
QUASICONFORMAL MAPPINGS IN SPACE 

F. W. GEHRING1 

1. Introduction. Suppose thatw(s) is a homeomorphism of a plane 
domain D onto a plane domain D'. We introduce, for convenience, the 
following functions which measure how much infinitesimal circles 
and areas are distorted under the mapping w(z) a t each point ZQ in D: 

L(z0,r) / tn(U') 
(1) H(zo) = lim sup — ~ ; J(zo) = lim sup -~ • 

r-»o l(zo,r) r-*o m(U) 
Here 

L(ZQ, r) = sup | w{z) — w(zo) \ , l(z0, r) = inf | w(z) — w(z0) \ , 
Je —so| = r J2—2o|«r 

U' denotes the image of U, the disk | s — So| <r, and m denotes 
Lebesgue plane measure. If w(z) is difîerentiable a t So, then w(z) is 
locally affine at z<> and maps the infinitesimal circles | z — zo\ = e onto 
infinitesimal ellipses; H(z0) gives the ratio of the major to minor axes 
and J(zo) is the absolute value of the Jacobian. 

Suppose next that w(z) is continuously difîerentiable with J(z)>0 
everywhere in D. Then w(z) is said to be a K-quasiconformal mapping, 
in the classical sense, if w(z) satisfies the dilatation condition 

(2) H(z) ^ , 1 ^ K< oo, 

everywhere in D. A homeomorphism is said to be quasiconformal if 
it is jK-quasiconformal for some K. If w(z) is sense-preserving with 
H(z) = 1 in D, then the real and imaginary parts of w(z) satisfy the 
Cauchy-Riemann equations and w(z) is an analytic function of z. 
Hence a sense-preserving 1-quasiconformal mapping is conformai in 
the ordinary sense. 

Quasiconformal mappings arise very naturally in complex function 
theory, for example in the study of multiply connected domains and 
in the Teichmüller problem. They are encountered also in the theory 
of partial differential equations as the univalent solutions of Beltrami 
systems. Finally, the study of such mappings is interesting in its own 
right, for though the theory usually parallels that of conformai map-
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ping, there are striking instances where the analogy breaks down. 
Moreover, this study sometimes casts new light on the theory of 
conformai mapping, since often one must employ different methods 
when dealing with this more general class of mappings. 

Obviously one can consider an analogous class of homeomorphisms 
in Euclidean 3-space and we shall discuss here a few of the results 
which have been established for such mappings. However in order to 
motivate what follows, we shall illustrate first how one can obtain 
certain properties of plane quasiconformal mappings by means of the 
moduli of rings. 

2. Plane rings. A ring R is defined to be a finite doubly connected 
domain, that is, a domain whose complement with respect to the ex­
tended plane consists of two components. We denote these com­
ponents by Co and Ci, and we assume that G contains the point at 
infinity. Each ring R can be mapped conformally onto an annulus 
a< | w\ <b so that the circles | w\ ~a and | w\ = & correspond to <3Co 
and 9Ci, respectively. Then 0 < a < & < <*> if and only if Co and G are 
nondegenerate. The conformai invariant 

b 
(3) modi? = log — 

a 
is called the modulus of R. 

There are other ways to define mod i?. For example if Co and G 
are nondegenerate and if w(z) is the above mentioned conformai 
mapping of R onto a< \ w\ <&, then 

/As , v l og I w(*)/a| 
(4) v(z) = log b/a 

is harmonic in R and has boundary values 0 on d Co and 1 on ôG . 
Next an elementary calculation shows that the modulus can be ex­
pressed in terms of the capacity C(R) of the ring as follows : 

(5) C(R) = f | v*|«Ar = - ^ — • 
J R mod R 

Finally if we appeal to the Dirichlet principle we obtain 

(6) = C(R) = inf | Vu\2dcr, 
mod R u J R 

where the infimum is taken over all functions u — u{z) which are con­
tinuously differentiate in R with boundary values 0 on dCo and 1 
on dCi. I t is easy to see that (6) still holds when Co or G reduces to 
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a point and hence we obtain an alternative definition for the modulus 
which does not depend on conformai mapping. This is important 
since it suggests how to define the modulus of a ring in space where 
the only conformai mappings are the Moebius transformations. 

One can also define the capacity, and hence the modulus, of a ring 
R by means of extremal lengths. For each non-negative Borel meas­
urable function f~f(z) defined in R we let 

(7) Li(f) = inf f fds, U(f) = inf f f ds, 

where 71 denotes any locally rectifiable curve in R which joins the 
boundary components 3C0 and dCi, and 72 any locally rectifiable 
curve in R which separates ôCo and dC\. Next set 

(8) A(J) = f fd<r. 
J R 

Then it is not difficult to show 

(9) 
UfY 

sup = 
f A{f) 

[2] that 

C(R) = inf 
/ 

A(f) 

where the supremum is taken over all ƒ for which L%(f) and A (ƒ) are 
not simultaneously 0 or 00, and the infimum over all ƒ for which 
A (J) and Li(f) are not simultaneously 0 or 00. 

3. Extremal rings. There are a pair of extremal rings, first studied 
by Grötzsch [12] and Teichmüller [25], which play an important 
role in the distortion theory of quasiconformal mappings. 

Given a>\ and 6 > 0 , we denote by RQ = RQ(a) the ring bounded 
by the disk \z\ ^ 1 and the ray a^xS °°, y = 0, and we denote by 
RTz=RT(b) the ring bounded by the segment — l ^ t f ^ O , y = 0 and 
the ray b^x^ 00, ^ = 0. Then if we set 

(10) mod RQ = log $2(0), mod RT = log ^2(&), 

it is easy to verify [25] that <ï>2(a)/a is nondecreasing in a, that 

$ 2 ( 0 ) 
(11) lim —^ = 4, 

and tha t 

(12) *2(&) = $2«ô + 1)1/2)2. 

The rings RG and RT have the following extremal property [25]. 
Suppose that R is a ring and that ZQ is a point of Co. If Co contains 
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all points at distance a from ZQ and if G contains at least one point 
a t distance b from ZQ, then 

(13) mod R ^ mod R •e-If Co contains a t least one point at distance a from z0 and if G con­
tains a t least one point at distance b from s0, then 

(14) mod R g mod R -e-4. Modulus of a ring under a quasiconformal mapping. Now sup­
pose that w(z) is a i£-quasiconformal mapping of a domain D onto 
Df and that -R is a ring with closure 7ÏC.D. Then ^(2) carries i£ onto 
a ring R'C.D'. Next suppose that u = t>(w) is continuously differenti­
a t ie in Rf with boundary values 0 on d CV and 1 on 3G ' , and set 
u(z)=v(w(z)). Then either «(2) or 1 —w(s) has the same properties 
with respect to i? and 

I V«(*) |2 ^ B(z)J(z) I Vv(w) |2 g JUX*) I Vt>(w) |2 

at each point of R. Hence with (6) we have 

C{R) â f I VU\H<T £K f J\ Vv\*d* = K \ \ Vv\2d<r, 
J R J R J Rf 

and taking the infimum over all such functions v yields C(R) ^KC(R') 
or mod Rf ^K mod R. Since the inverse mapping z(w) is also K-
quasiconformal, we conclude that 

1 
(IS) — mod R <> mod R' <> K mod R 

K 

for all rings R with RQD. 

5. An application. We illustrate how one can use the results of §§3 
and 4 to obtain some properties of quasiconformal mappings. 

Suppose that w(z) is a ^-quasiconformal mapping of a domain D 
onto D' , tha t 20 is a point of D, and that d and df denote the distances 
from 0o to dD and w(zo) to dD', respectively. Next for 0<a<b<d 
let R denote the annulus a<\z — Zo\ <&, let R' denote the image of 
R under w(z), and set 

a' = min | w(z) — w(z0) | > 0, b' = min | w(z) — W(ZQ) \ < d'. 

I t is easy to see that Ci contains all points within distance a' of 
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w(zo) and that C{ contains a t least one point at distance V from 
w(zo). Hence we have 

b V 
log — = mod R g K mod R' S Klog 4 — ; 

or simply 
/ f t \ 1 / J C V d' 

(16) ( - ) g 4 - < 4 - , 
\ a / a a 

from (10), (11), (13) and (15). 
If we hold a fixed and let b—>d, then (16) yields 

d' 
< 4 

al/K " dl/K 

In particular it follows that d ' = 00 whenever d = <*>, and hence that 
Df is the whole plane whenever D is. Next if d < 00 and if we let a—»0, 
we obtain 

I w(z) — ze>(zo) I d' 
(17) lim inf - i - r ^ ^ - L g 4 

Is-sol1 '* ^1/x 

In the special case where w(z) is a conformai mapping, i £ = l and 
(17) give us the Koebe Viertelsatz | w'(zo)\ ^Ad'/d. 

6. Space rings. We now turn to the study of quasiconformal map­
pings in space. The main problem is to obtain global properties for 
these mappings using only the fact that they satisfy a local dilatation 
condition similar to (2). We have shown in §§4 and 5 how one can 
do this for plane quasiconformal mappings using the moduli of plane 
rings, and so we begin by introducing an analogous modulus for space 
rings. 

A space ring R is denned to be a finite domain whose complement 
in the Moebius space consists of two components. We denote these 
components by Co and Ci, and let G contain the point a t infinity. 
Next following Loewner [14], we define the conformai capacity of a 
ring R as follows : 

(18) r(JR) = inf f \ Vu\*da, 

where the infimum is taken over all functions u = u(x)1 x= (xi, #2, #3), 
which are continuously differentiable in R and have boundary values 
0 on d Co and 1 on 3&. We then define the modulus of R by means 
of the relation 
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/ 4TT V ' 2 

(19) modi? = I ) . 

These two equations are the space analogues of (6). In particular if 
R is the spherical annulus bounded by concentric spheres of radii 
a and &, a<b, it is easy to show [8] that 

b 
(20) mod £ = log— • 

a 
When R is a plane ring with nondegenerate boundary components, 

then the harmonic function v(z), given in (4), is the unique solution 
for the extremal problem in (6). Similarly, if R is a space ring which 
has nondegenerate boundary components, there exists a unique func­
tion v = v(x) with the following properties: v is continuous and ACL 
in i?, v has boundary values 0 on dCo and 1 on dCi> v is differentiate 
a.e. in R, and 

(21) T(R) = f I Vv\*dw.2 

J R 

We call v the extremal function for the ring R. I t satisfies the varia­
tional condition 

(22) I I Vv J VvVwdu = 0 
J R 

for each function w~w(x) which is continuously differentiate and 
has compact support in R. (See [lO],) 

In the case of a plane ring, the function v(z) in (4) has a nonvanish-
ing gradient and | VÜ(S)| is bounded away from 0 and 00 on each 
compact set in the ring. The situation in space is different, partly be­
cause a space ring need not be topologically equivalent to a spherical 
annulus. For example, if v(x) is the extremal function for the ring 
bounded by the circle xl+xl = l> x3 = 0 and by the spherical surface 
\x\ = 2 , then it is clear on the basis of symmetry that | Vz/(x)| must 
vanish at the origin if v(x) is differentiate there. 

I t is not yet known how smooth the extremal function v(x) is 
when R is an arbitrary space ring with nondegenerate boundary com­
ponents. However if |Vz>(#)| is bounded away from 0 and 00 a.e. 
on each compact set in i?, then one can use (22) to show [lO] that 

2 A function is said to be absolutely continuous on lines or ACL in a domain if, for 
each sphere U with closure in the domain, the function is absolutely continuous on 
almost all line segments in U which are parallel to the coordinate axes. 
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v(x) is real analytic in R and satisfies the quasilinear elliptic differen­
tial equation 

(23) div( | Vv\ Vt>) - 0. 

When R satisfies certain rather restrictive geometrical conditions, it 
is possible to establish the above a priori bounds for | Vu(x)|, and 
hence show that v(x) is real analytic and satisfies (23). 

The extremal function for a spherical annulus is a linear function 
of log r, where r denotes the distance from the center of the annulus 
to the point x. 

7. Extremal lengths. According to a well-known theorem due to 
Liouville, the Moebius transformations are the only conformai map­
pings in space. Thus a space ring R can be mapped conformally onto 
a spherical annulus only if it is bounded by two spheres or a sphere 
and a plane, and there is no space analogue for the first definition 
we gave for the modulus of a plane ring. However it is interesting to 
note that there are space analogues for the extremal length definitions 
given in (9). 

For each non-negative Borel measurable function ƒ =ƒ(#). defined 
in a space ring R we let 

(24) L(J) = inf f fds, A(f) = inf ( fd<r, 

where y denotes any locally rectifiable curve in R which joins dCo 
and dCiy and 2 any piece wise smooth compact surface in R which 
separates d Co and dCi. Next set 

(25) V{f) = f f do,. 
J R 

Then we can show [9] that 

(26) S U P ^ 7 7 ^ = r ( i ? ) Œ i n f 777^7 ; 

where the supremum is taken over all ƒ for which A (ƒ) and V(J) are 
not simultaneously 0 or oo, and the infimum over all ƒ for which 
V(J) and L(f) are not simultaneously 0 or oo, 

8. Extremal rings in space. Given a > 1 and b > 0, we let RG = Ro(a) 
denote the space ring bounded by the sphere \x\ ^ 1 and the ray 
a g x i g oo, x2 = #3 = 0, and R T = RTQ>) the ring bounded by the seg­
ment — l = # i = 0, x2 = X3 = 0 and the ray è â ^ i â 0 0 , x2 = x3 = 0. 
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These are the space analogues of the Grötzsch and TeichmüUer rings 
considered in §3. If as in (10) we set 

(27) mod RG = log $3(0), mod RT = log Vs(b), 

then it is easy to show that <£>3(a)/a is nondecreasing in a, that 

$ 3 ( 0 ) 
(28) lim — — = X where 4 g X < 12.4 • • • , 

a-» 00 a 

and that 

(29) ¥,(6) = *,((» + l)1/2)2. 

We can further show that the moduli of the Grötzsch and TeichmüUer 
rings in space are not less than the moduli of the corresponding plane 
rings, tha t is 

(30) $2(0) â $3(0) and *t(jb) ^ ¥a(ft). 

(See [8; 9].) 
As in the plane case, the importance of the rings Ro and RT de­

pends upon the fact that they have the following extremal properties 
[8], Suppose that R is a space ring and that P is a point of Co. If 
Co contains all points at distance a from P and if d contains at least 
one point a t distance b from P , then 

(31) mod R g mod R0 (—). 

If Co contains a t least one point a t distance a from P and if C\ con­
tains a t least one point at distance b from P , then 

(32) mod R ^ mod R -(T> 
9. Quasiconformal mappings in space. We begin with the study of 

quasiconformal mappings in space. Suppose that y(x) is a homeo-
morphism of D onto D', where D and D ' are finite domains in Eu­
clidean 3-space. As in §1 we define some functions to measure local 
distortion under y(x) a t each point P in D: 

L(P, r) L(P, r) 
E{P) == lim sup ; I(P) = lim sup ; 

r-*0 l(Pjr) r-+Q f 
(33) 

m(Uf) 
J(P) = lim sup • 

r-K) m(U) 
8 B. V. §abat established this inequality in [24], using extremal lengths and a 

slightly different definition for mod R. 
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Here 

L(P, r) = sup | y(x) - y(P) | , Z(P, r) = inf | y(x) - y(P) |, 
\z-P\=r \x-P\=*r 

U' denotes the image of C7, the sphere \% — P\ < r , and m denotes 
Lebesgue measure in space. 

The homeomorphism y(x) is said to be a K-quasiconformal map­
ping, in the classical sense, if y(x) is continuously differentiate with 
J(x) > 0 and H(x) ^K everywhere in D. An elementary adaptation of 
the argument in §4 then shows that, if R is a space ring with RQD, 

T(R) ^ K2T(R') or mod R' S K mod R, 

where R' is the image of R under y(x). Since the inverse mapping is 
i£-quasiconfQrmal, we conclude that 

(34) — mod R ^ mod R' ^ K mod R 
K 

for all space rings R with RC.D. 
Now all of the most important geometric properties for classical 

X-quasiconformal mappings can be derived from the fact that y(x) 
is a homeomorphism which satisfies the inequality (34). Hence we 
are led to adopt the following slightly more general definition for 
quasiconformal mappings. 

DEFINITION 1. A homeomorphism y(x) of a domain D is said to be 
a K-quasiconformal mapping, 1^K< oo, if the inequality (34) holds 
for each bounded ring R with RQD. A quasiconformal mapping is one 
which is K-quasiconformal f or some K.* 

From the preceding discussion it is clear that a mapping which is 
.K-quasiconformal in the classical sense is also K-quasiconformal 
according to Definition 1. 

This definition for quasiconformality can be defended on other 
than purely aesthetic grounds. For example, consider the homeomor­
phism 

(35) yx = xh y2 = x2, yz = f(%z), 

where f{t) is continuously differentiate in 0 < / < oo with 

l im/(0 = 0, ~ûf{t)^K. 
<-*o+ K 

4 J. Vâisâlâ has used extremal lengths to define and study a class of quasicon­
formal mappings in [26; 27]. A mapping is -KT-quasiconformal by Vâisâlâ's definition 
if and only if it is i^2-quasiconformal by Definition 1. B. V. Sabat has also used ex­
tremal lengths to derive a number of interesting properties of quasiconformal map­
pings in [23; 24]. 
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Then y(x) is a classical I£-quasiconformal mapping of the half space 
xz>0 onto the half space y$>0, and we can reflect in the boundary 
planes to obtain a homeomorphism of the #-space onto the ^-space. 
But the extended mapping will not, in general, be continuously differ-
entiable in the boundary planes. Hence we conclude that the reflec­
tion principle does not hold for mappings which are X-quasiconformal 
in the classical sense. 

I t is also easy to show, by means of an example, that a homeomor­
phism, which is the uniform limit of classical i£-quasiconformal map­
pings, need not itself be continuously differentiable. Thus the usual 
compactness result does not hold for this class of mappings. 

The above reflection and compactness principles fail for classical 
i£-quasiconformal mappings simply because of the a priori differ­
entiability hypothesis in the definition. The example in (35) further 
shows that there is still difficulty, even if we allow the existence of an 
exceptional set of isolated points where the mapping may fail to be 
differentiable. On the other hand, there are no differentiability hy­
potheses in Definition 1, and we shall see that the reflection principle 
and the usual compactness theorems are valid for our slightly broader 
class of mappings. 

Finally we should observe that the above remarks apply equally 
well to the classical plane quasiconformal mappings w(z) defined in 
§1. For this reason, many authors have begun to study a slightly 
more general class of plane quasiconformal mappings, namely those 
plane homeomorphisms which do not change the moduli of quad­
rilaterals by more than some fixed factor. (See, for example, [ l ; 3; 
17; 20].) This class can also be defined in terms of rings as follows 

In]. 
DEFINITION 2. A homeomorphism w(z) of a plane domain D is said 

to be a K-quasiconformal mapping, 1 ^K < 00, if the inequality 

(36) mod R' g K mod R 

holds for each bounded plane ring R with RCZ.D, where R' denotes the 
image of R under w(z). 

Now this means that any homeomorphism w(z) which satisfies the 
inequality (36) must also satisfy the double inequality 

1 
— mod R ^ mod Rf S K mod R. 
K 

Hence we see tha t the class of X-quasiconformal mappings considered 
in Definition 1 is the space analogue for the very widely studied class 
of plane mappings of Definition 2. 
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10. The 1-quasiconformal mappings. Since the modulus condition 
(34) is symmetric, we see that the inverse of a i£-quasiconformal 
mapping is also i£-quasiconformal. I t is furthermore clear that the 
composition of two mappings which are Ki- and i£2-quasiconformal 
is a i£ii?2-quasiconformal mapping. In particular the composition of 
a üC-quasiconformal mapping with a 1-quasiconformal mapping is 
again J£-quasiconformal. 

I t is therefore important to identify the 1-quasiconformal mappings 
in space. Suppose that y(x) is a homeomorphism which is the restric­
tion of a Moebius transformation to a domain D. Then y(x) is real 
analytic with J(x) > 0 and H(x) = 1 everywhere in D, 

(37) mod R' = mod R 

for each space ring R with JRC-D, and hence y(x) is a 1-quasicon­
formal mapping. Conversely, suppose that y(x) is a homeomorphism 
of a domain D which satisfies (37) for all bounded rings R with 
RQD. Then it follows that y(x) must preserve the class of extremal 
functions for rings. Next by appealing to the analyticity result in §6 
and the distortion theorem in §13, we can show that y(x) is real ana­
lytic with J(x)>0 and H(x) = 1 everywhere in D, and we conclude 
from the classical theorem of Liouville that y{x) is the restriction of 
a Moebius transformation to D. We thus obtain the following result 
[10]. 

THEOREM 1. A homeomorphism y(x) of a domain D is l-guasicon-
formal if and only if it is the restriction of a Moebius transformation to D. 

I t is also of interest to observe that we can use Theorem 1 to 
establish a very general form of the above mentioned theorem of 
Liouville [10]. (See also [22].) 

THEOREM 2. If y(x) is a homeomorphism of a domain D, ifH{x) < oo 
everywhere in D, and if H(x) = 1 a.e. in D, then y(x) is the restriction 
of a Moebius transformation to D. 

Theorem 2 is the space analogue of a well-known theorem due to 
Menchoff [15]. 

11. Analytic properties of Z-quasiconformal mappings. Suppose 
that y(x) is a X-quasiconformal mapping of D. In the special case 
where i £ = l , we see from above that y(x) is real analytic and that 
J(x) > 0 and H(x) = 1 everywhere in D. We consider next what can 
be said in the general case where K>\. 

First the fact that y{x) satisfies the one-sided modulus inequality 

(38) mod R' SK mod R 
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implies that 

(39) JSr(a?) < e«K 

everywhere in D; the proof makes use of the extremal property of 
the ring RT described in §8. Next we can show that inequality (39) 
implies that y{x) is ACL in D and that y(x) is differentiate a.e. in 
D. I t is then easy to prove from (38) that 

(40) I(x)* g KU(x) 

at each point where y(x) has a differential, and hence (40) holds a.e. 
in D. The above analytic properties, and what they imply, are all we 
can expect to establish for a homeomorphism y(x) satisfying the 
inequality (38). For we can adapt the argument of §4 to reverse the 
above steps and obtain the following result [ l0] . 

THEOREM 3. A homeomorphism y(x) of D satisfies the inequality 
(38) for all bounded rings R with RCD if and only if y(x) is ACL in D 
and satisfies the inequality (40) a.e. in D. 

In particular, if we apply Theorem 3 to the inverse mapping x(y) 
and let I*(y) and J*(y) denote the distortion functions for x(y) cor­
responding to I(x) and J(x), we obtain an analytic characterization 
for quasiconformal mappings [ l0] . (See also [26].) 

THEOREM 4. A homeomorphism y{x) of D onto D' is K-quasicon-
for mal if and only if y(x) and x(y) are ACL with 

(41) ƒ(*)• ^ K2J(x) and I*(y)* ^ K2J*(y) 

a.e. in D and D'', respectively. 

An unfortunate feature of this characterization is that it involves 
both the mapping and its inverse. This is partly due to the fact that 
we have employed the two-sided modulus inequality (34) in Defini­
tion 1. We observed in §9 that it was sufficient to use the one-sided 
modulus inequality (36) in Definition 2 for plane mappings. That is, 
a plane mapping which satisfies a one-sided inequality automatically 
satisfies the two-sided inequality. The following theorem shows that 
this is almost true in space. (See [10; 26].) 

THEOREM 5. If y(x) is a homeomorphism of D which satisfies (38) 
for all bounded rings R with 7ÎC.D, then y(x) is a K2-quasiconformal 
mapping. The bound K2 is best possible. 

Hence in space, a mapping which satisfies a one-sided inequality 
with K satisfies the two-sided inequality with K2. The mapping 
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yi = xi, y<2. = K2x2, yz = K2xz 

shows that the bound K2 cannot be improved. 
Finally we have the following result which shows that a homeomor-

phism which is quasiconformal is a measurable mapping. (See [10; 
26].) 

THEOREM 6. If y(x) is a quasiconformal mapping of D, then J(x)>0 
a.e. in D and y(x) maps each measurable set E C.D onto a measurable 
set E' with 

(42) m{E') = f Jda. 

12. Boundary correspondence. If D and D' are plane Jordan do­
mains and if w(z) is a conformai mapping of D onto D'', then a well-
known theorem of Carathéodory asserts that w(z) can be extended 
to be a homeomorphism of Z5 onto 25'. The conclusion remains valid 
when w(z) is a plane quasiconformal mapping. To show this one first 
establishes the result for the case where D and D' are open disks. The 
general case can then be reduced to this case by means of the Rie-
mann mapping theorem and the above mentioned theorem of Cara­
théodory. 

The situation in space is much more complicated, due to the fact 
that there is no analogue of the Riemann mapping theorem. Never­
theless one can prove the following result [27], (For the special case 
where D' is a sphere, see [6; 10].) 

THEOREM 7. If y(x) is a quasiconformal mapping of the unit sphere 
D onto a bounded domain D' and if D' is locally connected at each point 
of its boundary, then y(x) can be extended to be a homeomorphism of D 
onto D'. 

In particular if y(x) is a X-quasiconformal mapping of x 3 >0 onto 
yz>0, one can apply this result to show that y(x) can be extended 
to be a homeomorphism of #3^0 onto 3>3^0. Reflection in the bound­
ary planes x3 = 0 and yz — 0 then yields a homeomorphism of the x-
space onto the y-space, and we can show that the mapping so obtained 
is still X-quasiconformal. If we then compare the distortion function 
H(x) for y(x) with the corresponding function for the boundary 
mapping, we obtain the following result [ l0] . 

THEOREM 8. If y(x) is a quasiconformal mapping of #3>0 onto 
yz>0, then y(x) can be extended to be a homeomorphism of xz^O onto 
yz ̂ 0 , and the induced boundary correspondence is itself a plane quasi­
conformal mapping of xz — 0 onto yz = 0. 
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We note that this boundary correspondence is absolutely continu­
ous or measurable as a plane mapping, that is it maps plane measura­
ble sets onto plane measurable sets. (See [3; 11; 18].) An example 
due to Beurling and Ahlfors [5] shows that this need not be true of 
the boundary correspondence induced by a quasiconformal mapping 
of a half plane onto a half plane. 

13. General distortion theorem. If w(z) is a plane üC-quasicon-
formal mapping, then w(z) satisfies a Holder condition of order 1/K 
at each point. The space analogue of this result, as well as a number 
of other important results, can be obtained from the following distor­
tion theorem [lO], 

THEOREM 9. For each K, 1 ^K < 00, there exists a distortion function 
©#(/) with the following properties. ©#(/) is increasing and continuous 
for 0<t<l and 

®K(t) 
(43) lim — = A2"1 '*, lim ©*(/) = 00, 

where X is the constant defined in (28). Next, if y(x) is a K-quasicon-
formal mapping of D onto D' and if D has a finite boundary point, then 
D' has a finite boundary point and 

.... IyiP) -y(Q) 1 < n /\P-Q\\ 

(44) g e « ( — — j 

for each pair of points P and Q in D with \P — Q\ <d, where d and d' 
denote the distances from P to dD and y(P) to dD'y respectively. 

The proof for this result is very similar to the argument given in 
§5. I t uses only the extremal properties of the rings RG and RT, 
described in §8, and the fact that y(x) satisfies the modulus inequality 

1 
— mod R < mod R' 
K 

for each bounded ring R with ~RC.D. 
With (43) and (44) it is easy to show that if y(x) is a i£-quasicon-

formal mapping of D, then for each compact set EC.D there exists a 
finite constant A such that 

(45) \y(P)-y(Q)\ ^A\P-Q\UZ 

for all P and Q in E. (See [6; 10; 21].) 
In particular if y(x) maps |* | < 1 2£-quasiconformally onto 

so that y(0) = 0, we can show that (45) holds for all P and Q in 
< 1 
< 1 
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with A an absolute constant, A <620. (See [10; 24].) This is the space 
form of a theorem for plane quasiconformal mappings due to Ahlfors 
[ l ] and Mori [ ló] . 

14. Compactness theorems. As we noted in §9, one of the ad­
vantages of our definition for quasiconformality over the classical 
one is that the quasiconformal mappings of Definition 1 have the fol­
lowing compactness property [ l0] . 

THEOREM 10. If a sequence of K-quasiconformal mappings {yn(x}} 
converges uniformly on each compact set in D to a homeomorphism y(x), 
then y(x) is a K-quasiconformal mapping. 

If we combine this result with Theorem 9, we can establish the fol­
lowing theorem on normal families [ l0] . 

THEOREM 11. If P and P' are fixed points in D and Dr and if D has 
a finite boundary point, then the K-quasiconformal mappings of D onto 
D', which map P onto P ' , form a closed normal family. 

Now let y(x) be an arbitrary homeomorphism of the space, let 
SyT(x) denote the composition of y(x) with any pair of similarity 
mappings S(y) and T(x), and let P and Q denote a pair of distinct 
fixed points. We say that a family of homeomorphisms of the space 
satisfies the condition (A) if each sequence of homeomorphisms, which 
map P and Q onto themselves, contains a subsequence which con­
verges uniformly on compact sets to a homeomorphism. 

We then have the following compactness criterion for quasi­
conformality [ l0] , (See also [5].) 

THEOREM 12. The homeomorphism y(x) is a quasiconformal mapping 
if and only if the family of all mappings SyT(x) satisfies the condition 
(A). 

Theorem 11 implies that the i£-quasiconformal mappings of the 
space, which map P and Q onto themselves, form a closed normal 
family. Hence if y(x) is quasiconformal, the family of mappings 
SyT(x) obviously satisfies the condition (A). The converse result 
follows from the fact that a homeomorphism y(x) is quasiconformal 
if and only if H(x) is bounded. 

We remark, in conclusion, that one also can use Theorems 9 and 
10 to establish space analogues of the theorems of Carathéodory on 
the conformai mappings of variable domains. 

15. Coefficient of quasiconformality. One of the most important 
results in complex analysis is the Riemann mapping theorem. I t 
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asserts that every simply-connected plane domain D, which has at 
least one finite boundary point, can be mapped conformally onto the 
unit disk. Hence in the case of the plane, there are many different 
domains D which are 1-quasiconformally equivalent to the unit disk. 

Theorem 1 shows us that the situation is quite changed in space. 
That is, a space domain D can be mapped 1-quasiconformally onto 
the unit sphere if and only if D is a sphere or a half space. I t is there­
fore natural to ask if there exist other space domains D which can be 
mapped if-quasiconformally onto the unit sphere with K arbitrarily 
close to 1. 

We can reformulate this question as follows. For each domain D 
let K(D) denote the infimum of the numbers K for which there exists 
a i£-quasiconformal mapping y(x) of D onto \y\ < 1 ; if no such 
mapping exists, set K(D) = oo. We call K(D) the coefficient of quasi-
conformality for D. The above question asks us to identify the do­
mains for which K{D) = 1. 

Theorems 10 and 11 imply the following result on the existence of 
extremal quasiconformal mappings for domains with a finite coeffi­
cient of quasiconformality [ l0] . 

THEOREM 13. If K(D) < oo, there exists a K(D)-quasiconformal map' 
ping y(x) of D onto \y\ < 1 . 

We conclude from Theorems 1 and 13 that K(JD) — 1 if and only if 
D is a sphere or half space. In other words, K(D) > 1 for essentially 
all domains D in space, and one is now led to ask how K(D) depends 
upon the geometrical properties of D. 

We observe first tha t Theorem 7 can be inverted to yield the fol­
lowing interesting result [27]. 

THEOREM 14. If D is a bounded domain which is locally connected 
at each point of 3D and if dD is not homeomorphic to \y\ = 1 , then 

For if K(D)<coJ there would exist a quasiconformal mapping 
y(x) of D onto \y\ < 1, Theorem 7 would imply that y(x) could be ex­
tended to be a homeomorphism of S onto |y | :gl , and hence dD 
would be homeomorphic to \y\ = 1 . 

There are, of course, many domains D with K(D) < oo. Suppose, 
for example, that D is a domain which is bounded and starshaped 
with respect to the origin, and that 

\p\ 
(46) l o g î — r ^ a 

\Q\ 

P 0 

P 
0 g a < oo 



162 F. W. GEHRING [March 

for each pair of points P and Q in dD. Then D can be mapped quasi-
conformally onto \y\ < 1 by means of central projection, and it is 
easy to show that 

(47) K(D) ^ (1 + ayiK 

The inequality (46) will hold for some a if D is bounded by a finite 
number of compact smooth surfaces, none of which has a tangent 
plane passing through the origin. Hence cylinders, hemispheres, ellip­
soids and convex polyhedra all have finite coefficients of quasicon-
formality. 

In this same direction, the space form of the Carathéodory theorem 
on variable domains, mentioned in §14, allows us to prove the follow­
ing theorem. 

THEOREM IS. If D is the union of an expanding sequence of domains 
{Dn} and if D has a finite boundary point, then 

(48) K(D) £ liminf K(Dn)* 

We consider an example. Let D be the domain bounded by the 
parallel planes |#3 | = 1 , that is 

(49) D = {x: {x\ + xlj12 < oo, | xz\ < l } . 

Then D is 1-quasiconformally equivalent to a domain bounded by 
two spheres, one of which is internally tangent to the other, and 
hence K(D) = oo by Theorem 14 [27]. Next we see that D is the union 
of the expanding family of right cylinder domains 

(50) Dt = {x: (x\ + xl)1/2 < t, | xz\ < l } , 0 < / < oo, 

and hence we conclude from Theorem 15 that 

(51) lim K(Dt) = oo. 

In contrast to the situation for the domain in (49), one can use the 
logarithm mapping to show that K(D) ^ir/2 for the infinite rod 

D = {x: (xi + x2) < 1, | xz | < oo }. 

(See also [27] for another interesting mapping.) 
One of the most important problems in the study of quasicon-
5 Theorem 15 and the inequalities (47) and (54) are unpublished results which will 

appear shortly in a joint paper by J. Vâisalâ and the present author. 



1963] QUASICONFORMAL MAPPINGS IN SPACE 163 

formal mappings in space is that of characterizing the domains D for 
which K(D)< 00. This is obviously a very difficult question which 
probably has no simple answer. One may, however, approach this 
problem by trying to obtain bounds for K(D) for various classes of 
domains D. A useful upper bound for certain elementary domains 
may lead to an upper bound for more complicated domains by means 
of Theorem 15. Similarly, a lower bound for certain classes of domains 
will indicate for what kinds of domains D we must expect that 
#(£>)= oo. 

We conclude this paper by giving a lower bound for K(D) for a 
class of domains D suggested by the above example. For each t>\ 
we set 

(52) f(t) « inf K(D), 
D 

where the infimum is taken over all domains D which satisfy the 
following conditions : 

(i) D contains a disk A of radius t, 
(ii) dD contains a pair of points which lie within distance 1 of the 

center of A and which are separated by the plane containing A. 
Then one can show that the function ƒ(t) /log t is nonincreasing in t 

and that 

ƒ(*) 
(53) lim = ju where ,12 ^ /x g e. 

«-•oo l o g / 

We thus conclude that 

(54) K(D) ^ M log / 

for each domain D satisfying (i) and (ii), and that the form of this 
lower bound is, in a sense, best possible. In particular we see that the 
domains Dt in (50) satisfy (i) and (ii), and hence (51) follows directly 
from (54). 
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