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The Schoenflies Theorem in n dimensions has been proved by both 
Marston Morse [4] and Morton Brown [ l ] subject to the shell 
hypothesis [4], Morse's proof leads to C^-diffeomorphisms. We now 
prove the following Schoenflies Theorem for polyhedra without the 
shell hypothesis. 

THEOREM l.2 Let Pn~~l be a combinatorial (n — \)-sphere in a euclidean 
n-space En, and let N be an arbitrary neighborhood ofPn^1. Then En can 
be mapped onto itself by a homeomorphism h which is a C^-diffeomor-
phism on En — N and which maps Pn~x onto a euclidean (n — 1) -sphere 

The proof commences with a modification of a procedure due to 
H. Noguchi [5] yielding an e-isotopy of En carrying P n _ 1 , on Dn, 
into a polyhedron Qn~l, admitting a transverse vector field. A neigh­
borhood of Qn~l is fibred by C00—(n—1)-spheres, which permits a 
completion of the proof with the aid of Morse's methods [4]. His 
exceptional interior point can be relegated to N. The proof is induc­
tive, requiring a partial assumption of Theorem 1 in the next lower 
dimension. 

COROLLARY. Given a 8 > 0 , En admits a ô-isotopy ht ( O ^ r g l ) such 
that (1) ht is the identity on the unbounded component of En — N, 
(2) ht(P

n~l) CDn (t>0) and (3) ht(Pn~l) is a C*-{n-\)-sphere (t>8). 

We will call a combinatorial w-manifold smoothable or nonsmoothable 
according as it is or is not compatible with a differentiable structure. 
The known nonsmoothable manifolds include a KB due to Milnor 
[3] and a K10 due to Kervaire [2]. The latter is strongly nonsmooth­
able , in the sense that the topological manifold it covers, M10= \ K10\, 
can not carry a differentiable structure, either compatible or incom­
patible with X10. 

A piecewise differentiable imbedding of a Km in a differentiable 
n-manifold Mn means a homeomorphism h:Km—*Mn, where h is 
differentiable of maximal rank on each closed simplex of Km. 

1 This work was supported by National Science Foundation Grant No. G14431. 
2 A sharpening of this theorem appears in Proc. Nat. Acad. Sci. U.S.A. vol. 47, 

(1961) pp. 328-330. 
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THEOREM 2. A combinatorial n-manifold Kn without boundary is 
smoothable if and only if Kn admits a piecewise differentiable imbedding 
h into a differentiable Mn+1. 

The necessity of the condition is easy to prove. The sufficiency 
proof commences with an h: Kn—*Mn+1 restricted, as in the proof of 
Theorem 1, so that h(Kn) admits a transverse vector field on Mn+1. 
Let Mn+1 be represented as a differentiable submanifold of an £ n + r . 
With the aid of a potential function, equipotential (n+r — l)-mani-
folds surrounding h(Kn) in £ n + r can be defined [6]. If h(Kn) is two-
sided in Mn+1, the intersection Vn+r-lC\Mn+l with Mn+l of an equi­
potential sufficiently near h(Kn) falls into two components, F? and 
FJ, each of which is differentiable and homeomorphic to Kn. If 
h(Kn) is one-sided in Mn+1, points can be so identified in pairs on 
Vn+r~ir\Mn+l as to obtain a differentiable homeomorph of h(Kn). 

COROLLARY. The K* of Milnor and K10 of Kervaire do not admit 
piecewise differentiable imbeddings in differentiable 9-manifolds and 
11-manifolds respectively. 

THEOREM 3. If there exists a nonsmoothable Km without boundary, 
then there is a nonsmoothable Kn without boundary f or each n>m. 

In particular, KmXS1 where S1 is a circle, is nonsmoothable, for 
its smoothability would imply that of Km, by Theorem 2. Thus, all 
the manifolds K*XSlX • • • XS 1 and K"XSlX • • • XS1 are non­
smoothable, for Milnor's K* and Kervaire's K10. 

The invariants used by Milnor and Kervaire are thus freed from 
the dimensions for which they were defined. They are imbeddability 
as well as smoothability criteria. 
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