A PROOF OF THE CORONA CONJECTURE FOR FINITE OPEN RIEMANN SURFACES¹

BY NORMAN L. ALLING

Communicated by A. M. Gleason, September 17, 1963

For an open Riemann surface X the corona conjecture is the following: let B(X) be the algebra of bounded analytic functions on X and let $\mathfrak{M}(X)$ be the space of maximal ideals of B(X); then X is dense in $\mathfrak{M}(X)$. Carleson [3] has proved that the corona conjecture is true for the open unit disk D. We will sketch a proof of the following extension of Carleson's Theorem.

THEOREM. If X is a finite open Riemann surface, then X is dense in $\mathfrak{M}(X)$.

By a finite open Riemann surface is meant a proper, open, connected subset of a compact Riemann surface W whose boundary Γ is also the boundary of W-X and consists of a finite number of closed analytic arcs. Since W-X has an interior we may employ the Riemann-Roch Theorem to show that B(X) has enough functions to separate points and provide each point in X with a local uniformizer. Such a surface X therefore admits a natural homeomorphic imbedding into $\mathfrak{M}(X)$; thus the corona conjecture is seen to be meaningful.

Let X be a finite open Riemann surface. Ahlfors [1] has shown that there exists an analytic mapping p_0 of \overline{X} into the plane such that $p = p_0 | \overline{X}$ is an n-fold covering of X onto D and $p_0(\Gamma) = \overline{D} - D$. Since Γ consists of closed analytic arcs, no ramification occurs on $\overline{D} - D$. Clearly p^* , the adjoint of p, is a C-isomorphism of B(D) into B(X), C being the complex field. Let $B(D)^*$ denote the range of p^* , and for $f \in B(D)$ let $p^*(f) = f^*$.

Let σ_k denote the kth elementary symmetric function on n letters. For $z \in D$ let $p^{-1}(z) = \{x_1(z), \dots, x_n(z)\}$, each appearing to its multiplicity. Given $f \in B(X)$, $\sigma_k(f(x_1(z)), \dots, f(x_n(z)))$ is in B(D). Thus, as is well known, B(X) is integrally dependent on $B(D)^*$.

Given $N \in \mathfrak{M}(X)$ let $M^* = N \cap B(D)^*$ and let $P(N) = (p^*)^{-1}(M^*)$. Since $\mathfrak{M}(X)$ and $\mathfrak{M}(D)$ have the weak topology, P is continuous. Further, P is an extension of p. Since B(X) is integrally dependent on $B(D)^*$, P is surjective. For $f \in B(D)((B(X)))$ let f denote the natural extension of f to $\mathfrak{M}(D)((\mathfrak{M}(X)))$. (See Hoffman [4, Chapter 10] for details.) Given $f \in B(D)$, $\hat{f}P = f^* \cap L$ Let z denote the identity function

 $^{^{\}rm 1}$ This research was supported in part by National Science Foundation grant NSF-GP-379.

on D and let $\pi = 2$. Clearly π is a continuous mapping of $\mathfrak{M}(D)$ onto \overline{D} , which is the identity on D. We need an analogous function on $\mathfrak{M}(X)$.

Let $B_c(X) = \{ f \in B(X) : f \text{ has a continuous extension on } \overline{X} \}$. Arens |2| has shown that the maximal ideal space of $B_c(X)$ is naturally homeomorphic to \overline{X} , with which we will identify it. For $N \in \mathfrak{M}(X)$ let $\Pi(N) = N \cap B_{\mathcal{C}}(X)$. Π is a continuous mapping of $\mathfrak{M}(X)$ onto \overline{X} , which is the identity on X. One can show that $p_0\Pi = \pi P$; thus given $N \in \mathfrak{M}(X)$ such that $P(N) \in D$, N is in X. Let $\gamma \in \Gamma$, $\alpha = p_0(\gamma)$, $\mathfrak{M}(X)_{\gamma} = \Pi^{-1}(\gamma)$, and let $\mathfrak{M}(D)_{\alpha} = \pi^{-1}(\alpha)$. Clearly $P(\mathfrak{M}(X)_{\gamma}) \subset \mathfrak{M}(D)_{\alpha}$. Let K(X), $K(D)^*$, $K_c(X)$, and $K_c(D)^*$ be the quotient fields of B(X), $B(D)^*$, $B_C(X)$, and $B_C(D)^*$, respectively, in the field of all meromorphic functions on X. The elementary symmetric functions can be used, as they were above, to define mappings from K(X) into $K(D)^*$ and from $K_c(X)$ into $K_c(D)^*$, with the aid of which it can be shown that $K(X)/K(D)^*$ and $K_c(X)/K_c(D)^*$ are algebraic extensions of degree n. The coefficients of the field polynomial of the extension and the respective symmetric functions are the same. Given $g \in B_c(X)$ and $\alpha \in \overline{D} - D$ such that the continuous extension \bar{g} of g to \bar{X} assumes n distinct values on $p_0^{-1}(\alpha)$, then g generates K(X), $K_c(X)$ over $K(D)^*$, $K_c(D)^*$ respectively. The discriminate d^* of g is in $B_c(D)^*$. Its extension \overline{d} to \overline{D} is nonzero at α , since g assumes distinct values on $p_0^{-1}(\alpha)$. Since g generates K(X)over $K(D)^*$ and $K_c(X)$ over $K_c(D)^*$, given $b \in B(X)$ (($B_c(X)$) there exist unique $f_0, \dots, f_{n-1} \in K(D)$ $(K_C(D))$ such that $b = \sum_{j=0}^{n-1} f_j^* g^j$. Using Cramer's rule, one can find unique $a_0, \dots, a_{n-1} \in B(D)$ $(B_c(D))$ such that $f_i = a_i/d$. With the aid of this elementary field theory the following can be proved: $P \mid \mathfrak{M}(X)_{\gamma}$ is an injection onto $\mathfrak{M}(D)_{\alpha}$.

By the nature of p_0 , we can choose a closed neighborhood V of α in \overline{D} such that if U is the component of $p_0^{-1}(V) \cap \overline{X}$ that contains γ , then $p_0|U$ is a homeomorphism. Let $\mathfrak{V} = \pi^{-1}(V)$ and let $\mathfrak{U} = \Pi^{-1}(U)$. Since $\mathfrak{M}(X)$ and $\mathfrak{M}(D)$ are compact, \mathfrak{U} and \mathfrak{V} are compact. Since $P \mid \mathfrak{M}(X)_{\gamma}$ is an injective mapping onto $\mathfrak{M}(D)_{\alpha}$, and by the choice of U and V, $P \mid \mathfrak{U}$ is an injection onto \mathfrak{V} . Since \mathfrak{U} is compact $P \mid \mathfrak{U}$ is a homeomorphism. From this it follows easily that P is an open mapping. Invoking Carleson's Theorem [3], for the first time, we find that X is dense in $\mathfrak{M}(X)$, proving the theorem.

Actually, we have proved somewhat more. Let $\Gamma_1, \dots, \Gamma_k$ be the components of Γ . By definition, these components are nondegenerate, closed, analytic curves in W that p_0 takes to S, the unit circle. Since $\mathfrak{M}(D)_{\alpha}$ is connected for each $\alpha \in S$ [4], $\mathfrak{M}(X)_{\gamma}$ is connected for each $\gamma \in \Gamma$; thus $\mathfrak{M}(X)_{\Gamma_i} (=\Pi^{-1}(\Gamma_i))$ is connected for each i. We conclude

that $\mathfrak{M}(X)_{\Gamma_1}, \dots, \mathfrak{M}(X)_{\Gamma_k}$ are the components of $\mathfrak{M}(X) - X$. Let q_i be the number of times Γ_i covers S under p_0 ; clearly $\sum_{i=1}^k q_i$ equals n. $P \mid \mathfrak{M}(X)_{\Gamma_i}$ is a local homeomorphism of $\mathfrak{M}(X)_{\Gamma_i}$ onto $\mathfrak{M}(D) - D$, that covers each point q_i times.

Let Y be an open Riemann surface and suppose there exists a conformal homeomorphism of Y onto a finite open Riemann surface X. Then clearly we can carry the solution of the corona conjecture to Y.

REMARK. Using recent results of Röhrl [5, Theorem 4.2], one can show that B(X) is a free $B(D)^*$ -module of dimension n, a basis for which can be chosen in $B_C(X)$. With this one can show that $P \mid \mathfrak{M}(X)_{\gamma}$ is injective. It seems, at this time, not unreasonable to conjecture that an element $g \in B_C(X)$ can be found such that 1, g, \dots, g^{n-1} is a free basis of B(X) over $B(D)^*$. From this it would follow immediately that $P(\mathfrak{M}(X)_{\gamma}) = \mathfrak{M}(D)_{\alpha}$ (this can also be shown using Carleson's Theorem).

Acknowledgments. I am indebted to Professors Gleason, Hoffman, Röhrl, and Royden, with whom I had several very useful discussions during the course of this research.

REFERENCES

- 1. L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv. 24 (1950), 100-134.
- 2. R. Arens, The closed maximal ideals of algebras of functions holomorphic on a Riemann surface, Rend. Circ. Mat. Palermo (2) 7 (1958), 1-13.
- 3. L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559.
- 4. K. Hoffman, Banach spaces of analytic functions, Series in modern analysis, Prentice-Hall, Engelwood Cliffs, N. J., 1962.
- 5. H. Röhrl, Unbounded coverings of Riemann surfaces and extensions of rings of meromorphic functions, Trans. Amer. Math. Soc. 107 (1963), 320-346.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY AND PURDUE UNIVERSITY