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Let {Xn} be a real valued strictly stationary stochastic process on 
the probability space (12, 2 , P) and let {%n} be an independent se­
quence of random variables uniformly distributed on [0, l ] where 
n — O, ± 1 , • • • . When does there exist a function ƒ on the sequence 
{£n} such that the sequences {Xn} and {f(Tn£)} have the same 
probability structure where £ = ( • • • , £-i, £o, £i, • • • ) and T% 
= ( * * • > £o, £i, £2, • • • ) (i.e. such that the joint distribution of 
Xiv • • • , Xik is the same as the joint distribution of f(TilÇ), • • • , 
f(T^) for all k and all sequences i\y • • - , 4)? 

Let S n be the smallest <r-field of subsets of £2 with respect to which 
Xk is measurable for all k^n and let S-» = fl2n. S . ^ is called the tail 
field of the process {Xn} and is said to be trivial if ^4£2_oo implies 
P(A) = 0 or 1. I t has been shown (see [ l ] and [2]) that if {Xn} is a 
stationary Markov chain with a denumerable state space and whose 
tail field is trivial then a representation of the above type holds and 
i n f a c t / ( r » £ ) = / ( . • •,£„_!,£„)•2 

By use of a fairly simple transformation an arbitrary stationary 
process \Xn} with trivial tail field can be converted to a stationary 
Markov process { Yn} with trivial tail field and from which the {Xn} 
process can be recovered. Thus the seeming preoccupation with 
Markov processes. 

The following theorem generalizes Rosenblatt's results to a class of 
Markov process with nondenumerable state space. P is the stationary 
measure induced by the process on the state space and Px(A') is 
the stationary conditional probability that Xn(EzA' given Xn—i — X. 

THEOREM. Let { X n } , w = 0, ± 1 , • • • be a real stationary Markov 
process such that 

(i) S-» is trivial. 
(ii) There exist Borel subsets A and B of the state space and a non-

negative measure cj> on the state space such that P(J5)>0, <£(.4)>0, and 
for all XGB and A'QA we have Px(A') ^{A'). 

1 This work was performed under the auspices of the United States Atomic Energy 
Commission. 

2 A stationary Markov chain with denumerable state space has a trivial tail field 
if and only if it is ergodic and aperiodic. 
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Then if {£n} is an independent sequence of random variables uni­
formly distributed [0, l ] there exists a function £ = # ( • • • , £-1, £0) 
such that the sequences {Xn} and {g( • • • , £„_i, £w)} have the same 
probability structure. 

COROLLARY 1. In the above theorem it is sufficient to replace condition 
(ii) with 

(iia) The state space of {Xn\ has an atom under the stationary proba­
bility P . 

COROLLARY 2. If {Xn\ is a stationary ergodic aperiodic Markov 
chain with a denumerable state space then conditions (i) and (ii) hold 
and the above theorem is true. 

Detailed proofs will appear elsewhere. 
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