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1. Introduction. We will be concerned with the problem of imbed­
ding (differentiably) a closed simply-connected w-manifold M in the 
w-sphere Sm. According to [3], this problem depends only upon the 
homotopy type of M, in a "stable" range of dimensions. We obtain 
an explicit equivalent homotopy problem. 

We also consider the problem of determining whether two imbed-
dings of M in Sm are isotopic (see [3] for basic definitions). A "homo­
topy condition" for deciding this question will also be obtained, again 
in a "stable" range of dimensions. 

All manifolds, imbeddings and isotopies are to be differentiate. If 
M, V are manifolds with boundary and ƒ is an imbedding of M in V, 
it will always be understood that f(M)r\dV=f(dM) and the inter­
section is transverse. 

2. Imbedding theorem. M will, hereafter, denote a closed simply-
connected w-manifold, w>4. Suppose ƒ imbeds M in Sm; then we can 
define the normal plane bundle v/ and, by a construction of Thorn 
[lO], an element otfÇ.Trm{T{vf))} where T(vf) is the Thorn space (see 
[lO]) of Vf. We call the pair (vfl af) the normal invariants of/. The 
existence of an imbedding, in particular, implies the existence of an 
(m — n) -plane bundle £ whose Thorn space is reducible in the sense of 
[ l ] . I t follows from [ l ] that this property of I f is a homotopy in­
variant and such a bundle £ must be, a priori, stably fiber homotopy 
equivalent to the stable normal bundle of M. 

Let MQ denote the complement of an open disk in M. 

THEOREM 1. Suppose 2m^3(n + l) and £ is an (m — n)-plane bundle 
over M stably equivalent to the stable normal bundle of M, such that T(£) 
is reducible. Then there is an imbedding f of M in Sm such that Vf is 
fiber homotopy equivalent to % : 

(a) Over M if n = 6f 14 or n ^ 2 mod 4. 
(b) Over Mo if n^2 mod 4. 

I t is to be expected that the conclusion of (a) is valid for all n. The 
difficulty in the proof arises from the lack of a satisfactory general 
definition of the Arf invariant (see [7]). In certain special cases, e.g., 
if M is a 7T-manifold or Wi(M) = 0 for 2i<n> we can obtain the con­
clusion of (a). 
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3. Isotopy theorems. Suppose ƒ, g are isotopic imbeddings of M in 
Sm. I t is easy to show that there is a bundle map </>: Vf-*vQ (note that 
the terminology implies that </> covers the identity map of M) such 
that <t>*(a/) =a0. We say <f> induces an equivalence between the normal 
invariants of ƒ and g. 

THEOREM 2. Suppose 2m > 3 (^+1) . Then two imbeddings of M in 
Sm are isotopic if and only if they have equivalent normal invariants. 

Theorems 1 and 2 represent alternatives to the classification theo­
rems of [5]. Note that the normal bundle plays a more prominent 
role here; in particular, Theorem 1 gives us information on the pos­
sible normal bundles of imbeddings. 

The situation is more complicated in the borderline case 2m 
= 3(n + l). For w = 4fe — 1 , m = 6k, we obtain a generalization of the 
main result of [4]. Let (£, a) be the normal invariants of an imbedding 
of M in Sm; we will define a cyclic group Z(£, a). If/, g are imbeddings 
of M in Sm whose normal invariants are equivalent to (f, a) we define 
a further invariant L( / , g)GZ(£, a). 

For the following theorem we must impose an additional restriction 
upon M: 

(*) If H is a homotopy w-sphere which bounds a 7r-manifold and 
the connected sum M # H is diffeomorphic to M, then H is diffeo-
morphic to Sn. 

THEOREM 3. Suppose n = ék — 1, m = 6k. 
(a) If ƒ, g are imbeddings of M in Sm with equivalent normal invari­

ants, then ƒ and g are isotopic if and only if L(f, g) = 0. 
(b) Iff is an imbedding with normal invariants (£, a) and LÇzZfa a ) , 

then there exists an imbedding g whose normal invariants are equivalent 
to (£, a) such that L( / , g) =L. 

Thus L(f, g) plays the role of a difference cochain in obstruction 
theory. One may conjecture on the existence of a higher obstruction 
theory for imbeddings with equivalent normal invariants in the "non­
stable" range of dimensions. 

4. Discussion of proofs. We use a nonstable version of the pro­
cedures introduced in [2; 9] (see [8] for details). To prove Theorem 1 
we construct a submanifold N of Sm, and a map h: N-+M of degree 
+ 1 such that /**£ is the normal bundle of N in Sm. By a suitable 
generalization of the techniques in [4, §3], we can perform spherical 
modifications on the pair (5m , N), at each stage defining a new map 
h so that A*£ is still the normal bundle. We must use the restriction 
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on codimension here. Following [2; 8] we can eventually make h a 
homotopy equivalence, if n = 6, 14 or n ^ 2 mod 4. If w = 2 mod 4, we 
must replace Sm by the ra-disk Dm and let N be a bounded manifold 
imbedded in Dm, with dN a homotopy sphere and h: N—*Mo such that 
fc*(£|M0) is the normal bundle to N in Z>\ Now we can perform 
spherical modifications as above to make h a homotopy equivalence. 
Using the results of [3 ; 6 ] one can deform a homotopy inverse of h 
into an imbedding of M (or Mo) into Sm (or Dm) with a normal 
bundle fibre homotopy equivalent to £ (or f | Mo). ïî n^2 mod 4, the 
imbedding of M0 into Dm can be extended to M into 5m . 

Theorem 2 is approached by a similar combination of the methods 
of [9] (see [8]) and the techniques of [4]. At one point we need the 
following result, which follows easily, in this range of dimensions, 
from the results of [3 ]. Let if be a homotopy ^-sphere and g : M—>M # H 
a diffeomorphism homotopic to the standard homeomorphism. Let ƒ 
be an imbedding of M in 5W, i an imbedding of H in Sm and f the 
imbedding (unique up to isotopy) of M # H in Sm induced by ƒ and i. 
Then ƒ' • g is isotopic to ƒ. 

The proof of Theorem 3 proceeds as that of Theorem 2 up to a 
point. In order to complete the necessary spherical modifications we 
must consider a linking number invariant (an integer) similar to that 
defined in [4]. After reducing to a quotient group, Z(£, a) , we obtain 
•£(ƒ> g) which depends only on ƒ and g. Now, the verification of (a) is 
not unlike the arguments in [4, §3]; (b) is proved by adjoining to ƒ 
one of the knotted spheres constructed in [4]. 

5. More general results. Givenaclosed m-manifold Fand v£;Hn( V), 
we may ask whether v can be realized by an imbedding ƒ of M. If so, 
we can define the normal bundle vf and a/(E7r(F, T(v/)) ( = homotopy 
classes of maps V—>T(vf)), using the procedures of [lO], such that 
ct*(u(vf)) =dual of v (if £ is a &-plane bundle over M, w(£)£iiP(r(£)) 
is the usual generator). Also/*T7 = T M + ^ / , where TM denotes the tan­
gent bundle of M. In particular, if n = 4tk and pi(V) = 0 for 0<i<k: 

(t) index M = L*(Ji(Ö, • • • , fc-i(Ö, M Ö + <PkQ0, v)M) 

where £»(£) is the dual Pontryagin class of £, Lk is the Hirzebruch 
polynomial (see [7]) and % = Vf. 

THEOREM 4. Let M, V, v be as above and 2m^3(w + l ) . Assume 
TTi(V)=0for 2i^n. Suppose f is an (m — n)-plane bundle over M satis­
fying (t) if n — 4:k and there exists aG7r(F, T(£)) such that a*(u(£)) 
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— dual of v. Then there is an imbedding f of M in V, representing v, 
such that Vf is fiber homotopy equivalent to £ : 

(a) Over M if n = 6, 14 or n ^ 2 mod 4. 
(b) Over Mo if n = 2 mod 4. 

The proof is similar to that of Theorem 1. There is also an isotopy 
theorem. 
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