APPROXIMATE ISOMETRIES
D. G. BOURGIN

In a recent paper [1]* Hyers and Ulam formulated the problem of
approximate isometries. Thus if E; and E, are metric spaces, a trans-
formation T on E, to E, is an € isometry if ldl(T(x), T(x")) —d(x, x’)I
<¢, for all x, x’ in Ej. These authors analyzed the e isometries de-
fined on a complete abstract Euclidean space E and showed that if T
maps E onto itself and 7'(6) =6, then there exists an isometry [2,
p. 165], U, of E onto E such that || T(x) — U(x)|| <10e. The analysis
depends on the properties of the scalar product. In the present work
we show, first, that similar results hold when E;=E,=L,0, 1),
1 <7 < =, though, except of course for r =2, a scalar product no longer
exists. It is shown further that it is sufficient that E, belong to are-
stricted class of uniformly convex Banach spaces and that E; be a
Banach space.

THEOREM 1. Let T(x) be an € isometry of L.(0, 1), 1<r< o, info
itself with T(0) =0. Then U(x)=Ln.,T(2™x)/2" exists for each x and
U(x) is an isometric, linear transformation.

Our fundamental assumption is that

o) | T@ =T || ~lls—-o||<e  T©O =0
The following inequality is due to Clarkson [3, 4],
100 -t sl + o= ol = 2l + 80,

where here and later we understand that

p=sup (r/(r— 1)) 2 2=z g=inf(r,r/(r — 1)).
Let

2a = T(x), 28 = T(x) — T(2x).
Then
| 7(x)— T(22) /2]
(1.03) < 210 (|| T(w)|| 24| T () — T(2) || )»2— || T(22) /2] |
= (|l +o7=(l=ll - e/2)7.
If ”x” =<e€ then the right-hand side of equation (1.03) is surely in-
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APPROXIMATE ISOMETRIES 705
ferior to (2¢)?. For 053=<1, r21, the following inequalities are easy
to establish,

(1.04) 1+2" =1+ (2 — 13
(1.05) Q—-2zrz1—ra

Hence for ||«|| > € the right-hand side of equation (1.03) is dominated

by
(42=2)

Accordingly in both cases
| T@) — T2%)/2)| = a1/ + 2¢

where
;= (W)“”.
2
Write
IT@m/2r = T@]| S Rl + dn
and

” T(2n+1x) /2n+l_ T(x)“
(1.06) <||T(@2r+1w) /270 — T(22) /2]| +|| T(2%) /2 — T ()|
S (2 Vrku+B)||o|Ve+ (la/ 24 2)e

On setting the right-hand side of Equation (1.06) equal to k,.+1||x”1/ e
~+I.+1€, we have the difference equations

bayr = 27k, + k) Ly = 1,/2 + 2.
The solutions of these equations are
ka=kD, 2°iP S k/1 — 27VP = 4,
om0

=22 2714,

=0
Hence
(1.07) || T(2vtmy)/2mtm — T(282) /20| < A2-19||a]| /2 4 4(2-e).
Since L,(0, 1) is complete we can define U(x) by
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U(x) = Lp.oT(2*x)/2%, U =o.

Moreover in view of equations (1.01) and (1.07) we can establish
directly that U(x) is an isometry (and is linear [2, p. 166]). We shall
make frequent use of

(1.08) U@ — TG = Al + 4e.

THEOREM 2. If T is an € isomeiry of L.(0,1) on L.(0,1) then U is an
tsometry of L.(0, 1) on L.(0, 1).

The proof given by Hyers and Ulam for their Theorem 3 is obvi-
ously valid here. A more general situation is covered by our Theo-
rem S.

THEOREM 3. If T(x) is an € isometry of L.(0, 1) on L,(0, 1) then
| T(x) — Ux)|| =12

We shall tacitly follow the convention that 2&€L.(0, 1) has as its
representative the function 2.(s). Choose x#8 arbitrarily and write

Ulx) =3, T() =2

We first assume that y; and y. are not collinear with 6. Then ||y: —uy|
has a unique, positive minimum for some value of v, say u. For in-
stance, this is a consequence of the Alaoglu-Birkhoff lemma [5, p.
299] that in a uniformly convex Banach space a closed convex set, here
{y2—vy||v| < o}, contains an element of least morm (reflexivity
would be sufficient for this) and this element is unique. Let

(3.01) o = (32 — uy)/|lye — uy|.
Then
(3.02) y2 = uy + |32 — wy|yo = uy + wyo.

It is significant for our developments that w=0. In view of Theorem
(2) a unique element, xy, is defined by U—ly,.

Since inf || yo—-hylﬂ =1 there is a linear functional [2, p. 57] of
unit norm, fo, such that fo(yo) =Hyo” =1 and fo(y)=0. Let E,
= { yl fo(y) =0}. Since L} is strictly convex it is easy to show that fo
is unique and an explicit representation is

(3.03) fily) = f | 30(s) | 1 sign yo()(s)ds.

An obvious argument shows every element in E is uniquely expressi-
ble as a sum of a multiple of yo and an element in E,. Moreover, if
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yEE,, then
(3.04) llyo + 9l = [fso +9) | = 1.
We have from Equation (1.08)
7@ = U@ = [|( = D31 + wyd
(3.05) < Al|o]|ve + 4e
= A||y||e + de.

Moreover

(3.06) [ legs 4wyl = [l2all | = [ [T = [lll | < e
We write

3.07) T(2%x0) = 27w -+ Liyo+ Va

where V,EE,. Accordingly

(3.08) €> |[12"90 + Luyo + Y — upr — wyol| — ||2%90 — 3l |.

Also

(3.09) | 12590 + Zuyo + Vo] — 27| < ¢,

(3.10) [lZayo + Yal| S 42719 4 4e.

From equations (3.02), (3.09), and (3.10) it is manifest that
— (A2¥9 + 4¢) £ 1, S ¢, ||Val| S 2(42%0 + 4e).

Actually it is sufficient for our purpose that || ¥.||/2", I./2" go to 0
as n— o,
We remark that

(3.11) 1290 — 3| = 2 + o(1).
Indeed equation (3.02) entails

d 1
% llyo — tyill | emo = — fa (| 3o(s) | ™ sign yo(s))gn(s)ds = 0.

Hence we have from equations (3.08), (3.09), and (3.11)
| @+ yot Yol |7 = (224 1) yot ¥ w31 —2030]| "
S (2re)2nt—1 4 o(20—D),

The crucial step in our demonstration is the justification of the asser-
tion that the left-hand side of equation 3.12 is
270=D(yy) 4 o(20¢—D),

Write ¢=2-", l;=1,/2", Y,=Y,/2" Then I, and || V|| go to 0 with &

(3.12)
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Write V=tu, W=tw and a and B for real numbers between 0 and V
and 0 and W respectively. Write also L;=/;—8 and

\0(5; t) = yO(S)(l + Lt) + Yt(s) - ay;(s),
50 = [ 1wt 0] sign wts, Dy(s)ds.
0

Denote the rectangle |#| <4, w<B by Q. For each choice of ¢ the
theorem of the mean guarantees that « and 8 exist such that the left-
hand side of equation (3.12) has the value

0 a3
(3.13) — <V5;+W5—é) |1+ L) yo+Yi—an|| = r(Vfy) +Wfdy)).

For arbitrary positive § and all sufficiently small ¢ values
sup ( l ltl + ¢B, “Y‘”’ t”AM“) <aé.
Let
S = {s| () = | Liyo(s) + Yo(s) — ayo(s) | }
and write R for the complement of Sin 0=s=<1. Then

1fdw | = f | W(s, ) |~ sign yo(s)yn(s)ds

.

+ ] J 196 01 sign vts, Dras
S
It may be verified that
L 165,01 (9)| s 5 2 [ | Zow(s) + 79) = (@)~ o) s
(3.14) < 21(38)71 =Dy

1
| fRN(s, £)| ™1 sign yo(s)y(s)ds él f |¥(s, )|~ sign yo(s)y(s)ds

+ | ) 190601 sin oI |

The first integral on the right-hand side can be written

fo (¥ (s, ]2 =|y0(s)|™) sign yo(s)y(s)ds+ fo |30(s) | sign yo(s)31(s)ds.

Since y1E E, the last integral vanishes, and we may dominate by
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[ s, o= llln@las+ [ Avts, al=1=lsa@llmslas.
R 8

The first integral may be written

f Leyo(s) + Yi(s) — ayi(s)
B ¥o(s)

For |z] <1 and positive ¢ we have

A+ |3 S 1+k|z|, 14+ @ =D)|s], A = |z )k =1 — |2, 1 — &|4],

according as k is less than or greater than 1. Hence for some positive
K the last integral written is bounded by

r—1

1+

-1 ‘ | Yo(s) l "1| (s) | ds.

K fR|L¢yo(S) + Y(s) = ()] [20()[ 2 3a(s) | ds
2 K|[Lyo + ¥o — ap[7/0|yol| 21|
< K(38)70]| ).
Since all the integrals over S are covered by equation (3.14),
(3.15) |f:m)| = corre-n,
uniformly in (%, w) €Q for all sufficiently small £. Hence
utfu(y) = o(?).
Now

16 filyo) = fR + L(Ill/(s, t)|"1 - Iyo(s)lf—l) sign ¥(s, )ds

1
+ f | yo(s)| 1 sign ¥ (s, £)yo(s)ds.
0
Each of the first two integrals on the right-hand side is readily shown

to be inferior in absolute value to Ci8/r—%. The last integral on the
right-hand side may be written

Il + J 13061 (sign 905, ) = sign su(asu(ses.

Evidently the integral over S is inferior in absolute value to

2 f [¥(s, )] =] 90(s)| ds < 2(38)10,
8
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Therefore

flyo) =1+4p, |p| S CorrleD,
for all sufficiently small ¢ values uniformly for (%, w) €Q. Thus
3.17) wif(y0) = wt + o(f).

Hence the right-hand side of equation (3.13) is rwt+o(f). Accord-
ingly, equation (3.12) may be written

2—Dygy 4 o(20C—D) < 20E=D2pe 4 o(200—D),
Therefore
(3.18) w < 2e.
We have then
llys = 2l = [ = 1] [|3]] + 2e.
From equations (3.06) and (3.18) we infer

(3.19) |1#| = 1]]|3]| = 3e
Hence if # =0 we have
(3.20) llye — 2| < 5e.

The case that y;, y» and @ are collinear offers no exception. Here
y2=wuyand, for # 20, equation (3.06) surely implies equation (3.20).

Suppose now that % <0. It may be shown from equations (3.05),
(3.06), and (3.18) that the maximum value of Hylll, denoted by B,
consistent with # <0 is given by

(3.21) 2B = AB'2 4 9e,
In view of equations (1.08) and (3.19) it follows that in all cases
(3.22) lly2 = 9| = sup (5¢, 2B — 5¢).

Evidently B depends on p and € alone and goes to 0 with e. Since
1<g=2 it can be verified that for 4 +9¢<2, for instance,

B = ((4 + (4% 1+ 72¢)'1%) /4)=.

Instead of continuing with the determination of explicit bounds
for B from equation (3.21) it seems preferable to present an alterna-
tive argument which has the merit of yielding a convenient bound
directly. The idea behind this argument is borrowed from [1] and
consists of the observation that for all sufficiently large multiples of x,
say lx, T(Ix) has a positive y1 component. This is of course obvious,
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since we need merely satisfy I||x]| = B. Accordingly if <0, there is
an integer m such that in the general case

T(2mx) = — w2™y; + wiso,

3.23
( ) T(2"‘+1x) = u12”'+‘y1 + w2,

where u, and u, are non-negative and 2z, and Z, have unit norm and
are determined in the same way as y,. The argument leading to equa-
tion (3.18) shows that 0 Sw; <2¢, j=1, 2. The possibility that either
(or both) of T(2™x) and T(2™+x) is collinear with y; and @ is formally
included by taking the corresponding w as 0. We write 2z for 2™y,.
Thus ||3:]| <||2]|. Then, in view of equations (1.01) and (3.23),

1120 + )z — waze + wizdl| — |lol} | <e

and

(3.24) | 2000 + s — 1] |2]| < 5e.
Similarly the analogues of equation (3.19) are
(3.25) | 200 — 2] ]|4]| = 3
(3.26) |2 — 1]]|4]| = 3e.

There are several cases to consider, depending on whether (u;, #,) and
2u,+u,—1 are larger or smaller than 1. The largest value of ||z is
admitted in the event sup (%1, #2) 1 <2u;+u, 3. On combining the
inequalities in (3.24), (3.25), and (3.26) we obtain in this case

ll2l] = 11¢/2.
Since [|31]] =||2|| we infer for <0 and then, by equation 3.20, for all «,
(3.27) |17@) — U@)|| < 2|y + € = 126

The developments just concluded motivate the generalization
presented below. Elements in the Banach spaces E; and E: are
denoted by x and by ¥ or z respectively. Our restrictions bear on
E, alone. Henceforth we assume E, is a uniformly convex Banach
space [3], that is to say ||z1—z2|| =7 sup (||z]|, ||z|]), ¥>0, implies
lz1+22| <2 (1 —8(%)) sup (||z], ||2|), where 8(y) is strictly monotone
with 6(0) =0, §(2) =1. We define v’ for all positive 6 as sup {'yl o(v)
<inf (1, 8)} and write v’ =y(8). We drop the primes in the sequel.
We require that E, satisfy the following restrictions, also,

@) > v(20) <
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for every positive C,
(B) Laoy aii=o(llye 4 2 = M| = [l30 + 2D/ =0,

where ”yo”=1 and z and y lie in the linear space { y| So(y) =0,
fo(yo) =1, ”fo” =1}. (It is easy to verify that these conditions are
satisfied by L,(0, 1), 1 <r< .)

THEOREM 4. Let T'(x) be an € isometry of E, into E, with T(6,) =0s.
Then U(x) =Lu.,.T(2"x)/2" exists for each x and U(x) is an isometric
(linear) transformation.

Evidently sup (||7(2%) —=T(x)||, |T®)|]) can be written ||x||+p
where | p| <e. Then

(T(2x) — T(@)) — T@)|| 2 v(|+l| + o)
implies
lall — ¢/2 < [IT@x)/2] = (@ = s (lall + o).
Hence
5(y) = 3¢/2||+]).
Let 8,=3¢/2™+1|x||. Then, since |p| <e,
| T@m+1x) — 2T(2%)|| < vm(2"]]4]] + o).

Evidently 4. is a monotone nonincreasing function on the positive
real axis with Ljs.. Ym=0. In view of (A)

(4.01) Z 21| T(27) — 2T(2712) || < (|| ol |+ ¢) Z vi=k(||«l)) (|| «l| + ).

It is important to observe that k(||«||) is 2 monotone nonincreasing
function of ||« and

(4.02) Lol -wk({|4]]) = 0.

Since E. is complete, the demonstrated convergence of the left-hand
side of equation (4.01) ensures the existence of U(x) given by

U(x) = Ln.oT(2mx)/2"
It is easy to see that U is an isometry on E, to E, and that
(4.03) 17@) — U@ = 2Dl + o
THEOREM 5. If T is onto E then U is onto E.

The simple demonstration below covers more general E, spaces
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than those of our hypotheses. Let E/ be the range of U. Then E; is
closed in E; [2, p. 145]. Assume the assertion of the theorem invalid,
that is to say E{ is a proper subspace of E,. Evidently for some posi-
tive so, =50 implies k(s)(s+€) Ss+e—2. It is well known [2, p. 83]
that for some 2o of unit norm, [[20—2|| 21— (so+e€)~! for all z in E{.
Let «x satisfy T'(x)=(so+€)2o. Then so§”x” <so+2¢ and

(5.01) [|T(x) — U@)|| = (so + &)|20 — Ux)/(s0 + &)|| Z 50+ € —1.
On the other hand, using equation (4.03),

(5.02) ITx) — U@)|| < so+€— 2.

Since equations (5.01) and (5.02) are incompatible, our theorem is
established. Hence incidentally E; and E; are equivalent [2, p. 180].

THEOREM 6 If T defines an e isometry of E, onto E; with T(0,) =0,
then ||T(x) — Ux)|| S12e.

We continue the notation introduced in the course of the proof of
Theorem 3. The results through equation (3.09) hold subject to the
trivial modification of replacing Al||y||Ye+4¢ by k(||y|])(|»l| +e).
Moreover the analogues of equations (3.09) and (3.10) establish

— k224 ¢ Sl S ¢ ||V S 28202 + ¢).

In view of equation (4.02) we can assert || ¥.||/(27—|l.|) and 1,./2"
go to 0 with #. Then by (B)

6.01) [|T@o)]| = [|T2%0) = T@)|| < [|2°90]] + € = [[290 = 3| + ¢
< 2e 4+ o(1).
The left-hand side of equation (6.01), for large #, is

%r+h( ok

2"+ 1

Y, — Un

L — }

ez
i ARy p—
With z2=Y,./(2*"+l.—w), A=u/(2"+l,—w) it follows readily from

(B) that the first brace of terms goes to 0 with #» and hence w+o(1)
=<2e+o0(1) or

yo+

(6.02)

w < 2e.

For some positive B, k(B)(B-+e¢)+2¢<B in view of equation (4.02).
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Then a simple argument using equations (4.03) and (3.18) shows
#>0 for ||31| > B. The remainder of the proof follows the pattern of
the proof of Theorem 3 in detail and is therefore omitted. It will be
noted that the possibility that the functional fy (cf. Theorem 3) may
not be unique does not disturb the proof.

REMARK. Since U is linear T is a 36e linear transformation [6].
Moreover U(x) is the unique distributive operation satisfying

Lt ol | T@) = V() /|| 2] < 0.
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