ON DIFFERENTIABLE IMBEDDINGS OF SIMPLY-CONNECTED MANIFOLDS

BY J. LEVINE

Communicated by W. S. Massey, June 12, 1963

1. Introduction. We will be concerned with the problem of imbedding (differentiably) a closed simply-connected n-manifold M in the m-sphere S^m . According to [3], this problem depends only upon the homotopy type of M, in a "stable" range of dimensions. We obtain an explicit equivalent homotopy problem.

We also consider the problem of determining whether two imbeddings of M in S^m are isotopic (see [3] for basic definitions). A "homotopy condition" for deciding this question will also be obtained, again in a "stable" range of dimensions.

All manifolds, imbeddings and isotopies are to be differentiable. If M, V are manifolds with boundary and f is an imbedding of M in V, it will always be understood that $f(M) \cap \partial V = f(\partial M)$ and the intersection is transverse.

2. Imbedding theorem. M will, hereafter, denote a closed simply-connected n-manifold, n > 4. Suppose f imbeds M in S^m ; then we can define the normal plane bundle ν_f and, by a construction of Thom [10], an element $\alpha_f \in \pi_m(T(\nu_f))$, where $T(\nu_f)$ is the Thom space (see [10]) of ν_f . We call the pair (ν_f, α_f) the normal invariants of f. The existence of an imbedding, in particular, implies the existence of an (m-n)-plane bundle ξ whose Thom space is reducible in the sense of [1]. It follows from [1] that this property of M is a homotopy invariant and such a bundle ξ must be, a priori, stably fiber homotopy equivalent to the stable normal bundle of M.

Let M_0 denote the complement of an open disk in M.

THEOREM 1. Suppose $2m \ge 3(n+1)$ and ξ is an (m-n)-plane bundle over M stably equivalent to the stable normal bundle of M, such that $T(\xi)$ is reducible. Then there is an imbedding f of M in S^m such that ν_f is fiber homotopy equivalent to ξ :

- (a) Over M if n = 6, 14 or $n \not\equiv 2 \mod 4$.
- (b) Over M_0 if $n \equiv 2 \mod 4$.

It is to be expected that the conclusion of (a) is valid for all n. The difficulty in the proof arises from the lack of a satisfactory general definition of the Arf invariant (see [7]). In certain special cases, e.g., if M is a π -manifold or $\pi_i(M) = 0$ for 2i < n, we can obtain the conclusion of (a).

- 3. Isotopy theorems. Suppose f, g are isotopic imbeddings of M in S^m . It is easy to show that there is a bundle map $\phi: \nu_f \rightarrow \nu_g$ (note that the terminology implies that ϕ covers the identity map of M) such that $\phi_*(\alpha_f) = \alpha_g$. We say ϕ induces an equivalence between the normal invariants of f and g.
- THEOREM 2. Suppose 2m > 3(n+1). Then two imbeddings of M in S^m are isotopic if and only if they have equivalent normal invariants.

Theorems 1 and 2 represent alternatives to the classification theorems of [5]. Note that the normal bundle plays a more prominent role here; in particular, Theorem 1 gives us information on the possible normal bundles of imbeddings.

The situation is more complicated in the borderline case 2m = 3(n+1). For n=4k-1, m=6k, we obtain a generalization of the main result of [4]. Let (ξ, α) be the normal invariants of an imbedding of M in S^m ; we will define a cyclic group $Z(\xi, \alpha)$. If f, g are imbeddings of M in S^m whose normal invariants are equivalent to (ξ, α) we define a further invariant $L(f, g) \in Z(\xi, \alpha)$.

For the following theorem we must impose an additional restriction upon M:

(*) If H is a homotopy n-sphere which bounds a π -manifold and the connected sum M # H is diffeomorphic to M, then H is diffeomorphic to S^n .

THEOREM 3. Suppose n=4k-1, m=6k.

- (a) If f, g are imbeddings of M in S^m with equivalent normal invariants, then f and g are isotopic if and only if L(f, g) = 0.
- (b) If f is an imbedding with normal invariants (ξ, α) and $L \in Z(\xi, \alpha)$, then there exists an imbedding g whose normal invariants are equivalent to (ξ, α) such that L(f, g) = L.

Thus L(f, g) plays the role of a difference cochain in obstruction theory. One may conjecture on the existence of a higher obstruction theory for imbeddings with equivalent normal invariants in the "non-stable" range of dimensions.

4. Discussion of proofs. We use a nonstable version of the procedures introduced in [2;9] (see [8] for details). To prove Theorem 1 we construct a submanifold N of S^m , and a map $h: N \rightarrow M$ of degree +1 such that $h^*\xi$ is the normal bundle of N in S^m . By a suitable generalization of the techniques in $[4, \S 3]$, we can perform spherical modifications on the pair (S^m, N) , at each stage defining a new map h so that $h^*\xi$ is still the normal bundle. We must use the restriction

on codimension here. Following [2; 8] we can eventually make h a homotopy equivalence, if n=6, 14 or $n\neq 2 \mod 4$. If $n\equiv 2 \mod 4$, we must replace S^m by the m-disk D^m and let N be a bounded manifold imbedded in D^m , with ∂N a homotopy sphere and $h\colon N\to M_0$ such that $h^*(\xi\mid M_0)$ is the normal bundle to N in D^m . Now we can perform spherical modifications as above to make h a homotopy equivalence. Using the results of [3; 6] one can deform a homotopy inverse of h into an imbedding of M (or M_0) into S^m (or D^m) with a normal bundle fibre homotopy equivalent to ξ (or $\xi\mid M_0$). If $n\equiv 2 \mod 4$, the imbedding of M_0 into D^m can be extended to M into S^m .

Theorem 2 is approached by a similar combination of the methods of [9] (see [8]) and the techniques of [4]. At one point we need the following result, which follows easily, in this range of dimensions, from the results of [3]. Let H be a homotopy n-sphere and $g: M \rightarrow M \# H$ a diffeomorphism homotopic to the standard homeomorphism. Let f be an imbedding of M in S^m , i an imbedding of H in S^m and f' the imbedding (unique up to isotopy) of M # H in S^m induced by f and i. Then $f' \cdot g$ is isotopic to f.

The proof of Theorem 3 proceeds as that of Theorem 2 up to a point. In order to complete the necessary spherical modifications we must consider a linking number invariant (an integer) similar to that defined in [4]. After reducing to a quotient group, $Z(\xi, \alpha)$, we obtain L(f, g) which depends only on f and g. Now, the verification of (a) is not unlike the arguments in [4, §3]; (b) is proved by adjoining to f one of the knotted spheres constructed in [4].

5. More general results. Given a closed m-manifold V and $v \in H_n(V)$, we may ask whether v can be realized by an imbedding f of M. If so, we can define the normal bundle ν_f and $\alpha_f \in \pi(V, T(\nu_f))$ (=homotopy classes of maps $V \to T(\nu_f)$), using the procedures of [10], such that $\alpha_f^*(u(\nu_f)) = \text{dual of } v$ (if ξ is a k-plane bundle over M, $u(\xi) \in H^k(T(\xi))$ is the usual generator). Also $f^*\tau_V = \tau_M + \nu_f$, where τ_M denotes the tangent bundle of M. In particular, if n = 4k and $p_i(V) = 0$ for 0 < i < k:

$$(\dagger) \qquad \text{index } M = L_k(\bar{p}_1(\xi), \cdots, \bar{p}_{k-1}(\xi), \bar{p}_k(\xi) + \langle p_k(V), v \rangle M)$$

where $\bar{p}_i(\xi)$ is the dual Pontryagin class of ξ , L_k is the Hirzebruch polynomial (see [7]) and $\xi = \nu_f$.

THEOREM 4. Let M, V, v be as above and $2m \ge 3(n+1)$. Assume $\pi_i(V) = 0$ for $2i \le n$. Suppose ξ is an (m-n)-plane bundle over M satisfying (\dagger) if n = 4k and there exists $\alpha \in \pi(V, T(\xi))$ such that $\alpha^*(u(\xi))$

- = dual of v. Then there is an imbedding f of M in V, representing v, such that v_f is fiber homotopy equivalent to ξ :
 - (a) Over M if n=6, 14 or $n \not\equiv 2 \mod 4$.
 - (b) Over M_0 if $n \equiv 2 \mod 4$.

The proof is similar to that of Theorem 1. There is also an isotopy theorem.

BIBLIOGRAPHY

- 1. M. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291-310.
- 2. W. Browder, Homotopy type of differentiable manifolds, pp. 42–46, Colloquium on Algebraic Topology, Aarhus, 1962.
- 3. A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82.
- 4. ——, Knotted (4k-1)-spheres in 6k-space, Ann. of Math. (2) 75 (1962), 452-466.
- 5. —, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962), 155-176.
- 6. M. Hirsch, On the fibre homotopy type of normal bundles of manifolds, (unpublished).
- 7. M. Kervaire and J. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537.
- 8. R. Lashof, Some theorems of Browder and Novikov on homotopy equivalent manifolds with an application, Printed Notes, Univ. of Chicago, Chicago, Illinois.
- 9. S. P. Novikov, Diffeomorphisms of simply-connected manifolds, Soviet Math. Dokl. 3 (1962), 540-543.
- 10. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY