated 
convergence theorem, 

£ *, *) - ƒ (hf)v(t)dfx(t) - (1, 0), 

where 1 is the identity of B. 
Since every element of M* is a linear combination of positive nor­

mal elements, all finite linear combinations of the forms <£ are norm-
dense in Ll(B*y Q, JU). Hence we have ]T)£i £*— Î- Now let Vi be a par­
tial isometry of B such that v*Vi = ei and Vflf — ei for i = l , 2, • • • . 
Then vf%% — e~i and fJ»$f — ̂ f. Therefore (£,- | i=l, 2, • • • ) is a maximal 
family of orthogonal equivalent maximal abelian projections in 

Let Z be the center of L°°(£, 0, /x) and JSGZ. Then a(t)z(t)^az(t) 
= z(t)a a.e. Let (an) be a family of elements in B which is <r(B, B*)-
dense in B, then wehavean£(0 =z(t)an tor / G ^ — T andall w(ju(r) =^0). 
Hence *(*) G the center of B for / G Q - T , so that ZÇL°°(«, /*) • 1. The 
converse is clear. Hence we have proved that L°°(JB, 12, /x) is a homo­
geneous type IK0 W*-algebra with the center L°°(0, jtx) -1 . This com­
pletes the proof. 
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Now let M be a JF*-algebra containing the identity on a separable 
Hilbert space ©, M' the commutant of M, R(M, M') the FF*-algebra 
generated by M and M', then -R(Af, M') is of type I. 

By the structure theorem of type I IF*-algebras, R(M, M') can be 
uniquely decomposed into a direct sum of homogeneous type I W*~ 
algebras [4]. Therefore, it is enough to assume that R(M, M') is a 
homogeneous type ln J^*-algebra ( w ^ o ) . If Z is the center of M, 
then we can express it as Z = Z>°(ft, /x), because Z is a commutative 
PF*-algebra, so that by Theorem 2, L°°(i?, ft, ju) is a homogeneous 
type In W*-algebra with the center Z, where B is the type \n W*-
factor. 

Two homogeneous type \n l/F*-algebras are mutually *-isomorphic, 
if and only if their centers are mutually isomorphic [4], so that we 
have the representation i?(M, M^ — L^iB, ft, /x), because the center 
olR(M, M')=*Z. 

If x(EzR(M, Mf), then x is considered as a ^-valued essentially 
bounded weakly* measurable function on ft which we express by 
Xz== fa %(t)dfi(t). Then we can easily reproduce all the theorems in the 
reduction theory of von Neumann [7]. 

Moreover we have the exact formulation for the problem of ex­
tending the reduction theory to nonseparable cases. 

Namely, the following problems are important for the reduction 
theory of the nonseparable case: 

PROBLEM 3. Can we conclude that L"(Bf ft, /x) is a W*-algebra for 
a type In factor B (w>&0)? 

Let N be a homogeneous type In TF*-algebra (w>^ 0 ) with the 
center Z. Put Z = L00 (ft, /x). Then we still can show that N* = Ll(B*, ft, /j), 
where iV* is the associated space of N and J3* is the associated space 
of a type In W*-iactor 5 [7]. 

Therefore, we have 
PROBLEM 4. Can we conclude L™(B, ft, fx) = (L1(B^, ft, /x))*, at 

least, as Ban ach spaces? 
Since N* = Ll(B*, ft, /x), the dual of LX(B^, ft, /x) is isometrically 

isomorphic to the W'-algebra N. 
Therefore we have 
PROBLEM 5. Can we characterise the dual of LX(B*, ft, /x) as some 

family of ^-valued functions or 5-valued measures on ft? 
REMARK. Our theory has powerful applications in group represen­

tation theory—in fact, the decomposition theory of representations 
can be completely reduced to the decomposition theory of positive 
functionals. Then for a positive ^ G L 1 ^ * , ft, /x), we can easily show 
that 0(0 £=0 for /x-a.e. J£Q. Moreover, by the standard process of 
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measure theory, for a uniformly separable C*-algebra A which is 
a(M, M*)-dense in M, we can easily choose <}>{f) as follows: <f>{t) de­
fines a positive linear functional of A for /j-a.e. /GŒ; the *-represen-
tation of A constructed via <j>{t) is a factor-representation for /x-a.e. 
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