COMBINATORIAL HOMOTOPY. II
J. H. C. WHITEHEAD

1. Introduction. This paper is concerned with problems of realiz-
ability, which were discussed in (I) (i.e. [1]).! In studying the realiz-
ability of chain mappings we use the system of relative homotopy
groups, p,=m,(K", K»1), of a (connected) complex, K, where =1
and p, =m;=(K!). The chain groups are defined as the relative homol-
ogy groups, C,=H,(K», K1), where K is a universal covering
complex of K. The groups p, appear to be more useful than C, in
problems concerning geometrical realizability. On the other hand the
chain groups are convenient in studying concrete problems. Moreover
they provide a means of applying Theorem 3 in (I). A large part of
the paper deals with the relations between the two systems of groups.

The system of relative homotopy groups, {pa } ,is a “group system,”
as defined in [8]. It is a special kind of group system because each
group is “free” in one of three different senses. More precisely, p; is
a free group, p, is a free m1(K)-module if #>2 and p; is what we call
a free crossed module. These conditions of freedom are important in
realizability problems. We tentatively describe {p,.} as a homotopy
system. It is essentially the same as what was called a “natural sys-
tem” on p. 1216 of [3], redefined in terms of relative homotopy
groups and free crossed modules.

2. Crossed modules. It will be convenient to have a name for
groups with the algebraic properties of relative homotopy groups,
and to have proved some lemmas concerning them. We shall call
such a group a crossed module, or, more explicitly, a crossed y-module
or a crossed (v, d)-module.? By this we mean an additive, but not neces-
sarily commutative, group, p, which is related as follows to a multi-
plicative group v:

(2.1) (a) p admits v as a group of operators.®

An address delivered before the Princeton Meeting of the Society on November
2, 1946, by invitation of the Committee to Select Hour Speakers for Eastern Sectional
Meetings; received by the editors September 22, 1948.

1 Numbers in brackets refer to the references cited at the end of the paper.

2 Anne Cobbe has pointed out to me that a crossed (v, d)-module determines a
Q-kernel, with Q=v/dp (see [10]), and that any Q-kernel has a representation as a
crossed module. I learn from Saunders MacLane that crossed modules, under a dif-
ferent name, are defined in a forthcoming sequel to [10].

3].e. to each x&~ corresponds an automorphism, x:p—p, such that x'(xa)
= (x'%)a and xa=a if x=1 (x, ’C~, aEp). We allow trivial operators (i.e. elements
xE v such that xa=a for every a&p) other than 1E .
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(b) There is a homomorphism, d:p—y, such that d(xa) =x(da)x*
(aEp, xE).

(c) a+b—a=(da)d for every pair, a, bCp.

Notice that any group, p, is a crossed (v, d)-module, with a suitable
choice of v and d. For example we may take v to be the group of
inner automorphisms of p, and d to be defined by (2.1c). Notice also
that any Abelian group, p, which admits v as a group of operators is
a crossed (v, d)-module with dp=1.

Let C be the group p made Abelian and let % be the natural homo-
morphism %k:p—C. Then k~1(0) is generated by the commutators,
a+b—a—b, or, using (2.1c), (da)b—b. Therefore C may also be re-
garded as p with the operators in dp “neutralized.” It follows from
(2.1b) that dp is an invariant sub-group of v. Let ¥=+v/dp and let
&Y be the co-set containing a given element x&y. Given ha &EC,
we define #(ka) =k(xa). The transformation Z: C—C, thus defined, is
single-valued since the commutator sub-group of p is transformed
into itself by x (and indeed by any automorphism). It is obvious that
#:C—Cis an endomorphism; also that 1ka = ha and %(z'ha) = (£%’) ha.
Therefore C is a ¥-module, i.e. an Abelian group which admits ¥ as
a group of operators. Moreover k is an operator homomorphism, in
the sense that k(xa) = zha.

It follows from (2.1c) that (da)b=2> if b is in the center of p. That
is to say the elements in dp operate trivially on the centre of p,
which may therefore be regarded as a ¥-module. It also follows from
(2.1¢), with da =1, that d-'(1) is in the centre of p. Moreover it fol-
lows from (2.1b) that d(xa) =1 if da=1, whence d—1(1) is transformed
into itself by the operators in 4. Therefore d—1(1) may also be re-
garded as a y-module.

Since d—!(1) is in the centre of p the group p is a central extension of
d~1(1) by dp. If it is also a trivial extension, i.e. if d has a right in-
verse, 0:dp—p (d0=1), it follows that p is the direct sum p=d-1(1)
+60dp. Since & makes p Abelian and since d—1(1) is already Abelian it
follows that hld“(l) is then an isomorphism (into). Therefore we
have:

LemMA 1. If p is a trivial extension of d=(1) by dp, then da=1 and
ha =0 together imply a=0.

In particular h] d~1(1) is an isomorphism (into) if dp is a free group,
since any extension by a free group is trivial. Therefore hld“‘(l) is
an isomorphism (into) if v is a free group.

Let p’ be a crossed (', d’)-module and let g:y—y’ be a given homo-
morphism. By an operator homomorphism, f:p—p’, associated with g
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we mean a homomorphism such that

(@)  df =g,
(b)  f(xb) = (¢2)fb (r€ v bE)).

We shall describe f as an operator isomorphism* if, and only if, it and
g are both isomorphisms. Notice that this definition applies to
ordinary modules, with dp=1, d’p’=1, in which case (2.2b) is the
operative condition. Notice also that, if there is no x’ &y’ such that
x'fo=fb for every bEp, then it follows from (2.2b) that the same
operator homomorphism, p—yp’, cannot be associated with each of
two different homomorphisms y—y’. This is the case, for example, if
p’ is a free y’-module and fp contains a basis element of p’.

We now define what we call a free crossed y-module.® Let {a:} be
any indexed® aggregate, let v be a given group and let an arbitrary
element x;Evy be associated with each a;. We define an additive
group, p, by means of “symbolic” generators and relations. The gen-
erators shall be all triples (4, %, ), where x &7y, together with their
“negatives” (—, x, a;), We write (+, x, a;) as (x, a;) and (—, %, o)
as — (x, ;). The relations shall be

(2'3) (=, ai) + (3’: a;) — (xr ai) = (xx-'x“ly: Otj),

for all pairs x, yC+ and all values of 7, j, together with the “trivial”
relations, (x, a;) — (%, a;) =0 and — (x, ;) + (%, @;) =0.
Since

(2.2)

(22, a;) + (29, @;) — (3%, a;) = (zxx:27" 5712y, a;)

= (zwxix'y, ;)

the transformation (x, a;)—(zx, a:), of generators, determines an
endomorphism, z:p—p (2&7). Obviously za=a if 2=1, 2’(ze) = (z’2)a,
where a Ep. Therefore p admits v as a group of operators. Similarly
a homomorphism d:p—y, which satisfies (see [2, p. 421]) (2.1b), is
defined by (x, a;) —xxix~L. Then (2.1c) follows (see [2, p. 421]) from
(2.3) and the trivial relations. Therefore p is a crossed (7, d)-module.

Let a;&p be the element which corresponds to the generator (1,
o). We shall call the set of elements {a;} a basis for p. Any element in

4An isomorphism, without qualification, will always mean an isomorphism onto.

§ This is a group of the sort defined on p. 421 of [2]. A correspondence with
Saunders MacLane has helped to clarify the presentation.

6 The set of values taken by ¢ may have any cardinal number. The elements
azare not elements of the group, p, which is to be defined. An element of p is an equiva-
lence class of “words,” written as sums, of the “symbolic” generators. a;#e; if 7],
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p is of the form
(2.4) ax18i; + - - -+ X5,

where ¢;= +1, x;Ev, and repetitions are allowed.

We shall describe a crossed module, p’, as free if, and only if, it is
operator isomorphic to a crossed module, p, of the sort just defined.
This being so, a set of elements will be called a basis for p’ if, and
only if, it is the image of {a;} in an operator isomorphism p—p’.
In general there will be many operator isomorphisms, p—p’, and
hence many bases for p’.

We now prove a lemma, which is fundamental in realizability
problems. Let p be a free crossed (v, d)-module and p’ an arbitrary
crossed (v’, d')-module. Let g:y—y’ be an arbitrary homomorphism
and let {a:} be a basis for p. With each basis element a; we associate
an element b/ €p’, which satisfies the condition d'b! =gda;, but is
otherwise arbitrary.

LEMMA 2. There is a unique operator homomorphism, f:p—p’, asso-
ciated with g, such that fa;=>0! for each value of 1.

We assume, as we obviously may, that p is defined, as above, in
terms of symbolic generators (x, ;) and that a; is the element cor-
responding to (1, ;). Then d’b! = gda; = gx; and it follows from (2.1c),
in p’, that

(gx)b! + (gy)b{ — (gx)bi = (gx)d’db! (gx)~*(gy)d]
= g(xxix~ly)b/.

Therefore the transformation (x, «;)—(gx)b!, of generators, de-
termines a homomorphism, f:p—p’, which obviously satisfies (2.2b).
Also fa;=0b! and d'fa;=gda;. Therefore it follows from (2.1b) that

d'fxa; = d'{(gx)fa:} = (ga)(d'fas)(ga)™
= g{x(da,')x"l} = gdxa;.

Since p is generated by {xa.} it follows that (2.2a) is satisfied. Simi-
larly f is uniquely determined by the condition fe;=8/, and the
lemma is proved.

We conclude the section with two “extreme” examples of a free
crossed module, p. First let dp=1. Then (2.3) merely expresses the
fact that p is commutative, and p will be called a free y-module. In
this case we can collect all the terms exx\a, in (2.4), which have the
same 7y, and write (2.4) as

710, + cee + k@ gy
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where ji, « + -, ji are distinct and 7, - - -, 7, are in the group ring,
R, of v. This expression is unique since, obviously, { xai} are free
generators of p. Therefore p is a free R-module, having {ai} as a basis.
In any case kp is obviously a free ¥-module, having {hai} as a basis,
where h:p—hp makes p Abelian. Notice that, in consequence of this
fact, there is no relation of the form mia; +moasu+ - -+ =0, in p,
where my, ms, + - - are nonzero integers and 4y, 4, - - - are distinct.

A free Abelian group,” which admits v as a group of operators, is
not necessarily a free y-module. Therefore a crossed (v, d)-module is
not necessarily free just because (2.1c) is a complete set of relations
between a set of generating elements ¢, b, - - - .

Secondly let ¥ be a free group and, in the original definition of a
free crossed module, let {x;} be a set of free generating elements of
v (inverses not included). Let x=x3! - - - #7* (ex= £1). Then it fol-
lows from (2.3), and their “negatives,” which are consequences of
(2.3) and the trivial relations, that

(xxi, ;) = (%, i) + (%, ) — (, as),
(x5 af) = — (2, &) + (%, @) + (%, ).

Therefore it follows by induction on # that p is generated by {ai},
without the help of the operators in 7. Therefore the right inverse,
d—l:y—p, of d, which is given by d—lx;=a,, is onto p. Therefore
d:p=+~. Thus p is an ordinary free group, which is freely generated by
{a:}. Also v written additively and operating on itself according to
the rule xy=x+y—x (x, yCv) is a free (v, 1)-module. A set of free
generating elements will be called a basis for v, whether the multipli-
cative or the additive notation is used.

3. A lemma on crossed homomorphisms. Let G be an additive
group, which need not be Abelian, and let ¢ be a multiplicative
group, which operates on G. A crossed homomorphism, k:vy—G, is a
map such that

3.1) hxy) = hx + xhy (%, y C ).

We shall generally be presented with a group G, a group, v’, which
operates on G, and a homomorphism f:y—y’. In this case a crossed
homomorphism, k:y—G, will mean the same as before, with
xa=(fx)a (xEvy, a EG), and k will be called a crossed homomorphism
assoctated with f. Notice that, writing x =1 in (3.1), we have (1) =0
and writing x=v"1! we have Ay~ = —yhy.

7 E.g. one in which v operates trivially, or a left ideal in the group ring of .
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As an example, which occurs in §10 below, let f, f':v—G be two
homomorphisms and let us write ab=a+b—a (a, bCG). Let 0:G—G
be a fixed endomorphism and let k:y—G be given by

hx = 0f'x — fax.
Then
h(xy) = 0f'(xy) — f(xy)
=0f'x+0f'y — fy — fx
= (bf'x — f2) + fx + (Of'y — fy) — fx
= hx + (f)hy.
Therefore % is a crossed homomorphism associated with f.

Let v be a free group, which operates on G, and let {xl} be a basis
for v. With each x; we associate an arbitrary element a;EG.

LemMA 3. There is a unique crossed homomorphism, hiy—G, such
that hx;=a; for each value of <.

Any element y &y is uniquely represented as a product

y =g xg (&= + 1),

which is reduced, in the sense that ;11 =¢; if 7,11 =1; (i.e. no cancella-
tion is possible). We define k:y—G by

3.2 hy = eyiai, + - -+ + €Vatiy,

where y1=1if ;=1 and

P Xy v X if e 1
(3.3) = o o +
= Xiy c 0 Xy if €j=—1.

Then hx; =a., hay'= —x; 'a;. It follows from (3.2) and (3.3) that

h(zx:) = hz + za; ifoe=+1
=hz-—zx_{la,- if e=—1
= hz + zhx; if e= + 1,

for any z&%. Hence, assuming that h(xy) =hx+4xhy, for a given
xEv, we have

h(xyx:) = h(xy) + xyha;
= ha + a(hy + yha)
= hx + xh(yx:).
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It follows from induction on # that (3.1) is satisfied. Therefore % is
a crossed homomorphism.

Let k:y—G be any crossed homomorphism such that kx;=a;. Then
it follows from (3.1) and induction on # that % is given by (3.2) and
(3.3). Therefore & is unique and the lemma is proved.

4. Homotopy systems. Let p={p,} (n=1, 2, - - - ) be a family of
groups, together with a “boundary operator,” d, which is a family
of homomorphisms, d,:p,—p,_1 (#=2), such that dd=0 (i.e. d,d,110+41
is the neutral element in p,_;). The group p, shall be multiplicative if
n=1 and additive if »>1, though possibly noncommutative if »=2.
It follows from (4.1b) below and (2.1b) that dp; is an invariant sub-
group of p;. We write py=p1/dp,, and £Ep; will always denote the
co-set containing a given element xEp;. The system p and the oper-
ator d shall satisfy the conditions:

(4.1) (a) p1 ¢s a free group,

(b) p2 is a free crossed (p1, d2)-module,

(c) pa (n>2) is a free pi-module,

(d) d. is an operator homomorphism for each r=2, 3, - - - . That is
to say, ds satisfies (2.1b), as required in the definition of a crossed
module, and® d,%=13xd, (n>2), for each operator £<p1.

We describe such a system as a homotopy system. If p,=0 for
r>n=0 but p,50, in case >0, we shall describe p as n-dimensional
and shall write n=dim p (if »=1 then p,=0 means p;=1).

For the sake of uniformity it will be convenient to let p; operate on
pn (n>2) according to the rule xa=4%xa, where aEp,, xEp1. Also,
in order to include the case #=1 in such formulae as (4.3) below, we
shall sometimes think of p; as an additive group, which operates on
itself according to the rule xy=x+4y—x. With these conventions
(4.1d) reduces to dx =xd. When considered as a group of operators p;
will always be multiplicative.

Let p={p.} and p’={p.} be two homotopy systems and let
Siipi—p! be a homomorphism such that fids0:Cdapd, where d de-
notes the boundary operator in both p and p’. Then fi induces a homo-
morphism, fi:p—p{, which is given by flx =j'17c. Let fa.ipn—04
(n22) be an operator homomorphism, which is associated with f; if
n=2 and with f; if >2. Then, with the convention explained in the
preceding paragraph, we may describe f, as associated with fi for
any n=2. Notice that fidspsCdops if there is a homomorphism,
fz:pz——)pzl, such that f1d2=d2f2.

By a homomorphism, f:p—p’, we shall mean a family of homo-

8 dy% =2d; has a meaning since dsps€&d; '(1).
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morphisms, fn:ps—p+ (n=1), such that

(@) fd=df (i.e. faadn=4dnafs for each n=2),

(b) fu 2s an operator homomorphism associated with fi if n=2.

We shall describe f as an ssomorphism if, and only if, f, is an iso-
morphism for each =1, 2, - - - . We shall describe p as i<somorphic
to p’, and shall write f:p=p’, if, and only if, there is an isomorphism
fip—p’. It is obvious that the resultant of homomorphisms (iso-
morphisms), f:p—p’ and f':p’—p’’, is a homomorphism (isomor-
phism), f'f:p—p’’; also that the inverse of an isomorphism is itself
an isomorphism.

We now define a relation of equivalence, p=p’, which is the alge-
braic analogue of “being of the same homotopy type” between com-
plexes. By a deformation operator, £:p—p’, associated with a homo-
morphism, fi:(p1, dp2)—(p{, dpd), we shall mean a family of maps,
£nipr1—pn (= 2), such that:

(@) &2:p1—ps is a crossed homomorphism associated with fi,

(b) &nipna—pd (m>2) is an operator homomorphism associated
with f1.

We shall describe a homomorphism, f:p—p’, as equivalent to a
homomorphism, g:p—p’, and shall write f~~g, if, and only if,
there is a deformation operator, £:p—p’, associated with fi, and an
element w’&p/{, such that

(4-3) w,gn — fro = dnoprbng1 + &ndn (nz1),
where £d;=0. When n=1 this is another way of writing
(4.4) W' (g12)w' "N (fr2) ! = dofox (x € p1).

We shall describe a homomorphism, f:p—p’, as an equivalence, if,
and only if, there is a homomorphism, f’:p’—p, such that f/f>~1,
Sff'=>~1, where 1 denotes the identical isomorphism both in p and in p’.
We shall describe p as equivalent to p’, and shall write p=p’, if, and
only if, there is an equivalence, f:p—p’.

THEOREM 1. The relations, ~, between homomorphisms p—p’, and
=, between homotopy systems, are equivalence relations.

It is not difficult to prove this directly. However we shall deduce it
from theorems proved in §§10, 11 below.
Let fo~g:p—p’. Then it follows from (4.4) that

fi=agiip1— 7,

where o is an inner automorphism of p{ . Let f:p—p’ be an equivalence
and let f’:p’—p be such that f'f~1, ff'~1. Then f{fi=«a, fif{ =d’,
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where o, o’ are inner automorphisms of 5y, 5/ . Hence it follows that f;
is an isomorphism.

5. The homotopy system of a complex. By a complex we shall
mean a connected, CW-complex, as defined in (I), which may be finite
or infinite. The characteristic maps of the cells in a complex will now
be maps I"—¢é" (not g”»—é"), where I* is the n-cube in Hilbert space,
which is given by 0=4, - -+, .51, ;=0 if ¢>%=0, with I°
=(0,0, - - -).

Our conventions concerning homotopy groups are as follows. We
treat I” as IXI*! (n=1) and define

n—1 n n—1

l=1x1"", E=oer—uyl-oar).

Thus It~ is the face of I* in which #,=1. Let k:I»~1—I}"! be given
by kp=(1, p) (pEI*1). Let spaces P, PyCP and a point py&P be
given. Then an element a Ew,.(P, Po, po) (r=2) shall be a homotopy
class of maps of the form

9:(I, aI7, ErY) — (P, Py, po).
Let
Briw(P, Po, po) = mr—1(Po, po, po) = mr—1(Po, po)

be the boundary homomorphism, which we define as follows. If 0&a,
then f.a shall be the element defined by the map

¢k:[""1°—>Po,

where ¢ =8| I} ': I "' P,.
Let

8e:(I7, 3I7, I0) — (I, oI, I°)

be a fixed homotopy such that 8o=1, §;E~~1=1I° Then we say that
a map

o:(I7, 3I", I°) — (P, Py, po)

represents the element of m.(P, Py, po), which is defined by the map
¢0,: I"—P. Similarly a map

Y2 (91", I%) — (Po, po)

will be said to represent the element of m,_1(Po, po), which is defined
by the map

W | I YT > P
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A path
AT, 0, 1) = (Poy poy p0)
determines an isomorphism
Nw (P, Py, p3) — w(P, Py, po),
and also its inverse, A~1. Let
(5.1) §':(I", 91", I% — (P, P, pd)

be a map which represents an element ¢’ Ex,(P, Py, pd ). Then we de-
scribe Aa’ as the element which is represented by the map 0’, joined
to po by the path N\. If p{ =po we write Aa’ =xa’, where xEm(Po, po)
=7}, say, is the element represented by the path N. When xa’ is
thus defined, (P, Py, po) is a wmi-module, if »>2, and a crossed
(72, Bz)-module? if 7 =2.

Let spaces Q, QoC Q and a point ¢o& Qo be given. Then a map

é: (P, Po, po) — (Q, Qo, o)

induces a homomorphism
f:"rT(P7 PO) PO) d TT(Q) QO) qO)-

Let a&Ew.(P, Py, po) be represented by the map (5.1), joined to po
by the path N. Then it is easily verified that fa is represented by the
map ¢8’, joined to go by the path ¢\. Taking pJ = p, it follows that f
is an operator homomorphism associated with the homomorphism,
m1(Po, P0)—m1(Qo, o), which is induced!® by ¢.

Similar remarks apply to w,—1(Po, po) and m,—1(Po, p¢ ), related to
each other by the path A\,

Let K be a given complex and let a 0-cell, e?€ K", be taken as
base-point for all groups w, (K", K» 1), m,(K), etc. Let

pr = p(K) = m (K", K1) (rz2),
p1 = py(K) = my(K").
Let
Fnt (K™ — py n=1;71=1)
be the homomorphism induced by the identical map (K=, e° e°)
— (K", K*1, €% and let 11

9 See [12, p. 486], which may be taken as a general reference for the elementary
propositions stated here.

10 ] e. induced by ¢|P0:Po——>Qo.

u Cf, [8, p. 429], with X;=K: (:>0).
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d, = jr—-lﬁr:Pr — pPr-1.

Then d;=p,. Since B.j,=0 we have d,d,;1=0. If » =3 the group p, is
a free m (K 1!)-module!? and we identify®® 7;(K*) (n>1), as well as
m(K), with p1=p1/dsps. Also p2 is a free crossed!? (p;, dz)-module and
d, is an operator homomorphism in the sense of (4.1d). Therefore
{pn} is a homotopy system, which we call the homotopy system, p(K),
of K.

Let {e?} (n=2) be the n-cells in K and let a;Ep, be the element
represented by a characteristic map for e}, joined to e¢° by a path
in K»1, Then {ai} is a basis, which we describe as a natural basss,
for p.. Let TCK! be a tree (cf. [4, p. 322]) which is a sub-complex
containing K, and let {e}} be the 1-cells in K!—T. Let g;: I—¢ be
a characteristic map for e; and let x;&p; be the element represented
by a pathin T, which leads from e° to g;(0), followed by g;, followed by
apath in T, which leads from g(1) back to e®. Then {x;} is a basis for
P1.
A (cellular) map," ¢:K—L, in a complex L, with base point
e'’=¢e% obviously induces a homomorphism, f:p(K)—p(L). If
g:p(L)—p(M) is the homomorphism induced by a map, ¢:L—M,
into a complex M, then gf:p(K)—p(M) is obviously the homo-
morphism induced by y¢: K—M. If f:p(K)—p(L) is a given homo-
morphism and if ¢: K—L is a map which induces it we shall describe
¢ as a realization of f.

Let f:p(K)—p(L) be a given homomorphism and let K(CK be a
connected sub-complex, which contains e®. We shall describe a map,
¢0: Ko—L, as a partial realization of f if, and only if,

J* = fitp(Ko) — p(L),

where f° and ¢:p(K¢)—p(K) are the homomorphisms induced by ¢,
and by the identical map Ko—K. We shall call 7 the injection homo-
morphism.

Let K;CK be a (connected) sub-complex, which contains!® K»—!

12 See §16 below.

18 I.e. we use 5; and £E& 5 to denote m;(K) and 12E& 71(K), etc., where 2: 5> 71 (K)
is the ismorphism in which corresponding elements are represented by the same map
I-K*,

Tt is to be understood that all our maps and homotopies are cellular (see L in
§5 of (I)) and, except when the contrary is stated, that a given map, K—L, carries
the base point of K into the base point of L.

18 The condition K»*(C K, is not necessary to Lemma 4 below but it helps to
simplify the notation.
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(n=2). Let K1=K0U{e2}, where {ef,‘} =K;—K, is a set of n-cells,
each of which is a principal cell (i.e. a cell which is an open sub-set)
of K. Let ¢o: Ko—L be a partial realization of a given homomor-
phism, f:p(K)—p(L), and let g:mn_1(K"1)—m,_1 (L") be the homo-
morphism which is induced by ¢, Let a¢,&p,(K) be the element
which is represented by a characteristic map, h,:I*—eé, for e,
joined to e° by a path

Ae:(Z,0,1) = (K™, € po) (po = hoI®).

LemMma 4. If' Bfa,=gBa., for each o, then ¢o can be extended to a
partial realization, ¢1: Ki—L, of f.

This is essentially the same as Lemma 7 in §9 of [6], except that
we must now pay attention to base points. Let fBfe,=gPa,, let
Qo =op, and let

te = ¢oAe: (1, 0, 1) — (L™, €%, go).

Let u/ :p.(L)—m.(L", L1, g,) be the isomorphism determined by
the path p, and let

k,:([”, alﬂr [0) - (Ln’ Ln—l, q“)

be a map which represents the element p/fa,. Then k,,] dI* and
qsoh,! dI" both represent the image of ffa, =gfa, in the isomorphism,

Tn-I(Ln_l, ero) — 1!'7,,_.1(-[4”——1; q«r),

which is determined by the path wu,. Therefore it follows from the
proof of Lemma 7 in [6], applied to each cell ¢?, that ¢ can be ex-
tended to a map, ¢1:K1—L, such that fa, is represented by the map
¢k, I"—L", joined to e’® by the path u,.

Let fr:p(K,)—p(L) (r=0, 1) be the homomorphism induced by
¢, and let aiEp,(K;) be the element represented by ks, joined to e°
by the path \,. Then a, =4"al, where ! is the injection ¢!: p(K;)—p(K),
and f'a}=fa,=fi'a.. Let i and 1% be the injections 3:p(K¢)—p(K;) and
30=1414:p(Ko)—p(K). Since ¢1|Ko=¢o it is obvious that fi2=f° Also
fO=fi'=fi4, since ¢o is a partial realization of f. Therefore f'ia®
=filia® if a°Cp.(Ko). If {a}} is a natural basis for p,(Ko) then
{ia}, al} is a natural basis for p.(K1). Since fb=fi'b if b=ia} or a;
and also (obviously) if 6Ep,(K;) with 75##n it follows that fi=fil.
Therefore ¢, is a partial realization of f and the lemma is proved.

In general a homomorphism f:p(K)—p(L) cannot be realized by a
map K—L. For example a complex projective plane and the union of
a 2-sphere and a 4-sphere with a single common point may be covered

16 We shall sometimes write 8, f, etc. for B, fa, etc.
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by complexes, K and L, each of which consists of a 0-cell, a 2-cell
and a 4-cell. Then p,(K) =p,(L), both groups being cyclic infinite if
n=2 or 4 and zero otherwise. By considering the cohomology rings,
or the groups 73(K), w3(L), one sees that an isomorphism p(K)—p(L)
cannot be realized by a map K—L.

6. Realizability. We shall describe a complex, K, as a (geometrical)
realization of a given homotopy system, p, if, and only if, p ~p(K).
In §15 below we given an example of a homotopy system which has
no geometrical realization. Thus it is not always possible to realize
either a homormophism p(K)—p(L) by a map K—L or a homotopy
system p by a complex K. In this section we prove three theorems
which state sufficient conditions for both kinds of realizability to be
possible.

THEOREM 2. A given homotopy system, p, has a geometrical realiza-
tion if dim = 4.

Let n=dim p and first let #=1. Then p is obviously realized by a
complex K=¢"U{e}}, where {e} is a set of 1-cells in (1-1) cor-
respondence with a basis, {x; }, for p1.

We proceed by induction on #. Let p” be the homotopy system

pr:‘-(pl, cte rpr’OyO’ "')v
d, being the same in p" as in p if 2<s=r. Assume that p"! is real-

ized by a complex K*! (1<n=4) and let frl:pr—l=p(K"1). Let
{a:} be a basis for p,. If n>2 we have d,_sd,=0, whence

nrfo1dnts = foadn_sdna; = 0,
or filid.a;€d;1(0). Since n—153
Jn1ima 1 (K1) — ppay(K™Y)

is onto!? d;1,(0). Also fidwa;Em(K?Y) if n=2. Therefore there is an
element b; Em,—1 (K1), such that
f:::dnds = Jn1bi (n =z 2).
Let g;:(dIr, I)—(K"1, ¢ be a map which represents b;. Let
{E?} be a set of n-elements, which are disjoint from each other and
from K»=! and let k;:0E{—dI* be a homeomorphism. We attach
¢ =FE; —0E} to K1 by means of the map g:h;:0E;— K" . The result
is a complex, K»=K"1\U{el}, in which e} has a characteristic map,

17 See Theorem 7 in §3 of (I).
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g! 1 I"—é&}, such that g/ [6I”=g,~. Let a! €p,.(K") be the element rep-
resented by g/. Then B.a! =b,, whence

6.1) dna! = juoshi = fordui.

Hence, and from Lemma 2 if =2, an operator homomorphism,
Fnipn—pa(K"), which is obviously an isomorphism, is defined by
faai=a!. Moreover it also follows from (6.1) that d.f.=fa1dn.
Therefore we have defined an isomorphism f: p—p(K"), where f,=fr"!
if #<n, and the theorem follows by induction on #.

THEOREM 3. A homotopy system, p, has a geometrical realization if
pi=1.

Let ;=1. Then p, (»=3) and hence any sub-group of p, is a free
Abelian group.!® Therefore d.p, is a free Abelian group (#=4). Let
{b;} be a basis for d.p., let c;Ed;, 'b; and let C,Cp, be the sub-group
generated by {c:}. A relation between the elements {¢;} would
imply the corresponding relation between {b;}, whence {c:} is a basis
for C,. Therefore, as in elementary homology theory, p, is the direct
sum p,=Z,+C,, where Z,=d;'(0), and d,.i C, is an isomorphism
onto d,p,. Let {z}} be a basis for Z,.

By Theorem 2, p? has a realization K? where p” means the same
as before. Let #=4 and assume that there is a complex, K»1, such
that

f’n—-l:pn—l ~ p(K'n—I)
and
Jn1: T 1(K™1) = poa(K"7Y)

is onto d;1,(0). Then the proof of Theorem 2 shows that there is a
complex,

K» = K1\ {er},

such that f»:p" ~p(K") and f*| p»—1=f=1. Moreover we may suppose
that def =€’ & KD, for each value of N\, where e} is the cell which cor-
responds to zx&Z, Let this be so and let P* be the union of the
n-spheres éy. Then any element in Z, is represented by a map,
(I, dI*)—(P», €%, which also represents an element in ,(K").
Therefore j, is onto Z,. Therefore complexes K3C K*C - - - and iso-

18 We assume here that p, has a well-ordered basis. Then this assertion follows by
transfinite induction in much the same way as when the basis is finite. I do not know
if this can be proved without the axiom of choice.
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morphisms f*:p”»~p(K"), such that f"] p*~1=fr»1 are defined induc-
tively for every value of #=3. Let

K=l7.!K"

with the topology defined by the condition that XCK is closed if,
and only if, XN K" is a closed sub-set of K*, for each #=3, 4, - - -.
Then K is a complex, whose n-section is K» and f: p—p(K) is obviously
an isomorphism, where f | p*=jf". This proves the theorem.

Let K, L be given complexes, let f:p(K)—p(L) be a given homo-
morphism and let ¢o: Ko—L be a partial realization of f, where KoCK
is a connected sub-complex, which contains e°.

THEOREM 4. If K0 JK™'=K and if L is a Jn-complex, then ¢,
can be extended to a complete realization,*® ¢: K—L, of f.

Let a basis for p;(K) be defined, as in §5, in terms of a tree, TCK},
such that K°CT. We assume that T consists of a tree,2* TwCK,,
which contains K9, together with a set of trees, {73}, such that
T:NK, is a single 0-cell ¢}. We map T: on ¢}, thus extending ¢,
throughout KoJT. It now follows from a simplified version of
Lemma 4 that ¢ can be extended to a partial realization, ¢: K/ JK!
—L, of f.

Let K,=K\JK" (r=1) and assume that ¢, has been extended to a
partial realization, ¢,—1:K, 1—L, of f, where 2=n<m+41. Let
gy (K" ) —>m,1(L" 1) be the homomorphism induced by ¢n_1.
Then it is easily verified that

fa1in—1 = Jno18:mn_a(K") = pp_1(L).
Therefore
jn—anfn = dnfn = fn—-ldn = fn-—ljn-—lﬁn = jn—-lan-

Let L be a Jn,-complex. Then j;},(0) =0, since #—1=<m. Therefore
Bafn=gBx and it follows from Lemma 4 that ¢,—1 can be extended to
a partial realization, ¢,:K,—L, of f. The theorem now follows by
induction on #.

7. Homotopy and equivalence. We state three theorems, which
will be proved in §§13, 14 below. Let K, L be given complexes and let
frf :p(K)—p(L) be the homomorphisms induced by maps ¢, ¢’: K—L.

1% Ko may consist of the single 0-cell ¢°, in which case the theorem asserts that f
has a realization if dim K<m+1. Ju-complexes are defined in (I), §3.
20 In constructing T we can start with T.
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THEOREM 5. If ¢=~¢’' then f~f'.

THEOREM 6. 4 map ¢: K—L is a homotopy equivalence if, and only
if, the induced homomorphism, f:p(K)—p(L), is an equivalence.

As a corollary to Theorems 4 and 6 we have:

CoroLLARY. If dim K Em+1 and if L is @ Ju-complex, then K=L
if, and only if, p(K) =p(L). More precisely, an equivalence, p(K)—p(L),
can be realized by a homotopy equivalence, K—L, and conversely.

Since every complex is a Js-complex it follows from this and
Theorem 2 that an equivalence class of 3-dimensional homotopy sys-
tems is an algebraic equivalent of the homotopy type of a 3-dimen-
sional complex. Moreover, if dim p <3 and if K, L are any complexes
such that p(K)=p(L) =p, then K=L, even if dim K, dim L >3. For
it follows from Theorem 2 that p can be realized by a complex, P3,
and it follows from Theorem 4 that equivalences, p(P?)—p(K),
p(P?¥)—p(L) can be realized by maps P*—K, P3—L, which are
homotopy equivalences by Theorem 6. Therefore K=P*=L. In a
later paper we shall prove that if p=p’, dim p, dim p’ < 0, where p, p’
are given homotopy systems, and if p can be realized geometrically,
so can p’. Therefore, if an equivalence class of homotopy systems con-
tains one, p, such that dim p =< 3, then every homotopy system in the
class can be realized geometrically and all the resulting complexes
are of the same homotopy type.

By taking K =353, L=.S5? we see that the converse of Theorem 5,
namely fo~f’ implies ¢~¢’, does not hold, even if L is a J,-complex
and dim K £m+-1. However we shall prove:

THEOREM 7. If L is a Jn-complex and dim K Sm, then fof’ implies
p~¢’.

It follows that the homotopy theory of 2-dimensional complexes,
including the homotopy classification of mappings, is equivalent to
the purely algebraic theory of free crossed modules, whose groups of
operators are free groups.

8. Chain groups. With each homotopy system, p= {p,.}, which
need not have a geometrical realization, we associate a system of chain
groups, C= {C,} (r=0, 1, - - - ). Each group C, shall be a free p;-
module and C, shall be operator isomorphic to p, if #>2 and to pa
made Abelian if #=2. The group C; shall have a basis {c;} which is
in a (1-1) correspondence, x;—c;, with a basis {x@} for p;. The
group Co shall have a basis consisting of a single element ¢° The ele-
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ment ¢° is to be a “preferred” or special element in Co. We allow py
to operate on C, in the same way as on p, (n>2).
The system C shall be related to p by a preferred family of maps,

hoipn — Ch.

The map %, shall be an operator isomorphism if #»>2 and A, shall be
an operator homomorphism (onto), whose kernel is the commutator
sub-group of ps. The map #; shall be the crossed homomorphism which
is uniquely determined by hx;=c;, according to Lemma 3.

We now define a boundary operator, 4, which is a family of operator
homomorphisms, 9,:C,—C,—1 (#=1), such that 9,0,41=0. We shall
define it in such a way that

(a) 01hx = (% — 1)c® (x € py),
(b) Oty = ho1dy (n = 2)

If n>2 we define 9,=h,_1d.k;". We postpone the definition of 9
and define d; by 9wc;=(%;—1)¢" Let g:p;—Cq be the (principal)
crossed homomorphism, which is given by gx=(£—1)c’% The map
91711 p1—>¢° is the resultant of the crossed homomorphism #; and the
operator homomorphism ;. Therefore it is a crossed homomorphism.
Moreover g and 814, are both associated with the same homomor-
phism, x—%, of p; onto p;. Since dihx;=gx;, from the uniqueness
part of Lemma 3 81k, =g, which is expressed by (8.1a).

(8.1)

THEOREM 8. The crossed homomorphism hy has the properties:

(a) h1| dsps is @ homomorphism onto 3:~(0) C (.

(b) mx="hy (x, yCp1) if, and only if, xy~1Ed2h3*(0). In particular
B1(0) =dahz(0).

(c) If dic=(%—1)c°, where cEC1, EEp1, then c=mx', for some
x'E4.

In order to prove this we introduce a complex, K'=¢"U{e} }, where
{ei} is a set of 1-cells which is in a (1-1) correspondence, x;—ej,
with {x,} We identify x; with the element, x;&Em(K?'), which is
represented by a characteristic map for e}. Let K! be a covering
complex of K1, which is associated with the (invariant) sub-group
dsp2Cpy, and let p: K1—K?1 be the covering map. Then p induces an
isomorphism p;:51—dsps, where 5y =m1(K?), with a 0-cell 22Ep~1e® as
base point. Following S. Eilenberg and N. E. Steenrod in [11] we take

C{ = H(RY, ¢! =H(R, B

as chain groups in K. We denote the boundary homomorphism by
9':C{ —C4.
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Let N:(Z, 0, 1)—>(K?, e €% be a map representing a given element,
xEpy, and let A: (I, 0)—(K?, &%) be the lifted map (i.e. A\=p\). Let
hx & C; be the element represented by A. Clearly hx depends only on
xEp; and not on the choice of the representative map \. Also

(8.2) Fhx = (& — 1)¢°,

where ¢’°€(C{ is the 0-chain, which corresponds to &° and p; oper-
ates in the usual way on C{, C{ . Also {hx.} is a basis for C{. Let yEp,
be represented by a map u: (7, 0, 1)—(K1, €° €. Then xy is repre-
sented by the circuit \ followed by uand k(xy) by the path A followed
by p’: I—K?!, where u=ppu’ and p’(0) =X(1). Therefore

(8.3) h(xy) = hx + &hy.

We identify Co, C; with C{, C{ in such a way that ¢;=hx;, c®=c’".
Then it follows from (8.2), (8.3) and the uniqueness part of Lemma 3
that ~=h;. Hence, and by (8.1a), 8’=0,. Since z=1 if xEdqp,, it
follows from (8.3) and (8.2) that hlldzpz is a homomorphism into
97%(0). It follows from the geometrical definition of %; that hlldng
=h'p~!, where h':5;—07'(0) is the homomorphism in which cor-
responding elements are represented by the same map. Therefore
it follows from the well known relation between the fundamental
group of a polyhedron and its first homology group that h1]d2p2 is
onto d7'(0), which establishes (a).

If hix=0, then (£—1)c®=0:kx=0, whence £=1 and xEd.p..
Therefore, writing G° for the commutator sub-group of a given
group, G, we have

B3 (0) = (k1| daps) (0) = pal' ™~ (0) = pifs.

But f(G°) = (fG)* if f is any homomorphism of G onto any other group.
Therefore

1 0) = (pip1)” = (dwps)” = daps = daliz (0).

Let xy~l=zEdh;'(0). Then hz=0 and z=1, since z&Ed;spz. There-
fore

hx = ki(zy) = hy.
Conversely, let hx=hyy. Then
(& — 1)¢® = d1hix = d1hyy = (§ — 1)c°,
whence %=74. Therefore
hi(xey™) = hx + Zhy™! = x + iy = hx — by = 0,
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whence xy~1&dsh;~1(0). This proves (b).

Let ¢&€C; be such that dic=(%—1)c? Then 9:(c—rix)=0 and it
follows from (a) that ¢ —hx =hyy for some y&Edaps. Let ¥’ =yx. Then
y=1, x'€% and

ha! = hy + ymx = hy + hx = ¢,

which completes the proof of Theorem 8.

We now define d; by (8.1b), with #=2. Since dsk;'(0) =1 this gives
a single-valued map, d;: Co—C}, which is obviously an operator homo-
morphism. Thus 9, is defined for each n=1. It follows from (8.1b)
and Theorem 8(a) that

6162h2 = alhldg = 0
and from (8.1b) that
anan+1hn+1 = anhndn+1 = hn—-ldndn+1 =0 (” = 2)°

Since &, is onto C, (n=2) it follows that 9 =0.
Let ¢&C and x&Ep, be given. Then we have:

LeEMMA 5. If Qsc=hix there is a unique element, aSps, such that
hwa=c, daa =x.

Since ks is onto C; there is an a’Ep; such that ha’=c. It follows
from (8.1b) and the relation dsc=hyx that

hlx = 626 = 62h2a' = h1d2(l/.
Therefore it follows from Theorem 8(b) that
X = (dzb)(dzd’ = dz(b + G’),

where bER;1(0). Let a=b+a’. Then hwa=hwa'=c, since hbd=0.
Therefore hya=c, dwa=x. Let hwa1=c, dway=x. Then h(a—a,) =0,
ds(a—a;) =1 and it follows from Lemma 1 that a;=a. Therefore a is
unique.

9. Chain mappings and homomorphisms. Let p, p’ be two homotopy
systems and C, C’ the associated systems of chain groups. By a chain
mapping, g:C—C’, we shall mean a family of operator homomor-
phisms, g.:C,—C,!, associated with a homomorphism, f:5,—5{ , such
that

(a) goc® = ¢'°,
(b) gn—-lan = angn (n = 1)1

where ¢ ¢’ are the preferred basis elements in Cy, C{. If there is a

9.1)
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homomorphism, f:p—p’, such that
(9.2) gnhn = hnfn

then we shall say that f énduces or realizes the chain mapping g. In
this case it follows from (8.1a), (9.2) and the relation g%=(f%)g
(#Epy) that

(Fi& — 1)¢° = dihfix = digihux
(9.3) = god1hix = go(% — 1)c°
= (f& — 1)c.

Therefore f=7.

Let C, C’, C"' be systems of chain groups associated with homotopy
systems p, p’, p'’. Let g: C—C’, g’: C'—>C"" be chain mappings which
are induced by homomorphisms f:p—p’, f':p’—p’’. Then it is easily
verified that g’g: C—C’’ is a chain mapping induced by f’f:p—p”’.

THEOREM 9. A homomorphism, f:p—p’, induces a unique chain
mapping, g:C—C'. A chain mapping, g: C—C’', can be realized by at
least one*' homomor phism, f:p—p’.

Let f:p—»p’ be given. Then we define go by gofc®= (fiz)c’®. Let {x:}
be a basis for p;. Then {hlxt} is a basis for C; and we define g by
gibixi=Mhfix;. It is easily verified that gihy, Aifiipr—C{ are both
crossed homomorphisms associated with fi. Therefore gih =hfi, ac-
cording to Lemma 3.

If n =2 we define g, by gnhyn =Fknfs. If ha =0, then a Epj and foa Eps,
whence hsfsa =0. Therefore g, is a single-valued map, which is obvi-
ously an operator homomorphism associated with fi. So is g, =lhnfaliy '
(n>2). The family of maps g.: C,—C, satisfies (9.2). Since %, is onto
Cp,if n>1 and {hlxi} is a basis for C; it follows that (9.2), together
with fi and (9.1a), determine {gn} uniquely.

It follows from (9.2), with =1, and (8.1) that

g1l = dihifix = (fix — 1)ef
= go(% — 1)¢°
= god1h:1%.
Therefore 0121 =_g0:. A similar, but simpler, argument shows that
0ngn=gn-10, for any n>1. Therefore g={g.} is a (uniquely de-

termined) chain mapping, which is induced by f.
Now let g:C—C’ be a given chain mapping, associated with a

2 See the addendum and (10.9) below.
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homomorphism flzﬁl—n‘){ . Since
O1g1hix; = god1hiwi = go(&; — 1)c°
= (fr& — 1)c"°
it follows from Theorem 8(c), applied to p{, that there is an element,

y! Ep{, such that gihx;=hy!. We define fi:p1—p{ by fixi=y!.
Then it follows from Lemma 3, as in the first half of the proof, that

(9.4) &1k = hafi
Let A be a basis for p, and let
cd = gahsa & C4
for each a € 4. Then
02Cq = O3gahat = g192h20 = gihidea
and it follows from (9.4) that
ds¢d = hifidsa.

By Lemma 5 there is a (unique) b, €ps such that ks =cd, dabd
=fidsa. Since dqb, =fidsa it follows from Lemma 2 that there is a
(unique) operator homomorphism, fs:pe—p4 , associated with fi, such
that faa =0/ for each a €A4. Then dyf:a =fid:a and

hzfz(l = hzba’ = Ga’ = gzhzd.
Therefore dsfs=fids and hofo= gohs.

If n=3 let f,=h; g.h.. Then f, (n=2) is an operator homomor-
phism associated with f, and gh="hf, dofe=fids. It remains to prove
that dufn=fr-1d, when n>2. It follows from the relations hd =20k,
hf=gh, dg=g0 that

hn—ldn n = anhnfn = angnhn
(9.5) = gn—lanhn = gn—lhn—ldn
= hn—lfn—-ldno

If »>3, then k,; is an isomorphism and it follows that d,f.,=Ffs-1dn.
Also ha(dsfs—fads) =0 and

do(dsfs — fads) = dadsfs — frdads = 0.

Therefore it follows from Lemma 1 that dsf;—f:ds=0, which com-
pletes the proof.

There is an element of arbitrariness in the choice of fi, satisfying
(9.4). Let fi:p1—pi be a given homomorphism such that % fi=gihi.
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Then the above construction gives f:p—p’ uniquely. Therefore we
have the addendum to Theorem 9:

ADDENDUM. The chain mapping g has a unique realization, f, such
that fi:p1—pl s a given homomorphism, which salisfies the condition
h1f1=g1h1-

10. Chain homotopy. Let p, p’ be given homotopy systems and
C, C' the associated systems of chain groups. By a chain deformation
operator: 7n:C—C’, associated with a homomorphism, fi:5—p1, we
shall mean a family of operator homomorphisms, 7,:Ch1—C,
(n=1), associated with fi. Let g, g’: C—C’ be chain mappings asso-
ciated with homomorphlsms fi, f{ :;1—p!. We shall describe g as
chain homotopic to g’, and shall write g~~g’, if, and only if, there is
an element @' €p{ and a chain deformation operator, n: C—C’, asso-
ciated with f; such that

(101)7 w’g; — & = a7'-}-1777-}4 + 17:0r (r = 0; 000 = 0)

Since goc®=gd c'°=c'?, where c"& Cy, ¢'°&(C{ are the preferred basis
elements, it follows from (10.1), that dimic®= (@’ —1)c’%. It follows
from Theorem 8(c) that there is a w’& @’ such that

(10.2) 71c® = hw'.
I say that, in consequence of (10.1),,
(10.3) fl& =@ \(fir)w'

For dym1: Co—C¢ is an operator homomorphism associated with fi.
Therefore it follows from (10.1), that

(@'gl — go)ac® = (J1%)(@'ed — go)c
= (hiw)@ — 1)c°
But we also have
(@' — go)c® = {w'(F{ )gs — (fi&)go}c°
= {@'(J{ &) — fz}c".
Therefore
i)@' — 1) = %' (i ) — fig,

which reduces to (10.3).
Let g, g’: C—C’ be the chain mappings induced by homomorphisms
f, f'ip—p’. For convenience we display the formula

(10.4) w'f,f - fn = dn+1£n+1 + sndm
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in which w’&p,, and £:p—p’ is a deformation operator.

TrEOREM 10. fof’ if, and only if, go~g’. More precisely, f, ' are
related by (10.4) if, and only if, g, g’ are related by (10.1), where

(a) me® = v,
(b) hngn = ﬂnhn—l (ﬂ = 2)

First let f~f’ and let f, f’ be related by (10.4). Let {x:} be a basis
for p1. Let 51: Co—CY, n2: Ci—C4 be the operator homomorphisms,
associated with fi, which are defined by 7:c°=hw, nohix; = hafax;.
Clearly 7k, hef2:p1—C4 are both crossed homomorphisms associ-
ated with the homomorphism x-——»flx. Therefore 9k = hefs. Since pd
is Abelian it follows that £45'(0) =0. Therefore a single-valued map,
n3: Co—C{, which is obviously an operator homomorphism, is de-
fined by n3ha=hs&s. Let 9, =hnfuhyy if #>3. Then (10.5) is satisfied.

Let F,:p.—p. , G.: C,—C/! be the maps which are given by

F, = ‘w,fn, - fn — &dn — dn+1£n+l (n = 1)'

=! !

Gr = Wg — & — Tlrar - 6,+1q,+1 (r % O).

(10.5)

(10.6)

We shall prove that
(10. 7) hnFn = Gnhny

assuming only (10.3), (10.5) and that g, g’ are induced by f, f’. Since
hf = gh we have

ho(w'fa — fa) = (@8 — gn)lm (nz2)
and from (8.1) and (10.5)
hn(@niibnis + Endn) = Ontibintrbnir + Nulin1dn
= (Ot 1Mni1 + 1n0n) bine

Therefore (10.7) is valid if »=2. L
Let xEp, and let u=fix, u’=f{ x. Then w'u'w'~'=14 according to
(10.3), and it follows from (3.2 )and (3.3) that
h(w'v' w—lut) = hw' + w'hw' — dhw' — o
= @' b’ — b — (4 — 1) ko'
= @' hf{ x — hifix — (1% — D)n1e®
= (w'g{ — g)hix — (& — 1)c°
= (@'gl — g)hix — mdix
= Gihix + Imelux.

(10.8)
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But 92n2h; = 02hefs = hidafs. Since
(W' vty )* = 1, (dafax)* = 1,
where y*=73 (y&p{), it follows that
WPz = hi{w'u' w1 (datax) ™
= (o' W' ut) — hidokax

= Glhlx.

Therefore (10.7) is valid for every n=1. Since h,p,=C, if >1 and
{hlx,'} is a basis for C; it follows that G, =0 in consequence of F,=0.
Since goc®=gJ c®=c’ it follows from (10.5a) that Goc®=(%'—1)c’®
—01m1c®=0. Therefore (10.4) implies (10.1), with £ and 75 related by
(10.5).

Conversely let g, g’ be related by (10.1). Then (10.2), i.e. (10.5a),
and (10.3) are satisfied. Let u;=fix;, #! =f{ x;. Then it follows from
(10.8), with G;=0, and Lemma 5 that there is a (unique) element,
a! Epd, such that

hzd.', = ﬂzhl,x,;, dzd"l = w'y w1t

Let &:p1—p4 be the crossed homomorphism which is determined by
£xx;=a!, according to Lemma 3. Then, reverting to the additive
notation for p{, we have

hobaxi = nakixy, doboxi = Wf{ % — f1..

Clearly hafs, noh1:p1—C4 _are crossed homomorphisms associated with
the homomorphism x—fi&. Also dqfs:pi—p! and, as observed in §3,

(w’ f{ —f1):p1—p{ are crossed homomorphisms associated with fi.
Therefore

h2£2 = nohy, d2fz = w’fl' - f1-
If n>2 we define
En = hzlnnhn—lzpn—l ad pnlu

thus defining a deformation operator £, which satisfies (10.5b). Since
(1Q.3) and (10.5) are satisfied, so is (10.7). Since G, =0 it follows that
hoF, =0, whence F,=0 if n>2.
Since
d(w'fu = fo) = (@frs = fa1)dn

and
dn(dn'l-lfn-}-l + gndn) = dngn n = (dngn + Eu—ldn—l)dn
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it follows that
doFy = Frsdn (n = 2).

We have proved that F;=0, whence d;F2=0. Since k:F:=0 it follows
from Lemma 1 that F,=0. Therefore F, =0 for »=2 and the theorem
is proved.

On taking g=g’, =0, w’ =1 we have the corollary:

COROLLARY. If f, f':p—p’ induce the same chain mapping, g: C—C’,
then fo~f’.

In this case it follows from (10.5) that &, =0 if z>2. Also we may
take w’=1, so that

(10.9) fl —fi=doks, fi — fo=Fds, fi =fa (n > 2),

where heés =10 =0.

The operator 7 is determined uniquely by (10.5) if w’ and £ are
given. When 7 is given the element w’ may be replaced by z'w’, for
any z'E€dsh;'(0) Cp!, according to Theorem 8(b). Once w’ has been
fixed, so as to satisfy (10.2), then £ is determined uniquely by the
conditions F;=0 and (10.5). Moreover in this statement it need only
be assumed that &,:p,—1—p. is a single-valued transformation. For
£xx&ps is determined uniquely by the conditions

dgfzx = (w’f{ - f1)x, hzfzx = 1]2]113\’2

and £, by &.=h; ",y (n23). But we have proved that there is a
deformation operator, £:p—p’, associated with fi, which satisfies
these conditions. Therefore the fact that £:is a crossed homomorphism
associated with fi, and £, an operator homomorphism if #>2, is a
consequence of Fi=0 and (10.5).

11. Chain equivalence: Proof of Theorem 1. Let C, C’ be systems
of chain groups associated with homotopy systems p, p’. A chain
mapping, g: C—C’, is called a chain equivalence if, and only if, there is
a chain mapping, g’:C’—C, such that g’g~1, gg’~1. We shall de-
scribe C as equivalent to C’, and shall write C=(_’, if, and only if,
there is a chain equivalence g: C—C’.

THEOREM 11. The relations >, between chain mappings, and =, be-
tween systems of chain groups, are equivalence relations.

On taking ®’=1, =0 in (10.1) we have g~g. In general it follows
from (10.1) that

w'lg — g’ = an* + 1*9,
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where n* = — w'~1y. Since 7%= (fi %) it follows from (10.3) that
& = — o (fid)n = — (F &)w" ",
Therefore n* is a chain deformation operator associated with f/ and
it follows that g'~~g.
Let g, g’: C—C’ be related by (10.1) and let g’, g’’: C—C’ be re-
lated by
w//g// _ g/ = 677, + 1'9,
where 7’ is a chain deformation operator associated with f{. Then
w'w'g’ — g =0(n+ @) + (n + w'7')d.
Moreover
(n + @'n)& = (fug)n + @' (F{ &)’
= (fi®)(n + @'n').

Therefore n+ %'y’ is a chain deformation operator associated with fi.
Therefore g~g’ and g’'~g’’ together imply g~~g’’. Therefore ~ is an
equivalence relation.

The relation = is obviously reflexive and symmetric. Let C, C’, C'’
be chain groups associated with homotopy systems p, p’, p’’. Let
f~g: C—C', f'o~g’: C'—C"'. Then it is easily verified that

(11.1) flf~flg~gg.

It follows from this, as in the ordinary theory of homotopy or chain
homotopy, that = is transitive. This completes the proof.

Let p, p’ be given homotopy systems and C, C’ associated systems
of chain groups.

THEOREM 12. p=p’ if, and only if, C=C'. More precisely, a homo-
morphism, f:p—p’, is an equivalence if, and only if, the induced chain
mapping, g: C—C’, is a chain equivalence.

Let f:p—p’ and f’:p’—p be homomorphisms and let g: C—C’ and
g’:C’—C be the induced chain mappings. Then g’g, gg’ are induced
by f'f, ff’. Also the identical chain mappings, 1:C, C'—C, C’ are ob-
viously induced by 1:p, p’—p, p’. Therefore it follows from Theorem
10 that f'f~1, ff’'~1 if, and only if, g’g>~1, gg’~1. This proves the
theorem.

As an obvious corollary of Theorems 11 and 12 we have one half
of Theorem 1, namely that = is an equivalence relation between
homotopy systems. To prove the other half let fo~f’:p—p’ and let
g, g':C—C’' be the induced chain mappings. Then it follows from
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Theorems 10 and 11 that go~g’, g'~yg, f'~f. Therefore the relation o~
is symmetric. Similarly it is transitive and it is obviously reflexive.
Therefore it is an equivalence relation. This proves Theorem 1.

It follows from (10.3), and an argument similar to the one at the
end of §4, that the homomorphism, fy:5;—5{ , which is associated with
a chain equivalence, is necessarily an isomorphism.

12. Covering complexes. Let K be a universal covering complex
of a given complex, K, with base point e?© K. Let p: K—K be the
covering map and let a 0-cell 22E p—1e® be taken as base point in K.
We shall show how a system of chain groups {C,}, associated with
p(K), may be “realized” as a system of chain groups in K.

Our conventions concerning homology are as follows. Let X and
XCX be given spaces. Then H,(X, X,) will denote the nth relative
homology group, with integral coefficients, which is defined in terms
of (finite) singular chains. By an oriented #n-element, E», we shall
mean an #-element, £, associated with a generator, ¢, of H,(E", 0E™).
Let E* be thus oriented. Then a map

9:(E", 9E") — (X, Xo)
induces a homomorphism
04 H,(E", dE™) — H, (X, X,)

and we shall described 0xc as the element represented by 0. Similar
observations apply to dE* and maps dE"—X,.

We orient I so that 0 is its first and 1 is its last point. We orient
I"=IXI*1 (n2=1) and its faces by induction on # and the standard
rule for orienting topological products. This gives

(12.1) I =1 X In— 0 X I"— I X aI™.
Following S. Eilenberg and N. E. Steenrod we take
Ca = Cu(K) = H, (K" K" (n 2 0)
as the group of n-chains?? in K, with Co(K) =H,(K"). We shall use
(®): K- K

to denote the covering transformation (Deckbewegung), which is
determined by £&p=m1(K). We shall also use % to denote the auto-
morphism

22 See [11] and also [13, §17]. All our chains are finite because of (D) and (N) in
in §5 of (I), from which it follows that any compact sub-set is contained in a finite
sub-complex of K.
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%:C, — Chp,

which is induced by 7(&). It satisfies the condition %= %d. The group
C,, with %:C,—C, thus defined, is a free p;-module.

Let {e}‘} be the cells in K and let /& K be a cell which covers e}.
The cell & may be any one of those which cover ¢} unless #=0 and
¢} is the base point e*© K. In this case & shall be the base point
Z°E KO, Let ¢?EC, be an elementary n-chain associated with &7, mean-
ing the element represented by a characteristic map for &. Then
{ct} is a basis, which we call a natural basis, for C.,.

We proceed to show that the groups C, (#>1) are related to the
groups p, =p,(K) in the way described in §8. If K° consists of a single
0-cell the same is true of Co, Ci. In general we shall define sub-groups
of Co, Ci which are thus related to po, p1. We begin with some pre-
liminary observations on lifted maps and homotopies.

Let ¢: (X, e®)—(L, ¢’%) be a map into a complex, L, with base point
¢’%. Then there is a unique “lifted” map,

(12.2) ¢:(K, &) — (L, ),

such that ¢p = pd, where L is a universal covering complex of L and
#'°c L is the base point in L. Similarly a homotopy ¢.: K—L, such
that ¢ee®=e’?, can be lifted into a unique homotopy, ¢.: K—L, such
that ¢.p=pd,, $oa®=2’%. When we refer to a lifted map, ¢ or homo-
topy, ¢, it is always to be understood that ¢a°=2"0 or ¢¢&°=2"¢. Let
¢: be lifted into ¢, and let ¢e®=e’?, in addition to ¢ee®=e’0. Let
wE&mi (L) be the element represented by 0:7—L, where 0(¢) =¢.e.
Then ¢,8°=7(w)&’?, whence

(12.3) b1 = 7(®)${,

where ¢/ is the map defined by lifting ¢;. It is inherent in the lifting
process? that

(12.4) éer(%) = r(FiE)de,

where £E 5, and fy: 7 (K)—mi(L) is the homomorphism induced by ¢o.

Let N\: (I*, I9)—(K™, €°) (n=1) be a map which represents a given
element a €p,. We define #,a & C, as the element represented by the
lifted map N:I*—K». If n>1, then h,:p,—C, is the resultant of the
“lifting” isomorphism, p,—p,=p.(K), followed by the homomor-
phism 7%,: 5,—C,, in which corresponding elements are represented by
the same map. The latter is onto and its kernel is the commutator sub-

23 This is obvious if the lifting is defined in terms of paths joining ¢° to arbitrary
points in K.
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group of p,, which is zero if #>2. Therefore %, is onto and its kernel
is the commutator sub-group of p,. As in §8 above it follows that
h1:p1—Ci is a crossed homomorphism and that

(12.5) ahx = (& — 1)c°,

where ¢°€ () is the elementary 0-chain associated with &°.
We prove that &, (n=2) is an operator homomorphism. Let

9:(1, 0, 1) — (K, ¢, e

be a map, which represents a given element x&p, and let § be the
lifted map. Then 8(1) =7(%)e’. If aSp, is represented by a map,
A I"—K», then xa is represented by a map, Ne:I*—K", which is
related to My by a homotopy,

Nt (I7, 8I") — (K, K1),

such that \;7°=0(t). Let A\, be the lifted homotopy (AoI°=2°) and let
A be the map defined by lifting \;. Then N\’ represents k,a and, as in
(12.3), Mi=7(£)N’. Therefore A; represents &h,a. But h,(xa) is repre-
sented by Ao and hence also by Ay, since an element of C, is defined
without reference to base points. Therefore

(12.6) ha(xa) = Zhaa (n = 2).
We now prove that 0k ="hd. Let
A:(In 9I" Er1) — (K™, K™, €%
be a map which defines ¢« Ep,,, where

s

E7 =or — (I = o) (I =1x 1.
Then B.a and d.a are represented by
wkiIv1 — K1,

where u=)\l I7™'and kp=(1, p), as in §5. Let X be the map defined
by lifting \. Since E*—!is connected it follows that AE»~1=2° whence
MOITY) =2°. Therefore p lifts into E=X|I}"! and pk lifts into fik.
Therefore fik represents %,1d.a. The element 9,%.a is represented by
7| 0I" or, since \E*~1=2° and n—1>0, by & or by fik. Therefore

(12.7) Onkn = hudy (n = 2).
Let TCK?!* be a tree, which is a sub-complex containing K° and

let TCK* be the component of p—!T which contains the base point
8. Let C,(T)CC, (r=0, 1) be the group of r-chains carried by 7.
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Since m(T)=1 it follows that p| T is a homeomorphism onto 7.
Therefore C,(T) is an ordinary free Abelian group. Since K°CT, a
basis for Co(T) is a basis for Co. Let C{ CCy be the (free) 5;-module,
which is generated® by a basis for Ci(T). If K*>T let {e;} be the 1-
cells in K!—T and let g;:I—¢ be a characteristic map for e}. Let
6;: I—K* be the map which consists of a path in T, leading from e° to
2:(0), followed by g;, followed by a path in T, which leads from g;(1)
back to e'. Let x;Ep; be the element defined by ;. Then {x;} is a
basis for pi. Since hwx;EC; is represented by the lifted map, 8;, it
follows that

I = ¢, + ¢/

where ¢; is defined by the map g:: I—K?, such that gi=pg;, 3:(0)E T,
and ¢! €C!« The set {c,- }, together with a natural basis, {c){ }, for C{
constitutes a natural basis, {ci, o }, for C;. Therefore {hlx;, o } isa
basis for Ci. Hence C; is the direct sum

(12.8) Ci=Ci+CY,

where Ci¥ is the (free) pi-module generated by {hlx,-}. Let C#CCy be
the pi-module generated by the elementary 0-chain, ¢?, associated with
2. Let Cf=C, if n>1. Then h,p,CC,* and we interpret k, as a map
hiipa—CF (n=1). It follows from (12.5), (12.6) and (12.7) that p(K)
is related by &, to the system C*= {C,.*} in the way described in §8.
We shall describe C as the complete system and C* as a normalized
system of chain groups determined by K. In general C* depends on
the choice of T. If K°=T=¢° then C*=C.

LeEMMA 6. Ci¥=0"1C¢.

It follows from (12.5) that 8;C*CC¢*. We have to prove that, if
91cECF (cECy) then c&CF. Let {cg} be the set of elementary
0-chains associated with the O-cells in T'—&° Let v\=c)—c¢ Then
{c% v} is a basis for Co. Therefore Co is the direct sum

(12.9) Co=Cs +C{,

where C{ has {v\} for a basis. Since T is a tree there is a basis,
{c!}, for Ci(T) such that dic =v,. Then {c/ } is a basis for the sum-
mand C{ in (12.8) and 61| C{ is an isomorphism onto C¢- Let ¢=c*
+c¢’, where c¢*&Cf¥, ¢’&C/, and let 9ic&C¢. Since 9,CF*CCE,
0:C{ CC¢ it follows that 9;¢’=0. Therefore ¢’ =0 and c&E Cj*.

% I.e. generated by py, operating on the basis elements in C;(T).
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13. Chain mappings: Proof of Theorems 5 and 6. Let ¢: (K, ¢
—(L, e'%) be a given map of K in a complex L, with base point e’®.
Let

g.:C(K) — C(L) (n=0,1,--+)

be the homomorphism induced by the lifted map, ¢: K—L. It follows
from (12.4), with ¢,=¢ that each g, is an operator homomorphism
associated with the homomorphism, fy:m(K)—mi(L), which is in-
duced by ¢. Also gd =0dg and we shall describe

g = {g.}:C(K) > C(L)

as the chain mapping induced by . We shall also describe it as 7n-
duced, or realized geometrically by ¢. A chain mapping, g: C(K)—C(L),
which need not have a geometrical realization, shall be defined as in
§9, with modified restrictions on go. We required go to map each ele-
mentary 0-chain on an elementary O-chain and, except when the
contrary is stated, ¢® on ¢’?, where ¢, ¢’® are the elementary 0-chains
associated with the base points. Chain mappings C(K)—C*(L),
C*(K)—C(L), etc., shall satisfy the similar condition, where C*(KX),
C*(L) are normalized systems determined by K, L. Chain homotopy
and chain equivalence shall be defined as in §§10, 11. We still have
(10.2) and (10.3), with these modified definitions. It follows from
(10.3) that the homomorphism, m(K)—w1(L), associated with a chain
equivalence, C(K)—C(L), is necessarily an isomorphism.

We now prove a very well known theorem, adapted to our set of
definitions. Let

8 §:C(K) - C(L)
be the chain mappings induced by maps
é, ¢':(K, e) — (L, ¢°).
THEOREM 13. If ¢=~¢’ then g~~g'.

Let ¢,: K—L be a homotopy of ¢o=¢ into ¢y =¢’. Let X: I*— K" be
a map which represents a given element ¢&C,(K) (n=0) and let
N1 E Cry1(L) be the element represented by &:Irt1— L+l where®

ﬁ(ty tl; DR tn) = ati\(tly C oty tn)-

As in the classical theory of chain homotopy it follows that the map
N1l Cu(K)—Cry1(L), which is thus defined, is a homomorphism. It
follows from (12.4) that it is an operator homomorphism associated

% %I In since ¢1, and hence &, is cellular.
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with the homomorphism fi:71(K)—mi(L), which is induced by ¢,. It
follows from (12.1), carried into L by the map %, and from (12.3)
that

an+1’7n+16 = (wgn, — &n — ﬂnan)cs

or that wg’—g=07n+709, where % means the same as in (12.3). This
proves Theorem 13.

THEOREM 14. 4 map ¢: K—L is a homotopy equivalence if, and only
if, the induced chain mapping, g: C(K)—C(L), is a chain equivalence.

Let ¢ be a homotopy equivalence. Then it follows from Theorem 12,
by a familiar argument, that g is a chain equivalence.

Conversely, let g be a chain equivalence. Then the associated homo-
morphism, fi:m(K)—m (L), which is the one induced by ¢, is an
isomorphism. Also the induced homomorphism,2? H,(K)—H,(L), is
an isomorphism, for each #=0. Therefore Theorem 14 follows from
Theorem 3 in (I).

Let K°=¢% L9=¢’9, so that C(K)=C*(K), C(L)=C*(L), and let
fip(K)—p(L) be the homomorphism induced by ¢: K—L. Then it is
to be expected, and is in fact proved in Lemma 9 below, that the
chain mapping, g: C(K)—C(L), which is induced by ¢, is the one in-
duced by f. Therefore Theorems 5, 6 follow at once from Theorems
13, 14 and Theorems 10, 12. In general there is a gap between The-
orems 13, 14 and Theorems 10, 12, which we bridge by means of
three lemmas concerning C*(K) and C*(L).

The identical map ¢: C*(K)—C(K) is obviously a chain mapping.

LeMMA 7. 7: C¥*(K)—C(K) s a chain equivalence.

Using the same notation as in the proof of Lemma 6, let k: C(K)
—C*(K) be the chain mapping which is given by k| C*(K)=1,
kel =0, kun=0. Then ki=1 and ¢k —1=09%-+0, where 7 is given by
non=—cx, nc®=0, nC,.(K) =0 if >0. This proves the lemma.

Let ¢, k mean the same as before, both in K and L. Let g, g": C(K)
—C(L) be any chain mappings and let

(13.1) g* = kgi:C*(K) — C*(L), g* = ky'i.
LEMMA 8. g*>~g'* if, and only if, g~g’.
It follows from (13.1) that g¥*~g’* if g~g’. Let g*~g’*. Then
g~ tkgik = ig*k ~ ig*k~ ¢,

26 There is an isomorphism, H,L(I’f)z 6;1(0) —0n41 Coy1(K), which is natural, as the
term is used in §38 (p. 815) of [9].
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which proves the lemma.

Let f:p(K)—p(L) be the homomorphism and g:C(K)—C(L) the
chain mapping induced by a map ¢: K—L. We shall also describe g*,
given by (13.1), as ¢nduced by ¢.

LeMMa 9. g*:C*(K)—C*(L) is the chain mapping induced by
Fip(K)—p(L).

Since ge®=¢'? it follows that goC¢f(K) CCF(L). Also dic* & Ci*(K)
if ¢*& C¥(K). Therefore

alglc* = goalc* E C:(L)

and it follows from Lemma 6 that g,C{f(K)CC{#(L). Since ¢ is the
identity and k] C*(L) =1 it follows that g*, in (13.1), is given by
gatc¥* =g c* if ¢*ECH(K). Therefore gnhna =g haa for each a Ep,(K)
and n=1.

Let A: I»—K" be a map representing a €p,(K). Then f,a is repre-
sented by ¢\ =pu, say, and A,f.a by the lifted map %. Obviously & =@\,
where &, X are defined by lifting ¢, \. But ¢} represents the element
gnbna = g*hya. Therefore hf =g*h and the lemma is proved.

Proor oF THEOREM 5. Let the notation be the same as before and
let p~¢’: K—L. Then it follows from Theorem 13 and Lemma 8 that
g*~g’* and from Lemma 9 and Theorem 10 that f~~f’. This proves
Theorem 5.

Proor oF THEOREM 6. Since ¢, k are chain equivalences it follows
that g*, given by (13.1), is a chain equivalence if, and only if, gis a
chain equivalence. Therefore Theorem 6 follows from Theorem 14,
Lemma 9 and Theorem 12.

As an analogue to the corollary to Theorem 6 we have:

THEOREM 15. If dim K Sm+1 and if L is a Jn-complex, then K=L
if, and only if, C(K)=C(L). More precisely, any chain equivalence,
C(K)—C(L), can be realized by a homotopy equivalence, K—L, and
conversely.

Since k: C(K)—C*(K) and ¢: C*(L)—C(L) are chain equivalences
this follows from the corollary to Theorem 6, from Lemma 9 and
from Theorem 12.

We conclude the section with a theorem on the realizability of chain
mappings, which is analogous to Theorem 4. Let g: C(K)—C(L) be a
chain mapping associated with a homomorphism f:r;(K)—mi(L). Let
KyCK be a connected sub-complex, which contains €. Let

i:ﬂ'l(Ko) — W'I(K), j:C(Ko) —> C(K)
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be the homomorphism and the chain mapping, associated with 7,
which are induced by the identical map K,—K. We describe a map,
¢o: Ko—L, as a partial realization of g if, and only if, it induces the
chain mapping

gj:C(Ko) = C(L).

The chain mapping gj is associated with f0 =f7:m; (Ko)—m(L). There-
fore, if ¢ induces gj, the homomorphism f° is the one induced?’ by
Po.

Let ¢po: Ko—L be a partial realization of g. Let K,, with a base point
covering e°, be a universal covering space of K, Then gj is the chain
mapping induced by the lifted map $o: Ko—L. Let KoC K be the com-
ponent of p~1K, which contains &°. Then K, is a covering complex of
K,, associated with the sub-group 7-1(1) Cm1(K,), and K, is a universal
covering complex of Ko, with a covering map p: KO—»KO Since
fo-1(1) =fz—1(1) =1 the map ¢, can be lifted® into a map ¢o: Ko—1L,
and @ is the map obtained by lifting ¢, into K. Therefore

B0 =¢p: KoL

and we may regard gj as the chain mapping which is induced by ¢s,.
We state this, in a slightly different form, as:

Lemma 10. If c€Cu(K) has a representative map, NI~ K2, then
ZnC s represented by the map poh: ["—Ln.

THEOREM 16. If K]\ JK"'=K and if L is ¢ Jn-complex, then any
partial realization,po: Ko—L, of a given chain mapping, g: C(K)—C(L),
can be extended to a full realization, ¢: K—L.

First assume that K*CK, Then Ky=K' Ki=K! and?® p;(K,)
=pi(K). Let f9: p(K ) —p(L) be the homomorphism induced by ¢ and
let g*: C*(K)—C*(L) mean the same as in (13.1). Let

N(Z,0,1) > (K1 e €%

be a map representing a given element x Ep;(K) and let \: [—K!= K}
be the lifted map. Then it follows from Lemma 10 that gi*hux =gilx
is represented by the map o\, which also represents hfix.
Therefore If} = gi* 1. Hence it follows from the addendum to Theorem
9 that there is a realization, f:p(K)—p(L), of g*, such that f;=f}.

I say that ¢ is a partial realization of f, or that f° =%, where ¢: p(K,)
—p(K) is the injection homomorphism. For, by Lemma 9, 7 is a real-

2 Cf. a remark following (2.2).
28 In general Cy(Ko)# Cy(K) since C1(Ko) refers to Ko.
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ization of the chain mapping, j*: C*(K,)—C*(K), which is induced
by the identical map K¢—K. Therefore fi is a realization of g*j*.
Since g* is also given by g*c*=gc* (c*&C*(K)) it follows that
g*%*=(gj)*. But (gj)* is induced by ¢, and therefore by f°, according
to Lemma 9. Therefore both fZ and f° are realizations of (gj)*. Since
i1=1 we have (fi)i=fi=f}. Therefore f°=fi, by the addendum to
Theorem 9. Hence it follows from Theorem 4 that ¢, can be extended
to a map, ¢: K—L, which realizes f and hence g*. Let ¢ be the lifted
map. Then :;Sl IZ'0=:¢;0, since q,‘)] Ko=d¢,. Since Ki= K" it follows from
Lemma 10 that ¢ induces the homomorphisms go, gi. Therefore ¢ in-
duces g. Thus the theorem is proved on the assumption that K!CK,.

In general let K;=K\JK! The theorem will follow from what we
have already proved when we have extended ¢, to a partial realiza-
tion, ¢;: K1—L, of g. We first extend ¢o: Ko—L to a map ¢:p~'K¢—L
by writing

Yr(2)p = 7(F&)dop (¢ € K),
for every & m(K). We then extend ¢ to a map
Vi(pt Koy = KL,

which induces go. This is possible since go maps elementary 0-chains
into elementary 0-chains. Moreover

V(o) U (fay,
since go% = (fa?)go. _
Let ¢! be any 1-cell in K1—K,. Let e'& K! be a 1-cell which covers
e! and let ¢!&Ci(K) be an elementary 1-chain associated with &

Then dc¢t=v—u, where %, vC Cy(K) are the elementary 0-chains asso-
ciated with the end points, p, ¢C K?, of &*. Also

9g1ct = godict = gov — gou

and gou, gov are the elementary 0-chains associated with ¢¥'p, ¥'q.
Therefore it follows from an argument similar to the proof of Theorem
8(c) that gic! is represented by a map

pi(I,0,1) = (L ¢'p, ¥'q).
If p=g then¢y’p=y’q, and it follows that the map
0a:uN"1:Et — L

is single-valued and continuous, where N:I—g! is a characteristic
map for &.. Therefore ¢’ may be extended to a map, ¢::p—'K;—L, by
writing
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$1| 7(8)& = r(fz)0a,

for every 1-cell e!€K'—K, and every #&m(K). Then &1 induces go
and g;. Clearly ¢17;(o'c) =7(f%)¢1 and the required map, ¢:: K—L, is
defined by ¢ip=p¢:. This completes the proof.

14. Proof of Theorem 7. Let P=KXI. Then P=KXI is a uni-
versal covering complex of P and we take (e 0) and (&9, 0) as base
points in P and P. The n-cellsin P are the cells & X0, &» X1, 21X (0,
1) forall n-cellsand (n—1)-cells in K.Let 8,: K— P be the homotopy,
which is given by 8, = (g, t) (§EK). Let o a': C(K)—C(P) be the
chain mappings?® induced by &, 8, and let

'Y:Cn(K) —)Cn+l(-P)
be the chain deformation operator which is defined as in Theorem 13,
with L= P, ¢;=0,. Then (a’c}, alc, yci~ ') is obviously a basis for
Cn(P), where {ct}, {c"'} are bases for C,(K), Co1(K). The oper-
ator 9: C,(P)—C,_1(P) is defined by

da c;\l = avac; r=0,1),
(14.1) n—1 1 0 n—1
v = (¢ —a —ydc, ,

which are the same as 9o’ =9, al—a®=0dvy++d.
Let g: C(K)—C(L) (v=0, 1) be chain mappings, which are related
by

(14.2) wgl — g% = dn + 19,

where n: C(K)—C(L) is a chain deformation operator and wE&Em(L).
Then it follows from (14.1) and (14.2) that g: C(P)—C(L) is a chain
mapping, where g is defined by

(14.3) ga® = g° go! = wg, gy = 1.

Conversely (14.2) follows from (14.1), (14.3) and gd =0dg.
Now let g” have a geometrical realization, ¢”: K—L, let g° g! be
related by (14.2) and let

PIEXOU(@XI)U K X1 —L

be given by ¢/(q, ») =¢’q (¢EK), (e t) =\(t), where N\: I—L! repre-
sents @. Then it is easily verified that ¢ is a partial realization of
g:C(P)—C(L). If dim K =m, whence dim P=<m-+1, and if L is a

2 N.B. alc®#c’?, where ¢’ ¢'® are the elementary 0-chains associated with the base
points &K and (2°, 0).
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Jm-complex it follows from Theorem 16 that ¥ can be extended
throughout P, whence ¢°~¢!. Thus ¢! if go~gl,
Theorem 7 now follows from Lemmas 8, 9 and Theorem 10.

15. Examples. Let P and Q be 3-dimensional lens spaces (see
[14, pp. 210, 279]) of types (m, ) and (m, q) where m is the order of
m1(P) and 71(Q). It was proved (see also [15]) in [3] that, if thereis
an integer, k, such that ¢= £+ k% (m), then P=(Q. We give an alterna-
tive proof of this by exhibiting a chain equivalence u: C(P)—C(Q).

As usual we suppose that P, Q are complexes such that C,(P),
C.(Q) have bases consisting of single elementary n-chains,® a,, b,
(n=0, : - -, 3), and that

(15 1) 0a; = (E - 1)00, dag = o',,,(f)al, dag = (Ep - 1)(12,
) by = (n — 1)by, 3bs = am(n)by, 9bs = (97 — 1)by,

where £, n generate m(P), m1(Q) and
o§?) =1+ 4o gD (¢ = §or).
Let ¢g= —k?p (m). Then we replace b3 by —b; and b by 7%:. Since
7% (1) =0.(n) we have
(—bs) = (=2 — D)n%s,  I(n%3) = om(n)b1.

Therefore this has the effect of replacing ¢ by —gq and we assume tbat
g=Fk?p. Since (p, m)=(q, m)=1 we have (k, m)=1 and there are
integers, &, I, such that kl=1-+hm. Then p=I%q (m).

Let

u:C(P) — C(Q), 2:C(Q) — C(P)

be the chain mappings, which are associated with the mutually in-
verse isomorphisms £—n%, n—&!, and are given by ua,=b,, vb,=a.
if n=0or 3 and

uay = O'k(ﬂ)b1, uay = o'k(n’”’)bz,

vh1 = () ay, vh2 = 01(£19)a,.

It is easily verified that du=ud, dv=19.
I say that, if s, ¢ are integers such that lt=s (m), then

(15.3) ox(§)0u(§) = 1+ hon(f).

For let wp=1, wy, * * +, wm— be the mth roots of unity and let x, be
the character of m1(P), which is given by x.(¢£) =w,. It follows from the

(15.2)

30 In these examples the dimensionality of a chain is indicated by a subscript.
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orthogonality relations,

m—1
2 %(E)x:(E) = mdii (4,j=0,--+,m—1),
r=0

that A=0 if x,(\) =0 for every r=0, - - -, m—1, where X is in the

group ring of 7,(P). But
xolox(E)o (g} = Bl =1+ hm = 3%0{1 + hou(®)}.
Also ks=Pklt=t (m) and xT{am(E)} =0 if 20, whence
I It

w,s—l w — 1
. =1

I

xr{ox(E)ai(E9) )

wi—1 wt—1
= %{1+ hou(®},

which proves (15.3).
It follows from (15.2) and (15.3), first with s=I, =1 and secondly
with s=klp=p, t=Ig, that

vuay = vop(n)by = or(ENo(§)ar
= {14 hon(®)}ay,

vuay = voy(n*?)by = oi(E¥7)01(E1)as
= {1+ hon(®) }as.

Therefore vu—1=084680, where 06a¢=0, da;=has, 6a:=0, whence
vu~1. Similarly uv~1 and it follows from Theorem 15 that % can
be realized by a homotopy equivalence P—Q.

Our next example is of a 5-dimensional homotopy system, p= { p,,}
which has no geometrical realization. It is defined as follows.

(a) p1 has a single basis element x,

(b) p2 has two basis elements, as, b2 and das=x? dby=1,

(c) pn (m=3, 4, 5) has a single basis element, @,

(d) das=(£—1)by, das=(£+1)as, das= (E—1)a4, where E=%.

Then dd =0 since £2=1. We shall prove that p has no geometrical
realization.

We can realize the system (p1, - - +, ps, 0, - - - ) by the topological
product Q4=P2X.S?2, where P?=elUe¢y\Jel and S?2=e)Ue? are com-
plexes covering a real projective plane and a 2-sphere respectively. As-
sume that p has a realization K. Then Q%and K3} are two realizations
of the system p®=(py1, p2, p3, 0, - - - ). By Theorem 4 there is a map
¢:K3—Q?, which realizes the resultant, p(K3)—p((0%), of given iso-
morphisms p(K3)—p? and p3—p(Q?). Let K be the complex formed
by identifying each point p& K§ with ¢p & Q. Then K®=(Q?® and the
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map ¢: Ky—K, which is given by ¢| K3=¢,y| Ko—K3=1, obviously
induces an isomorphism p(K,)—p(K). Therefore K is another realiza-
tion of p. Let us take p=p(K). It is easily verified that any basis for
pn (=4, 5) must consist of a single element, which is of the form
+&a, (r=0 or 1). Therefore K has but a single n-cell, e*. Let a, be
represented by a characteristic map for e”. We assume, as we obvi-
ously may, that as, bs, a3 are represented by characteristic maps for
cells in Q. Since (£ —1)as=das=jBas, where j, 8 mean the same as in
§5, and since 3j=0 we have

(15.4) (§ — 1)Bas = B(§ — 1)as = 0.

It follows from the condition (b) that d3 (1), in ps, is a free Abelian
group, which is freely generated by (& —1)as, by, £b2. Moreover j:ms(Q?)
—p; is an isomorphism onto d; (1) and we identify each a Emy(Q?)
with ja€p,. Let P? be a universal covering complex of P2, Then
Q%= P2XS?, with a base point, 8°= (&, e?) covering (ed, ¢), is a uni-
versal covering complex of Q4 We have

0" =S5 X St X r(8)S1,"

where 7(£) means the same as in §12 and Si= P2X &}, ST=2]X S? and
S? and 7(£).S? are attached to S; at the points 2° and 7(£)&°. The ele-
ments (£ —1)as, b, £bs are represented by homomorphisms

oI’ Sy, Aal'— S5, r(EA:al — r(B)ST,

projected into Q2 by the covering map p: J*—Q* Let v be a generator
of m3(d1®) and, if a Emy(X), where X is any space, let a-yEm3(X) be
the element respresented by the resultant of a map dI*—0d13, repre-
senting v, followed by a map dI*—X, representing a. Then it follows
from an easy extension of Theorem 2 in [2], applied to (2 and trans-
ferred to Q% by means of p:(0*—Q*, that 73(Q?) is a free Abelian group,
which is freely generated by

= (kay — as)-y, v="0byvy, (£b)-7,
together with
[(E - 1)0/2, bz], [(E - 1)“2) Ebz]r [b2y £b2])

where [a, b] means the same as a-b in [2]. Obviously £(a-v) = (£a) 7.
Also®t (—a)-y=a-v if aEm2(S2). Therefore

fu = (a2 — £as) vy = (§a2 — a9) 'y = u.

8 See Theorem IIb’ on p. 639 of [16].
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Let ¢ denote both injection homomorphisms :7,(Q%)—m,.(Q3%)
(n=2, 3). Since j,=1 we have

Bas = das = (¢ — 1)bs.
Therefore 1£by =1bs, tfv = (1£b2) y=14v and
i[a, £b2] = [ia, itbs] = [ia, ib;] = i[a, bs),
for any a Em2(Q?). Also a calculation of the Hopf invariant shows that
[62, b2] = +2v. Therefore im5(Q?) is generated by 4, #, @, where
@ = iu, 7 = iv, W= tw, w= [(£ — 1)as, be).

Notice that £ =ifu=a, £5=7.

Let b,&p4(QY) be the element which is represented by a character-

istic map for €2 X ¢€?, in the sense class which makes dby=das= (£+1)as.
Let e¢’?= P2—¢g). Then

s"=aued’, 0'=5"xs
are complexes of which P2, Q¢ are sub-divisions. Let af, b5 Cp2(Q'?)
bi{ €ps(Q’") be the elements represented by characteristic maps for
e’?2X e, 83X e? and e’? X e Then it follows from the definition of [a, b]
that b/ = + [a{, b4 ]. Also the homomorphism p(Q"*)—p(Q*), which
is induced by the identical map Q"*—@4, followed by p:(Q*—Q*, car-
ries a4y bg, b{ into *+(£—1)as, +bs, +(£—1)bs. Therefore B(E—1)bs
=+ 0.
I say that @ is not of finite order. For

m(QY) = my(S'?) + mi(S?),

whence m4(Q*) is of order 4. Since ps((Q*) is a free Abelian group it fol-
lows that jms(Q*) =0. Therefore it follows from the exactness of the
sequence

ma(@9 D pu(@1) D ms(Q?)
that 8 is an isomorphism into m3(Q?). Since (¢—1)d, is not of finite
order neither is .
We now contradict (15.4). Since j(Bas—Bbs) =das—dbs=0 it fol-
lows that fas—BbsE1m3(Q2%). Therefore
Bay, = Bby + 1 + mi 4+ nw
= Bby + lia + md + nB(E — 1)b,
= {1 + u(t — 1)}8b, + i + m3,

where I, m, n are integers. Since £2=1 we have (§—1)2=2(¢{—1) and
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E-D{1LnE—-1D}=1%22)3E-1).
Also (§—1)a=(£—1)5=0. Therefore
(8= 1)Bay = (1 £ 2n)(£ — 1)Bbs = (1 + 2n)w = 0.

Therefore it is absurd to suppose that p has a geometrical realization.
The above argument serves as an example of the use of the groups
w.(K?) and j7(0) =47 ,(K*1), which is discussed in §17 below.

16. Note on p,(K). Let p=p(K), where K is a given complex.
According to (D) in §5 of (I) any compact sub-set of K is contained
in a finite sub-complex of K. Therefore the fact that p, is a free p;-
module if #>2 follows from arguments on p. 417 of [2], restated in
terms of relative homotopy groups. Alternatively one may prove the
result for H,(K», K1), using the Eilenberg-Steenrod “excision”
Theorem, where K is a universal covering complex of K.

We now show how the arguments on pp. 422-425 of [2] can be
used to prove that p; is a free crossed (p;, d2)-module. More generally
let

X = X,U {a}

where the cells {e}} are attached to X, as in [2]. We allow this set of
cells to be infinite provided X is a Hausdorff space such that

(a) Xois an arcwise connected, closed sub-set of X, and

(b) YCX is closed if Y(\X, and all the sets ¥Mé? are closed.

Let this be so. Then it follows from the proof of (D) in §5 of (I)
that any compact sub-set of X lies in the union of X, and a finite sub-
set of the cells {e}}.

Let pe=ma(X, Xo), pr=m1(Xo), with a common base point xo& X,
and let d:ps—p; be the boundary homomorphism. Let ay Ep, be the
element which is defined by a characteristic map3? for e}, joined to %o
by a path in X,. We define a free crossed (p1, ¢)-module kr (=hs in
[2]), with a basis, {ax}, and with ¢ar=da . It follows from Lemma
2, in §2 above, that the correspondence a—aX determines an
operator homomorphism, 0:%,—ps, such that ¢ =d6. Obviously 0 is
onto p; and we shall prove that it is an isomorphism.

Let 62Ce} be a 2-simplex. Then we may absorb the closure of
es—a? into X, for each \. In order to simplify the notation we start
again with e} =07 — 9% and o} Ce}?, where e’} is a 2-cell, which is an
open sub-set of X. Let py be a vertex of ¢7. Any element of p, may be

@ I’.e. a map, ¥:(I?, I8 —(X\Jer, Xo), such that npl I*—9I? is a homeomorphism
onto ex.
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represented by a map,
f: (1% dI% I°) — (X, X, %0),

which is normal in the following sense. The closure of f~lef is a (finite)
set of rectilinear simplexes, a5, o5, + + + CI2—08I2 such that each
f] o3 is a barycentric map on ¢}. Let {sa} be a set of polygonal seg-
ments in I2, which join I° to the vertices po=f"'px o and do not
meet each other or the simplexes o2, except in the end points I°,
pan. For reasons given on p. 422 of [2], a normal map, f, together
with such a set {sqa}, determines a unique element, ¥f € k., such that
0yf Eps is represented by f. Moreover, given a €k, there is a normal
map, fo: I?>—X, such that a =yf..

Let a€6-1(0) and let f,: I*>X be a normal map such that a =yf,.
Let 4%=p*I? be the join of I? with a new point p* and let E?=p*3I?
Ca453. Since f, represents fa =0 it may be extended to a map

f:(43, E?) — (X, X).

We assume that f~l¢%, for each N, is a simplicial complex, which is
mapped by f simplicially on ¢%. Then

L=fa}

is a polygonal linkage, where ¢»Eef. We assume that the vertices of
L are in general position, relative to the projection of L from p* on
I Finally we assume that the segment p*I° is mapped by f on x,.
All these assumptions can be justified by geometrical arguments of
standard type.

Let G=m(4%—L) with p* as base point. Then we define the
homomorphism F:G—h. as on pp. 423, 424 of [2]. Let g&G be the
element which is represented by 12, joined to p* by the segment p*I°,
Assume that a = Fg. Since dI?=0E? and E2CA4*—L it follows that
g=1, whence a=0. Therefore 0 is an isomorphism. The proof that
Fg=yf.,=a is the final stage in the proof of Theorem 4 in [2].

17. The groups 7,( K*). The methods and results in this paper can
be carried further, in certain special cases at least, by introducing
the system of groups, a,(K)=m,(K"), associated with a given com-
plex K. We then have the combined system (p, a) = { Pny a,.}, where
pn=pn(K), an=0,(K) (p1=041), with the homomorphisms

g i
Pnt1 > Oy = Pp.
We define a homomorphism, (f, g):(p, a)—(p’, &), into another such
system, as a family of operator homomorphisms, fa:pa—ps, gnicts
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—a, , associated with fi, such that j.gn=fnjn, ZuBn+1=Lns1fnt1-
We define two such homomorphisms, (f, g) and (f*, g*), as equivalent,
and write (f, g)~(f*, g%), if, and only if, there is a deformation oper-
ator, £:p—p’, associated with fi, and an element w'E€af, such that

(@) Wfn— fa= dapibass + Eudn,
(17.1)

(b) w’a: — Qp = Bn+1£n+1jn-

It is easily verified that a (cellular) map, K—K' in a complex L,
induces a homomorphism (p, &) —(p’, @’), where p’ =p(K’), &' =a(K’).
Let ¢;: K—L be a (cellular) homotopy, such that ¢ee®=¢e’=¢"?,
where e?& K9, ¢'°CK'® are the base points. Let w'Ea/ be the ele-
ment which is represented by the map 0:I—K'!, where 0(¢) =¢".
Let £:p—p’ be the deformation operator, which is determined by ¢..
That is to say, if aE€p, is represented by

(17.2) A:(I7, oI, I — (K*, K™, €%,
then £a &p,,, is represented by p: I*+*1—K’, where
(17.3) wlty by oo v 8) = ¢y - - -, ba).

Let (f, g) and (f*, g*) in (17.1) be the homomorphisms induced by
¢o, ¢1. Then (16.1a) may be verified directly, or deduced from the
proof of Theorem 13 in §13, and the concluding remarks in §10. Let
N(@I") =e®in (17.2), and let N be interpreted as a map representing a
given element b&Ea,. Then u, given by (17.3), represents £,117,.0 and
(17.1b) follows without difficulty from (12.1) and the fact that
n(EXaI) =0(z).

The value of this scheme is restricted by the fact that, in general,
we know practically nothing about w.(K"). But suppose that the
groups ay, -+ - -, o have been calculated, for some 2>2. Then we
can ignore the groups a, for >k and, in some cases, the results in
§§6, 7 above can be improved with the help of the system
(p, 1, * * +, az). For example, jn:a,=~d;'(0) for n=1, - - -, m if K
is a Jn-complex. In this case the groups ay, - - -, am do not give us
anything new and the interest begins with a1 Let K be a finite
complex and let m,(K) =0 for n=1, - - -, m—1. Further assume that
K™t2 s a reduced complex, as defined in [7]. Then we can calculate®
Omi1, and also apyq if m=4.

# See §11 in [6], Theorem 8 on p. 265 of [5], Lemma 4 on p. 418 of [2] and §12
in [12].
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