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Let f(x) have derivatives of all orders in (a, b). If, as n— 0, f((x)
—g(x) uniformly, or even boundedly, dominatedly or in the mean,
then g(x) is necessarily of the form ke?, where k is a constant; in fact,
if c&(a, b),

f=D(g) — fOr=D(g) — f ’ g(t)dt

and so

e — 80 = [ goar
[
It then follows first that g(x) is continuous, then that g(x) is differ-
entiable in (a, b), finally that g’(x) =g(x) and so g(x) =ae.

If f™(x) approaches a limit only for one value of x, however, it does
not necessarily do so for other values of x. On the other hand, G.
Vitali [10]* and V. Ganapathy Iyer [6] showed that if f(x) is analytic
in (@, b) and f™(x) approaches a limit for one x,& (a, b), then f™(x)
converges uniformly in each closed subinterval of (@, b). Ganapathy
Iyer asked two questions in this connection:

(I) If f™(x)—g(x) for each x in (a, b), where g(x) is finite, does
g(x) =ke®?

(II) If f(x) belongs to a quasianalytic class in (¢, b) and
limg.., f™(x0) exists for a single xo, does lim,_.,, f™(x) exist for every
x in (a, b)?

We shall show that the answer to both questions is yes. We also
indicate some possible generalizations.

We first answer (I).

THEOREM 1. If f®™(x)—g(x) for each x in (a, b), where g(x) is finite,
then f(x) is analytic in (a, b).

It follows from Ganapathy Iyer’s result that then g(x) =ke>.
Proor. At each point x of (a, b) form the Taylor series of f(x). The
radius of convergence of this series, as a function of x, has a positive
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lower bound; in fact, it is infinite for each x. By a known theorem
[2, 5, 11] (stated with an incomplete proof by Pringsheim [9, p.
180)]), f(x) is analytic in (a, b).

Next we answer (II).

THEOREM 2. If f(x) belongs to a Denjoy-Carleman guasianalytic
class in the (open) interval (a, b), and if f™ (x0)—L for one x, in (a, b),
then f(x) is analytic in (a, b).

Again, by the result of Vitali and Ganapathy Iyer it follows that
f™(x)—Le* = in (a, b).

Proor. We say that f(x) EC{ M.} if |f™(x)| Sk*M,, xEI, for
each closed subinterval I of (e, b), where & depends on f(x) and on I.
The class C{M,} is quasianalytic if > M;""< «;in this case any
two functions of the class which coincide, together with all their
derivatives, at xo&(a, b), are identical. It is known [3, 8] that
C{M.,} is identical with the class C{M?} obtained by a certain
regularizing process; the only property of M5 which we need here is
that M3,/ M, is nondecreasing. It follows that every class C {M,.},
except the trival class C{0}, contains C{1}. This seems to have been
first pointed out explicitly by T. Bang [1, p. 16]; we reproduce the
simple proof.

We have to show that &} S k3 M, or that M, =k} for some ks. Now
we have M3/ M;_,=Mi/Mj=«a, say. Hence Mi= M, o= My _jo?
= - 2ar M.

Now suppose that f™(x0)—L and let

0

g(x) = X f®(wo)(x — wo)/kL

k=0

For some number Q, I fm (xo)[ = Q. Hence
| g™ (@) | = | 2 fP(xo)(x — 20)*/k!| S Qe
k=0

and so g(x)EC{1}; hence g(x) EC{M.}. But g™ (xs) =f™(xo) for
every » and so f(x) =g(x), an analytic function.

A natural generalization of the problem is to interpret the relation
f™(x)—g(x) in a generalized sense. For example, if f™ (x)—g(x)(C, 1),
dominatedly, the proof given in §1 shows that g(x) =ke®; this proof,
in fact, applies to any generalized limit such that s,(x) converges to
the same limit as s.(x) (see [4, p. 418], [7] for discussions of such
generalized limits, which include, in particular, (C, k), k> —1).

We can also replace f™ (x)—g(x) by £ (x) /Aa—g(x), {\a} 2 given se-
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quence of constants. We give two simple theorems in this direction.
THEOREM 3. Let
(1) lim f™(x)/An = g(2), ¢S xSb

(i) If lim inf [Na—s/Na| =0 and (1) holds uniformly, g(x)=0ina<x<b.
(i) If lim inf |[Na—1/Na| >0 and (1) holds dominatedly, g(x) =ke'=.

The example f(x) =1/x, N\pn=(—1)"n!, a=1, b=2 shows that uni-
formity is essential in (i). It would be interesting to know whether
(without uniformity) there can be an exceptional point in the in-
terior of (@, b); if f(x) is analytic, there cannot, as the next theorem
shows.

THEOREM 4. If
(2 lim sup 77| A\, V" < 0

n— 0
and (1) is true for each x in @ <x <b, then g(x) =keb* in a <x <b.

If f(x) is analytic, lim sup # l f‘”’(x)l Un < oo for each x and hence
either (2) is true or (1) implies g(x)=0.
Proor oF THEOREM 3. We observe thatif a <c<b

3) lim )"’“l{f G (H)(c)} - f “ e,

n—o An )\n-l )\n— 1

If (i) of Theorem 3 is true, the left side of (3) approaches zero as
n— o through a suitable sequence; hence g(x) =0 almost every-
where; but g(x) is continuous because (1) holds uniformly, and so
g(x)=0.

If (ii) is true and lim ])\,._1/)\,.| = o, \,—0 and so f™(x)—0; other-
wise, for some sequence of #'s, Ny—1/N\,—L, where L0, L5 «. Then
(3) gives

L{gs) — 500} = f " g(0)ds

and hence g(x) = ke=/L,
Proor oF THEOREM 4. We have from (1), for each x and for
n>n,, [f(")(x)l é(l-l—g(x))l)\,,l , and so

lim sup | f®(x)/n!|H* < lim sup | A, [t/ (n/e) < .
n—o n—>0

The reasoning given for Theorem 1 now applies.
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