DERIVATIVES OF INFINITE ORDER

R. P. BOAS, JR. AND K. CHANDRASEKHARAN

Let f(x) have derivatives of all orders in (a, b). If, as $n \to \infty$, $f^{(n)}(x) \to g(x)$ uniformly, or even boundedly, dominatedly or in the mean, then g(x) is necessarily of the form ke^x , where k is a constant; in fact, if $c \in (a, b)$,

$$f^{(n-1)}(x) - f^{(n-1)}(c) \to \int_{c}^{x} g(t)dt$$

and so

$$g(x) - g(c) = \int_{a}^{x} g(t)dt.$$

It then follows first that g(x) is continuous, then that g(x) is differentiable in (a, b), finally that g'(x) = g(x) and so $g(x) = ae^x$.

If $f^{(n)}(x)$ approaches a limit only for one value of x, however, it does not necessarily do so for other values of x. On the other hand, G. Vitali $[10]^1$ and V. Ganapathy Iyer [6] showed that if f(x) is analytic in (a, b) and $f^{(n)}(x)$ approaches a limit for one $x_0 \in (a, b)$, then $f^{(n)}(x)$ converges uniformly in each closed subinterval of (a, b). Ganapathy Iyer asked two questions in this connection:

- (I) If $f^{(n)}(x) \rightarrow g(x)$ for each x in (a, b), where g(x) is finite, does $g(x) = ke^x$?
- (II) If f(x) belongs to a quasianalytic class in (a, b) and $\lim_{n\to\infty} f^{(n)}(x_0)$ exists for a single x_0 , does $\lim_{n\to\infty} f^{(n)}(x)$ exist for every x in (a, b)?

We shall show that the answer to both questions is yes. We also indicate some possible generalizations.

We first answer (I).

THEOREM 1. If $f^{(n)}(x) \rightarrow g(x)$ for each x in (a, b), where g(x) is finite, then f(x) is analytic in (a, b).

It follows from Ganapathy Iyer's result that then $g(x) = ke^x$.

PROOF. At each point x of (a, b) form the Taylor series of f(x). The radius of convergence of this series, as a function of x, has a positive

Presented to the Society, September 5, 1947; received by the editors May 29, 1947.

¹ Numbers in brackets refer to the references cited at the end of the paper.

lower bound; in fact, it is infinite for each x. By a known theorem [2, 5, 11] (stated with an incomplete proof by Pringsheim [9, p. 180]), f(x) is analytic in (a, b).

Next we answer (II).

THEOREM 2. If f(x) belongs to a Denjoy-Carleman quasianalytic class in the (open) interval (a, b), and if $f^{(n)}(x_0) \rightarrow L$ for one x_0 in (a, b), then f(x) is analytic in (a, b).

Again, by the result of Vitali and Ganapathy Iyer it follows that $f^{(n)}(x) \rightarrow Le^{x-x_0}$ in (a, b).

PROOF. We say that $f(x) \in C\{M_n\}$ if $|f^{(n)}(x)| \leq k^n M_n$, $x \in I$, for each closed subinterval I of (a, b), where k depends on f(x) and on I. The class $C\{M_n\}$ is quasianalytic if $\sum M_n^{-1/n} < \infty$; in this case any two functions of the class which coincide, together with all their derivatives, at $x_0 \in (a, b)$, are identical. It is known [3, 8] that $C\{M_n\}$ is identical with the class $C\{M_n^0\}$ obtained by a certain regularizing process; the only property of M_n^0 which we need here is that M_{n+1}^0/M_n^0 is nondecreasing. It follows that every class $C\{M_n\}$, except the trival class $C\{0\}$, contains $C\{1\}$. This seems to have been first pointed out explicitly by T. Bang [1, p. 16]; we reproduce the simple proof.

We have to show that $k_1^n \leq k_2^n M_n$, or that $M_n^o \geq k_3^n$ for some k_3 . Now we have $M_n^o/M_{n-1}^o \geq M_1^o/M_0^o = \alpha$, say. Hence $M_n^o \geq M_{n-1}^o \alpha \geq M_{n-2}^o \alpha^2 \geq \cdots \geq \alpha^n M_0^o$.

Now suppose that $f^{(n)}(x_0) \rightarrow L$ and let

$$g(x) = \sum_{k=0}^{\infty} f^{(k)}(x_0)(x - x_0)^k / k!.$$

For some number Q, $|f^{(n)}(x_0)| \leq Q$. Hence

$$\left| g^{(n)}(x) \right| = \left| \sum_{k=0}^{\infty} f^{(n+k)}(x_0)(x-x_0)^k / k! \right| \le Qe^{x-x_0}$$

and so $g(x) \in C\{1\}$; hence $g(x) \in C\{M_n\}$. But $g^{(n)}(x_0) = f^{(n)}(x_0)$ for every n and so $f(x) \equiv g(x)$, an analytic function.

A natural generalization of the problem is to interpret the relation $f^{(n)}(x) \rightarrow g(x)$ in a generalized sense. For example, if $f^{(n)}(x) \rightarrow g(x)(C, 1)$, dominatedly, the proof given in §1 shows that $g(x) = ke^x$; this proof, in fact, applies to any generalized limit such that $s_{n-1}(x)$ converges to the same limit as $s_n(x)$ (see [4, p. 418], [7] for discussions of such generalized limits, which include, in particular, (C, k), k > -1).

We can also replace $f^{(n)}(x) \rightarrow g(x)$ by $f^{(n)}(x)/\lambda_n \rightarrow g(x)$, $\{\lambda_n\}$ a given se-

quence of constants. We give two simple theorems in this direction.

THEOREM 3. Let

(1)
$$\lim_{n\to\infty} f^{(n)}(x)/\lambda_n = g(x), \qquad a \le x \le b.$$

(i) If lim inf |λ_{n-1}/λ_n| = 0 and (1) holds uniformly, g(x) = 0 in a ≤ x ≤ b.
 (ii) If lim inf |λ_{n-1}/λ_n| > 0 and (1) holds dominatedly, g(x) = ke^{bx}.

The example f(x) = 1/x, $\lambda_n = (-1)^n n!$, a = 1, b = 2 shows that uniformity is essential in (i). It would be interesting to know whether (without uniformity) there can be an exceptional point in the interior of (a, b); if f(x) is analytic, there cannot, as the next theorem shows.

THEOREM 4. If

(2)
$$\lim_{n\to\infty} \sup n^{-1} |\lambda_n|^{1/n} < \infty$$

and (1) is true for each x in a < x < b, then $g(x) = ke^{bx}$ in a < x < b.

If f(x) is analytic, $\limsup n^{-1} |f^{(n)}(x)|^{1/n} < \infty$ for each x and hence either (2) is true or (1) implies $g(x) \equiv 0$.

Proof of Theorem 3. We observe that if a < c < b

(3)
$$\lim_{n \to \infty} \frac{\lambda_{n-1}}{\lambda_n} \left\{ \frac{f^{(n-1)}(x)}{\lambda_{n-1}} - \frac{f^{(n-1)}(c)}{\lambda_{n-1}} \right\} = \int_c^x g(t) dt.$$

If (i) of Theorem 3 is true, the left side of (3) approaches zero as $n \to \infty$ through a suitable sequence; hence g(x) = 0 almost everywhere; but g(x) is continuous because (1) holds uniformly, and so $g(x) \equiv 0$.

If (ii) is true and $\lim_{n\to\infty} |\lambda_{n-1}/\lambda_n| = \infty$, $\lambda_n\to 0$ and so $f^{(n)}(x)\to 0$; otherwise, for some sequence of n's, $\lambda_{n-1}/\lambda_n\to L$, where $L\neq 0$, $L\neq \infty$. Then (3) gives

$$L\{g(x) - g(c)\} = \int_0^x g(t)dt$$

and hence $g(x) = ke^{x/L}$.

PROOF OF THEOREM 4. We have from (1), for each x and for $n > n_x$, $|f^{(n)}(x)| \le (1+g(x))|\lambda_n|$, and so

$$\limsup_{n\to\infty} |f^{(n)}(x)/n!|^{1/n} \leq \limsup_{n\to\infty} |\lambda_n|^{1/n}/(n/e) < \infty.$$

The reasoning given for Theorem 1 now applies.

REFERENCES

- 1. T. Bang, Om quasi-analytiske Funktioner, Copenhagen thesis, 1946.
- 2. R. P. Boas, Jr., A theorem on analytic functions of a real variable, Bull. Amer. Math. Soc. vol. 41 (1935) pp. 233-236.
- 3. H. Cartan and S. Mandelbrojt, Solution du problème d'équivalence des classes de fonctions indéfiniment dérivables, Acta Math. vol. 72 (1940) pp. 31-49.
 - 4. P. Dienes, The Taylor series, Oxford, 1931.
- 5. V. Ganapathy Iyer, Sur un problème de M. Carleman, C. R. Acad. Sci. Paris. vol. 199 (1934) pp. 1371-1373.
- 6. ——, On singular functions, J. Indian Math. Soc. N.S. vol. 8 (1944) pp. 94-108.
- 7. J. D. Hill, Some properties of summability, Duke Math. J. vol. 9 (1942) pp. 373-381.
- 8. S. Mandelbrojt, Analytic functions and classes of infinitely differentiable functions, Rice Institute Pamphlet vol. 29 (1942) pp. 1-142.
- 9. A. Pringsheim, Zur Theorie der Taylor'schen Reihe und der analytischen Funktionen mit beschränkten Existenzbereich, Math. Ann. vol. 42 (1893) pp. 153-184.
- 10. G. Vitali, Sui limiti per $n = \infty$ delle derivate n^{ma} delle funzioni analitiche, Rend. Circ. Mat. Palermo vol. 14 (1900) pp. 209–216.
- 11. Z. Zahorski, Sur l'ensemble des points singuliers d'une fonction d'une variable réelle admettant les dérivées de tous les ordres, Fund. Math. vol. 34 (1947) pp. 183-245.

BROWN UNIVERSITY AND
INSTITUTE FOR ADVANCED STUDY