
PROPERTIES PRESERVED UNDER ALGEBRAIC 
CONSTRUCTIONS 

R. C. LYNDON 

The study of properties of algebras belongs equally to Algebra and 
to Metamathematics. But here we consider only questions that con­
cern all abstract algebras, and we attempt to discuss them without 
invoking any unfamiliar metamathematical machinery. In conse­
quence, we can not do justice to the many interesting matters that 
concern important special classes of algebraic systems, nor to the 
broad metamathematical context in which the problems mentioned 
here belong. 

Our topic was approached in considerable algebraic generality by 
Philip Hall and his associates; a pioneering result of Garrett Birkhoff, 
1935,1 is mentioned below. A parallel treatment, from a viewpoint 
presupposing rather novel metamathematical considerations, has 
been given by P. Jordan, 1949. On the metamathematical side, our 
topic can be regarded as a chapter in the "theory of elementary (or 
arithmetical) classes" expounded by Alfred Tarski in 1950, 1954, 
and, in independent form, by Leon Henkin, 1953, and Abraham 
Robinson, 1950; most of the recent work discussed below has been 
directly influenced by these ideas. 

A N EXAMPLE. It is a familiar fact that every homomorphic image 
of a commutative ring is commutative, while a homomorphic image 
of a domain need not itself be a domain. The proof, that commutativ-
ity is preserved under homomorphism and that the property of being 
a domain is not, is trivial. This triviality resides, at least in part, in 
the fact that the proof makes no significant reference to the algebraic 
meanings of the properties in question, but depends rather only on 
the form of the axioms expressing these properties. If F(x, y) is any 
polynomial, the same reasoning shows that every homomorphic image 
of a ring satisfying the condition 

for all x and y: F(x, y) = 0 

will have the same property, while the property expressed by the 
condition 

An address delivered before the Evanston Meeting of the Society on November 28, 
1958 by invitation of the Committee to Select Hour Speakers for Western Section 
Meetings; received by the editors December 28, 1958. 

1 A name accompanied by a date will always indicate a reference to the bibliog­
raphy. The date is tha t of the publication cited, and not necessarily the year in which 
the result quoted was first established. 
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for all x and y: F{x, y) — 0=>x = 0 or y = 0 

is not, in general, preserved under homomorphism. The relevant dis­
tinction is easily seen to lie in the fact that, unlike the cornmutativity 
axiom, the domain axiom contains a concealed negation: 

for all x and y: xy 9e 0 or x = 0 or y = 0. 

Unlike an equation, the negation of an equation need not be pre­
served under the passage from an algebraic system to a homomorphic 
image of the system. 

This suggests the conjecture that 
Hi : every positive sentence is preserved under homomorphism. 
Here we consider only "elementary" sentences that can be built up 

from equations by means of conjunction {and), disjunction {or), nega­
tion {not), universal quantification {for all x), and existential quanti­
fication {there exists x) ; such a sentence is positive if it does not con­
tain negation. The proof of Hi is trivial. 

A plausible converse is 
H2: every sentence that is preserved under homomorphism is equivalent 

to some positive sentence. 
Conjecture H2 is also true, but its proof is not trivial. That H2 

should be more difficult than Hi is suggested by the fact that, unlike 
Hi, it asserts the existence of something: of a positive sentence 
equivalent to the given sentence. This suggestion is supported by the 
fact that 

H * : there is no general method for deciding whether a given sentence 
is equivalent to some positive sentence. 

The result H2 can be strengthened to an "interpolation theorem": 
H2 : Suppose that S and T are sentences such that, whenever S holds 

in an algebraic system A, then T holds in every homomorphic image A ' 
of A. Then there exists a positive sentence M such that S implies M, 
and M implies T. 

In turn, H2
/ has a converse: 

H3: Let S be a sentence, and Af an algebraic system in which every 
positive consequence M of S holds. Then A' is { • • • ) a homomorphic 
image of some system A in which S holds. 

As it stands, H3 is not quite true, but it becomes true after a minor 
technical amendment. Precisely, for "( • • • )" read "an elementary 
subsystem of" ; this concept was introduced by Tarski and R. Vaught, 
1957. 

The truth of Hi was remarked by Lyndon, 1951, and independ­
ently by E. Marczewski, 1951, who conjectured the converse H2. 
The truth of H2 was asserted by J. Los in 1955b, and by A. I. Malcev 
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in 1956. Proofs of H2 ' , H3 and H* were obtained by Lyndon in 
1957a, b and will appear in 1959a, b. Proofs of H2 and H3 by more 
sophisticated and powerful methods have been obtained by H. J. 
Keisler, 1958. In an Appendix to this note a sketch of my proof is 
given. 

The general problem. Theorem H, that is, Hi together with its 
converse H2, exemplifies the following type of theorem: 

T : a sentence is preserved under certain algebraic constructions if and 
only if it is equivalent to some sentence exhibiting certain formal char-
acteristics. 

The formulation of Theorems T requires some clarification. 
As algebraic constructions we have in mind the passage from an 

algebraic system to a homomorphic image, the passage from a set of 
systems to their direct product, and so forth, as illustrated in what 
follows. As formal characteristics of sentences, we have in mind those 
properties that can be read off by inspection, such as that of not con­
taining the symbol for negation. In each particular theorem of type 
T, the constructions and formal characteristics under consideration 
must, of course, be unambiguously defined. But the general question 
of what sorts of things merit consideration as algebraic constructions 
or as formal characteristics is perhaps best left as a matter of taste, 
under which we subsume the criterion of what can be proved about 
them. I t is conceivable, and to an extent true, that a familiar con­
struction may correspond to a characterization that appears reason­
able only in retrospect, and conversely. 

By an algebra, or algebraic system, we shall always mean what, 
apart from minor technicalities, can be described as a nonempty set 
A of "elements," together with a sequence of "operations" ƒ»• of 
specified ranks ?^=0, 1, 2, • • • , that is, of functions from the car­
tesian product Ani into A. Our introductory example, dealing with 
rings, could be interpreted as dealing with systems with two binary 
operations, written as addition and multiplication, and a constant 
(operation of rank 0) written as 0. I t was also more or less assumed 
that we were considering only such systems that were in fact rings, 
that is, which satisfied the ring axioms. In the example, this assump­
tion does not affect the statement of the theorem. For simplicity, we 
shall here admit as an algebra any nonempty set equipped with an 
appropriate sequence of operations, without imposing any special 
postulates on these operations. Relativization of results to systems 
subject to certain special axioms ordinarily presents no difficulty, but 
may alter radically the content of the theorem, as is illustrated by an 
amusing observation of Abraham Robinson: every sentence in the 
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theory of fields that holds for the one-element "field" is preserved 
under homomorphism ; a moment's reflection shows that this jibes 
with Theorem H, using the appropriate interpretation of "equiva­
lence" of sentences. 

Tarski ordinarily considers more general systems that possess rela­
tions other than equality, and possibly no operations: for example, 
ordered groups, ordered sets, geometries defined by incidence or "be-
tweenness" relations. Although the usual devices for translating be­
tween functions and relations are not always applicable in the present 
context, the proofs of the main results apply equally well to these 
more general systems, and it is only for expository simplicity that 
we adhere to our narrower definition. 

The definition of sentence given above will serve, provided, to ac­
count for pathological cases, we admit to our notation two one-
symbol sentences, the one identically false and the other true. It 
remains, by way of elucidating the content of Theorems T, to define 
the relation, of a sentence to a system, that is expressed by saying 
that the sentence holds or is true in the system, and the relation be­
tween sentences that says they are equivalent. Although a precise 
algebraic definition of when a sentence holds in a system, as given for 
example in Tarski, 1950, is somewhat involved in detail, it does not 
depart from common intuition, which for the restricted sort of 
sentences considered here is quite reliable. Two sentences may then 
be defined to be equivalent if they hold in exactly the same systems. 
It may be noted that the relation of one sentence implying another 
can be given a similarly semantic or "behavioristic" definition, and 
in this spirit we can free ourselves entirely of the theory of formal 
deduction in mathematical logic. 

I t is, of course, far from true that all algebraically interesting prop­
erties are expressible by sentences of the limited sort under consider­
ation. The discussion of properties expressible by an infinite set of 
such sentences taken "in conjunction" (for example, characteristic 
zero), or "in disjunction" (finite characteristic), is possible in the full 
development of the general theory, as in Henkin, Robinson, and 
Tarski. A more radical step has been taken by Jordan in considering 
"infinitely long sentences" (for example, the property of being a tor­
sion group) ; such sentences have been studied by C. Karp, 1958. 

But, from the point of view of classical algebra, the most serious 
limitation in our definition of sentence lies in the exclusion of vari­
ables ranging over subsets of systems, such as ideals or subgroups; 
we are powerless, with such sentences, to express the ascending chain 
conditions. The difficulties here lead into the most delicate questions 



1959] PROPERTIES PRESERVED UNDER ALGEBRAIC CONSTRUCTIONS 291 

of set theory. However, a substantial relaxation of this limitation is 
promised by recent work of Tarski, 1958, extending results to sen­
tences with variables interpreted as ranging over finite sequences of 
elements from an algebraic system. With such means one can speak 
about variable polynomials, or variable ideals in a Nötherian ring. A 
discussion of the Lefschetz principle of algebraic geometry by A. 
Seidenberg, 1958, although it does not take into account these latest 
results, is suggestive of their scope. 

There is one other recent development that I regard as an impor­
tant step away from "sentences" viewed as syntactical entities con­
sisting of a string of symbols in some more or less restricted formal 
logic, and in the direction of the semantic "properties" of algebraic 
systems that they express. Keisler has established a number of re­
sults in a context where equations have been displaced from their 
distinctive role as the atomic building blocks in constructing sen­
tences, in favor of an almost arbitrary set of formulas. This has the 
conceptual advantage of eliminating many irrelevancies resulting 
from the choice of a particular set of operations or relations in 
axiomatizing a class of algebraic systems, and the practical advantage 
of simplifying the proofs of many theorems. 

Returning to theorems of type T, we note here that for the most 
part analogs of the variants of Theorem H hold; but, for simplicity's 
sake, we refrain from discussing them. We remark also that, as with 
H, the "if" of Theorems T seems always to be easy, while the con­
verse may present considerable difficulty. 

Some results. Theorem Hi has an analog that is, if anything, even 
more intuitively obvious : 

Ei : every existential sentence is preserved under extension of a system 
to a containing system. 

Here we are considering prenex sentences, consisting of a succession 
of quantifiers followed by a propositional part that contains no quanti­
fiers; every sentence is equivalent to one of this form. A prenex sen­
tence is then called existential if all its quantifiers are existential 
quantifiers, and universal if they are all universal. This theorem and 
its converse were obtained by Henkin, 1956, and "relativized" by 
Robinson, 1956. They may be regarded as the dual, and a conse­
quence, of a result of Tarski, 1954, and Loé, 1955a: 

U : a sentence is preserved under passage from systems to subsystems 
if and only if it is equivalent to some universal sentence. 

It may be noted here that Theorem H likewise has an obvious 
dual. 

Theorems U and H can be combined in a sense: 
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UH : a sentence is preserved both under passage to subsystems and 
under homomorphisms if and only if it is equivalent to some universal 
positive sentence. 

This is not quite an immediate corollary of U and H taken to­
gether, but its proof involves less than their proofs. 

The earliest theorem of the type under consideration, proved by 
G. Birkhoff in 1935, is a triple combination of this sort: 

U H D : a sentence is preserved under passage to subsystems, to homo-
morphic images, and to direct products, if and only if it is equivalent to 
a universally quantified conjunction of equations. 

A universally quantified conjunction of equations is of course equiv­
alent to a conjunction of universally quantified equations, or identi­
cal equations. Birkhoff in fact proved the stronger result (comparable 
to H2' with H3) that a set of algebraic systems is closed under the 
three constructions mentioned if and only if it consists of all systems 
that satisfy some set, possibly infinite, of identical equations. Al­
though Theorem U H D can be obtained easily from UH, Birkhoff's 
proof of the stronger result, using free algebras, is simpler and more 
purely algebraic in spirit. 

Given Theorems U, H, UH and UHD, symmetry demands also 
UD, H D and D. First a remark about direct products. A theorem of 
R. Vaught, 1954, that every sentence preserved under finite direct 
products is also preserved under infinite direct products, clearly 
makes it necessary to consider only direct products of no more than 
two factors. Obviously every property is preserved under direct prod­
ucts with a single factor. To simplify the discussion, we choose to 
admit among direct products the trivial, one-element, direct products 
of zero factors, and all that we say will be tacitly adapted to this 
minor departure from common usage. 

A class of sentences, now called Horn sentences, was discussed by 
Alfred Horn in 1951. These are prenex sentences whose propositional 
part is a conjunction of clauses of the form 

ei and e% and • • • and en ==> eo, 

n^O, where the ei are equations. Developing an idea of J. C. C. 
McKinsey, 1943, Horn established essentially the following result: 

UD : a universal sentence is preserved under direct products if and 
only if it is equivalent to some universal Horn sentence. 

This is illustrated by the fact that the domain axiom 

(1) for all x and y: xy = 0 => x = 0 or y = 0 

is not a Horn sentence, while its consequence (assuming associativity 
but not commutativity) 
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(10 for all x: x2 = 0 => x = 0, 

is a Horn sentence and is preserved under direct product. 
The proof of the obvious formulation of a Theorem H D presents 

no difficulty. Tha t of a Theorem D does, and we shall return to this 
matter. 

Horn showed that what we call Horn sentences constitute the largest 
class of prenex sentences, characterized by reference to the structure 
of their propositional part alone, that are preserved under direct 
product. All the characterizations considered thus far apply to prenex 
sentences, and consist of separate conditions on the arrangement of 
quantifiers and upon the propositional part. Another theorem of the 
same nature is that of Los and R. Suszko, 1955 and of C. C. Chang, 
1956: 

A: a sentence is preserved under unions of ascending chains if and 
only if it is equivalent to a universal-existential sentence: 

Here a universal-existential sentence consists first of universal quanti­
fiers, next of existential quantifiers, and then a propositional part. In 
the same vein Keisler, 1958, describes a somewhat more complicated 
algebraic construction corresponding to prenex sentences with a pre­
scribed number of alternations between universal and existential 
quantifiers. 

A simpler theorem of Keisler, 1958, uses a characteristic that does 
not "separate" in the manner mentioned above: 

L : a sentence is preserved under passage to direct limits if and only 
if it is equivalent to some universal-existential sentence in which each 
existentially quantified variable occurs only positively {that is, not within 
the scope of a negation). 

Another result of the same mixed nature concerns subdirect prod­
ucts. Let a formula be called positive if it can be built up from equa­
tions by means of conjunction, disjunction, and quantification alone. 
Define a special Horn sentence to be any sentence, not necessarily 
prenex, tha t is a universally quantified conjunction of clauses of the 
form P=$e where P is a positive formula and e an equation. I estab­
lished in 1957c, d, 1959c, tha t : 

S : A sentence is preserved under formation of subdirect products if 
and only if it is equivalent to some special Horn sentence. 

An example of a special Horn sentence is provided by the condition 
that an associative ring have trivial Jacobson radical: 

for all z: [for all x and y there exists u such that: xty+u — xzyu and 

xzyu = uxzy ] =$z — 0. 
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The consequence (1') of the "domain axiom" ( l ) , cited above, is a 
special Horn sentence, and, in fact, every associative ring satisfying 
(1') is isomorphic to a subdirect product of rings satisfying (1) ; this is 
comparable to H2' together with H3, and to Birkhoff's theorem. In 
this connection it is perhaps curious that I can find no sentence that 
asserts, of a semisimple ring, without assuming either commutativity 
or a finiteness condition, that it is simple. 

Every special Horn sentence is clearly equivalent to a Horn sen­
tence. The following is a familiar example of a Horn sentence that is 
not equivalent to any special Horn sentence : 

there exists x such that, for all y: xy — y. 

Problems, Tha t all is not easy is shown by the lack of a Theorem 
D, characterizing those sentences that are preserved under formation 
of direct products.2 Since it may be, as Chang and Morel, 1958, sug­
gest, that no reasonable such characterization exists, it is perhaps 
better to speak of Problem D, of the existence of such a characteriza­
tion. This is still slightly vague, but takes a precise form in various 
special contexts. 

Theorems UD and H D indicate that every universal or positive 
sentence preserved under direct product is equivalent to a Horn 
sentence. I have established (1958b) the same for existential sentences. 
Further related results are given by K. Bing, 1955. It seems probable 
that every universal-existential sentence preserved under direct prod­
ucts is equivalent to a Horn sentence ; but an example by Chang and 
Anne Morel, of which we shall speak later, shows that the analogous 
statement for existential-universal sentences fails. 

One further positive result concerns what would seem to be the 
most trivial class of algebras, in which there are no operations. Sen­
tences about such algebras must be built solely from equations be­
tween variables, and can not do more than express certain conditions 
on the order, or cardinality, N, of a system. The property of not 
having order p, where p is a prime, is clearly preserved under direct 
products, and Chang devised the following Horn sentence, which 
expresses that N^S: 

for all Xi, #2, #3 there exists y such that: 

y = Xi =» X2 = Xz, and y ~ X2 => Xz = #i, 

and y = Xz ==» X\ = %%. 

2 Added in proof. The important work of A. Oberschelp, 1958, on this question has 
just come to our attention. 
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K. I. Appel, 1958, by an ingenious combinatorial argument, has 
shown that all sentences in this theory that are preserved under 
direct product are equivalent to Horn sentences; the best sentence 
expressing that i W 5 obtainable by uniform methods contains 550 

variables. 
The counterexample of Chang and Morel, 1956, 1958, is a sentence 

expressing that a system is a Boolean algebra which (unless it is 
trivial) contains an atom. It is easy to see that this property is pre­
served under direct products. To show that the property is not ex­
pressible by any Horn sentence, they used a construction, as did Los 
in a different connection, that falls within what are now called re­
duced products. Following T. E. Frayne, Dana Scott, and Tarski, 
1958 (see also S. Kochen, 1958), except in notation, let A1 denote the 
ordinary direct product of algebras A\ where i runs over an index 
set / . If / is an ideal in the Boolean algebra of all subsets of the set J, 
let the reduced product A1/J be the result of identifying in A1 any 
two elements whose components differ only on a set of indices that 
belongs to / . 

Chang and Morel showed, essentially, that 
Ri : every Horn sentence is preserved under reduced products. 
That the property of possessing an atom is not expressible by a 

Horn sentence, they now show by taking i" infinite, each A1 a two 
element algebra, and J the set of all finite subsets of J. 

Chang has raised the question of whether the converse R2 of Ri 
holds. I have, departing slightly from the present definition of alge­
bra, considered the seemingly rather trivial class of sentences that 
do not contain equality nor any operations, and only symbols for 
relations (or predicates) ;%•(#) of a single argument. I have shown 
(1958b) that if such a sentence is preserved under direct products, 
then it is preserved under reduced products. Thus a counterexample 
analogous to tha t of Chang and Morel is ruled out. But, in the absence 
of a proof of R2, it is not known whether such a sentence is equivalent 
to a Horn sentence. 

We conclude with a result of Los, 1955b, which has been reworked 
and improved by Frayne, Scott and Tarski, 1958 (also Morel, Scott, 
Tarski, 1958) : 

P : all sentences are preserved under formation of reduced products in 
which the ideal J is a prime ideal. 

Appendix, We give here, as an illustration of methods in this 
theory, an informal sketch of the ideas in our proof (1957a, b, 1959a, b) 
of Theorem H2 ' , which tend to be obscured in a thoroughly rigorous 
exposition. 
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It is convenient to regard the relation of "equality" between ele­
ments of an algebra simply as a relation that satisfies the usual axioms 
C( = ), expressing reflexivity, symmetry, transitivity, and substitutiv-
ity, rather than as "identity" in any absolute sense. (This viewpoint 
is analyzed in G. Zubieta, 1957.) By a familiar device, any homo­
morphic image of an algebra Ai, with equality =1, may be regarded 
as an algebra A2 with the same elements and operations as Ai, but 
with a new equality = 2, which satisfies the condition 

/ ( = 1, = 2): for all x and y: x =iy=$x = 2 3>. 

Conversely, from a set A with operations, and with relations =1 and 
= 2 that satisfy C( = i), C( = 2) and 7( = i, =2), we can recover A\ and 
A2 such that A2 is a homomorphic image of A\. 

In view of this, the hypothesis of Theorem H2', that when S holds 
in any system A\, then T holds in every homomorphic image A2, can be 
rephrased as follows: 

(i) 5(=1),c(=1),c(=2))/(=1, =2)^r(=2). 
The "implication" =» in (1) may be taken in a purely formal sense, 
all the relevant, and usually tacit, reservations regarding admissible 
interpretations of =1 and =2 having been incorporated explicitly 
into the hypotheses C( = i), C( = 2), and 7( = i, =2). It will be useful to 
rewrite (1) in the equivalent form 

(2) S (= i ) and C(= x) and / (=x , =2) =* [C( = 2) =* r ( = 2)] . 

We digress momentarily to illustrate an "interpolation theorem" 
of W. Craig, 1958a, b, in the domain of mathematical logic. Let n, r2 

and 5 be relations, and Ufa, s) a sentence that contains n and 5 but 
not ^2, while F(r2, s) is a sentence containing r2 and s but not n. 
Suppose that U(ri, s) implies F(r2, 5). Then Craig's theorem implies 
the existence of a sentence M(s), containing 5 but neither n nor r2, 
such tha t 

u(n,s)=*M(s)=>v(rhs). 
Evidently, in some sense, in passing from "U implies V" to UM im­
plies F," we have obtained M from U by eliminating hypotheses that 
are irrelevant to the proof of V. To refine Craig's theorem, we may 
suppose all sentences written in such a way that the negation symbol 
never occurs except immediately preceding one of n , 2̂ or s. Replace 
U, as above, now by U(ju r£, s), where U may now contain r2, but 
only positively, that is, not preceded by the negation symbol. Let 
V(r2, s) be as before. Then, if U implies V, there exists M(rt, s) that 
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now may contain r2
+, but only positively, such that 

u(n, rt, s) =* M(rt, s) =» v(rt, s). 
The same holds if the relation s is entirely missing: 

if U(n, r2
+) => V(r2)y then U(rh r$) => M {ft) =* F(r2). 

We may apply this last to the situation (2), for the expression on 
the left contains =2 only once, in I ( = i, = 2 ) ^ : all x, y: x?*iy or 
or x = 2y, and this occurrence is positive, while the expression on the 
right does not contain =1 at all. I t follows that there exists M"( = 2), 
containing only = 2 , and this only positively, such that 

(3) S (= i ) and C(=i) and 7( = i, = 2)=»Af( = 2) 

and tha t 

(4) M(=2)=^[c(=2)^r(=2)]. 
If, in (3) and (4), we replace both =1 and = 2 by = , we obtain 

(5) 5( = ) and C( = ) =» M( = ), 

(6) M( = ) and C( = ) = > T ( = ), 

which indeed say that, in any system with a relation = satisfying 
the usual axioms for equality, 5 implies M and M implies T. 

Our refinement of Craig's theorem remains to be proved, and con­
cerning this proof we make only one or two remarks. First, the idea 
of eliminating superfluous hypotheses can be used, with a little care, 
to prove the analogous result for formulas that contain no quantifiers. 
Second, the general result follows from this, but appears to require 
G. Gentzen's proof-theoretic calculus, or some equally complicated 
and not universally familiar machinery. In 1958 and 1959a we have 
replaced the Gentzen calculus by an algebraic parallel, following ideas 
of E. Beth, 1953, and others; although this seems appropriate, and 
is useful for other purposes, it can not be claimed to simplify the 
overall proof. The new proof of Keisler, 1958, seems altogether prefer­
able to ours in that it entirely dispenses with the Gentzen argument, 
or any close analog. I t appears to transfer an induction, originally 
implicit in the arguments borrowed from logic, to the algebraic level; 
here, although requiring some novel algebraic constructions, the 
argument seems to proceed much more simply. 
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