
APPROXIMATE ISOMETRIES 

D. G. BOURGIN 

In a recent paper [ l ] 1 Hyers and Ulam formulated the problem of 
approximate isometries. Thus if Ex and E2 are metric spaces, a trans­
formation T on Ei to £2 is an e isometry if | d1(T(x)1 T(x')) —d{x} x') \ 
<e, for all x, x' in Ei. These authors analyzed the e isometries de­
fined on a complete abstract Euclidean space E and showed that if T 
maps E onto itself and T(6)=d, then there exists an isometry [2, 
p. 165], U, of E onto E such that \\T(x)-U(x)\\<10e. The analysis 
depends on the properties of the scalar product. In the present work 
we show, first, tha t similar results hold when Ei = £ 2 = I/r(0, 1), 
l O < 00, though, except of course for r = 2, a scalar product no longer 
exists. I t is shown further that it is sufficient that £2 belong to a re­
stricted class of uniformly convex Banach spaces and that E\ be a 
Banach space. 

THEOREM 1. Let T{x) be an e isometry of L r(0, 1), l<r< 00, into 
itself with T(0)=d. Then U(x)=Ln^00T(2nx)/2n exists for each x and 
U(x) is an isometric, linear transformation. 

Our fundamental assumption is that 

(1.01) I || T{%) - T V ) || - || x - *' || I < €, T{6) = 0. 

The following inequality is due to Clarkson [3 ,4] , 

(1.02) ||« + j8||* + \\a - 011* ^ 2(||a||« + \\fi\\^\ 

where here and later we understand that 

p = sup (r/(r - 1)) è 2 ^ q = inf (r, r/(r - 1)). 
Let 

2a = T(x), 2/3 = T(x) - T(2x). 

Then 

||r(*)-r(2*)/2||* 
(1.03) ^21-^P-1\\\T(X)\\O+\\T(X)-T(2X)\\^1-\\T(2X)/2\^ 

â (NI+«)»-(||*||-*/2)». 
If ||#||s£€ then the right-hand side of equation (1.03) is surely in-
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ferior to (2e)*\ For 0 ; £ * ^ l , r ^ l , the following inequalities are easy 
to establish, 

(1.04) (l + z ) ^ l + (2' - l)s, 

(1.05) (1 - *)r £ 1 - rz. 

Hence for \\x\\ >e the right-hand side of equation (1.03) is dominated 
by 

/2P+1+ * - 2 \ . . . . /2*+i+p-2\ 

Accordingly in both cases 

\\T(x) - T(2x)/2\\ £k\\x\\1"+2e 

where 

"V 2 ) ' 
Write 

||r(2"»)/2« - r(*)|| û *»|Ml1/a + '»« 
and 

||r(2»+1o;)/2»+1-r(a;)|| 

(1.06) g || r(2"+1a;)/2»+1- r(2*)/2|| + | | T(2x)/2- T(x)\\ 

£(2-v»kn+k)\\x\\u<+(ln/2+2)t. 

On setting the right-hand side of Equation (1.06) equal to én+ilHI1'' 
+ln+ie, we have the difference equations 

£B+1 = 2-1'»*. + *, f„+1 - ;„/2 + 2. 

The solutions of these equations are 

kn - * è 2-,'/p * */l - 2-1" - A, 
j—0 

/n - 2 X) 2- ' ^ 4. 

Hence 

(1.07) | |r(2*+*#)/2^ - 7\2»*)/2»|| g 42-»'*||*||l'« + 4(2-e). 

Since Zr(0,1) is complete we can define U(x) by 
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U(x) - Ln*T(2»x)/2*, U($) « $. 

Moreover in view of equations (1.01) and (1.07) we can establish 
directly that U(x) is an isometry (and is linear [2, p. 166]). We shall 
make frequent use of 

(1.08) ||U(x) - r(s)|| S A\\4"* + 4c. 

THEOREM 2. If T is an c isometry of Lr(0,1) on Lr(0,1) then U is an 
isometry of Lr(0, 1) on £r(0, 1). 

The proof given by Hyers and Ulam for their Theorem 3 is obvi­
ously valid here. A more general situation is covered by our Theo­
rem 5. 

THEOREM 3. If T(x) is an e isometry of Lr(0, 1) on Lr(0t 1) then 
\\T(x)-U(x)\\<*12e. 

We shall tacitly follow the convention that s£Z,r(0, 1) has as its 
representative the function zr(s). Choose x^O arbitrarily and write 

U(x) « yh T(x) - yt. 

We first assume that y\ and y2 are not collinear with 0. Then ||^2*-^i|| 
has a unique, positive minimum for some value of v, say u. For in­
stance, this is a consequence of the Alaoglu-Birkhoff lemma [5, p. 
299] that in a uniformly convex Banach space a closed convex set, here 
[y2—vyi\\v\<«>}f contains an element of least norm (reflexivity 
would be sufficient for this) and this element is unique. Let 

(3.01) y0 - (y2 — «yi)/||y* — «yj|. 

Then 

(3.02) y2 = uyx + \\y2 — *yJ|yo = «yi + wyo. 

It is significant for our developments that w è 0. In view of Theorem 
(2) a unique clement, xo, is defined by U~lyo. 

Since inf ||yo —Ayi|f = l there is a linear functional [2, p. 57] of 
unit norm, jf0, such that /o(3̂ o) = ĤoH = 1 and /o(yi)=0. Let £ 0 

= {y\fo(y) =0} . Since L? is strictly convex it is easy to show that/o 
is unique and an explicit representation is 

(3.03) My) « f | yo(s) \ ̂  sign yQ(s)y(s)ds. 
J o 

An obvious argument shows every element in E is uniquely expressi­
ble as a sum of a multiple of yo and an element in £<>• Moreover, if 
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yG-Eo, then 

(3.04) ||yo + y||^l/o(yo + y)| = i. 

We have from Equation (1.08) 

\\nx)-U(x)\\=\\(u-l)yi + wyo\\ 

(3.05)' ^.4||*||l'« + 4e 
= 4y1||1/a + 46. 

Moreover 

(3.06) | | |w + wyo\\ - IWI | - | ||(r«)|| - ||*|| | < «. 

We write 

(3.07) T(2»xo) - 2»*0 + /»yo + F„ 
where F»£-Eo. Accordingly 

(3.08) « > 11|2> + /»> + F„ - «yi - wyt|| - | | 2> - yj| |. 

Also 

(3.09) 11| 2 > + lny« + F»|| - 2" | < e, 

(3.10) ||/„yo + FB|| £ A2»i* + 4«. 

From equations (3.02), (3.09), and (3.10) it is manifest that 

- (42»/« + 4e) g /„ ^ «, ||F„|| g 2(X2»'« + 4e). 

Actually it is sufficient for our purpose that|[F„||/2», Z„/2»goto0 
as n—> oo. 

We remark that 

(3.11) ||2»y0 — yi|| - 2 * + *(l). 
Indeed equation (3.02) entails 

—1|yo - tyi\\ | « - - I (| y0($) | f - 1 sign yo(s))yi(s)ds - 0. 
d/ Jo 

Hence we have from equations (3.08), (3.09), and (3.11) 

| |(2w+/n)yo+Fn | |^||(2-+/n)yo+Fn-^i-^o|h 
( * ^(2rc)2w<^+o(2«^)). 

The crucial step in our demonstration is the justification of the asser­
tion that the left-hand side of equation 3.12 is 

2n«-l\rw) + o(2n(f-1)). 
Write * = 2—, h=ln/2«, 7« - Fn/2*. Then lt and || F«|| go to 0 with t. 
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Write V~tu, W=tw and a and /3 for real numbers between 0 and V 
and 0 and W respectively. Write also Lt~h— j8 and 

*(s, t) « yoW(l + £«) + Yt(s) - a*®, 

My) -* f | *(*, *) | r~1 sign *(*, *)?(*)&. 
«J o 

Denote the rectangle |w| g-4, w ^ B by Q. For each choice of t the 
theorem of the mean guarantees that a and j3 exist such that the left-
hand side of equation (3.12) has the value 

(3.13) - (v—+W—)\\(l+Lt)yo+Yt-ay1\\r^r(VMy1) + WMyo)). 
\ da d($/ 

For arbitrary positive ô and all sufficiently small t values 

B u p ( | ï , | + t ó , | | r« | | , l | | i ly i | | )<*. 

Let 

S~{s\ yo(s) £ | Ltyo(s) + Yt(s) - ay0(s) \ } 

and write R for the complement of S in 0 S s g* 1. Then 

|/«(yO| ^ I k(*,0| r"1sîgnyo(j)yiW& 

+ f I *(*, 0 I ^X sign 1>(s9 t)yi(s)ds 
\J 8 

It may be verified that 

f \+(s, t)\^\yi(s)\ds S 2 - 1 f \Lty0(s) + Y,(s) - <o*M M * ( * ) ! * 

(3.14) £ 2^1(3*)r/(r-1)||jl||. 

f |*(*, ^ h 1 sign yé(j)yi(5)ifo £ f | * ( J , *) h 1 sign y0(s)yi(s)ds 

+ I k(M)|^xsign;yo($):yi(s)dk 

The first integral on the right-hand side can be written 

J (|lK*> O K 1 - lyoWl'"1) signyo(s)yi(s)ds+ I |yoW|r"1 sign yo(s)yi(s)ds. 
o •/ o 

Since yiGEo the last integral vanishes, and we may dominate by 
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f (k(*, *)hH*tohi)|*(*)|<fe+ f (\Hs, oh'-hwMlyitol*. 

The first integral may be written 

ƒ I | 1 + £ e « ± ^ a » r _ .hrfoMaMi*. 
• ' « I l y o w I I 

For \z\ :gl and positive k we have 

( l + | « | ) * g l + * |« | , l + ( 2 * - l ) | * | , ( l - | « | ) * i l - | * | , 1 - * | « | , 

according as k is less than or greater than 1. Hence for some positive 
K the last integral written is bounded by 

K f\Ltyo(s) + Yt(s) - «311(5)| \yo(s)\^\yi(s)\ds 

£ K\\Lty0 + F, - ayiH'/^^llyolh^'^NI 

Since all the integrals over S are covered by equation (3.14), 

(3.15) \ft(yi)\ r g C S ' / ^ , 

uniformly in (ut w)(~Q for all sufficiently small t. Hence 

utft(yi) = o(t). 

Now 

(3.16) 
Myo) - f + f (|*(5, Oh1 - lyoWh1) sign *(s, t)ds 

J B J S 

+ I I yo(s) I r~1 sign ^(5, *)yo(*)<fc. 
•J 0 

Each of the first two integrals on the right-hand side is readily shown 
to be inferior in absolute value to &ôrfr~l. The last integral on the 
right-hand side may be written 

IMIr + I |yo(*)|r-1(sign $(s, 0 - sign yo(s))y0(s)ds. 
J s 

Evidently the integral over S is inferior in absolute value to 

2 f \Ws, t)\^\yo(s)\ds ^ 2(38)"fr-i>. 
J s 
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Therefore 

/#(yo)- 1 + P, \P\ £C&"r-», 

for all sufficiently small t values uniformly for (u, w) £Q. Thus 

(3.17) wtftiyo) =* wt + oit). 

Hence the right-hand side of equation (3.13) is rwt+o(t). Accord­
ingly, equation (3.12) may be written 

2»<-«rw + o(2»<r-l>) g 2»fr-1>2r« + Ö(2»^1>). 

Therefore 

(3.18) w ^ 2€. 

We have then 

| | » - * | | i | n - l | | W | + 2 « . 
From equations (3.06) and (3.18) we infer 

(3.19) 11 «| - 1 | W ^3e. 

Hence if u è 0 we have 

(3.20) H * - 3*|| ^ Se. 

The case that yu y% and 0 are collinear offers no exception. Here 
y2 = wyiand,for w^O, equation (3.06) surely implies equation (3.20). 

Suppose now that u<0. It may be shown from equations (3.05), 
(3.06), and (3.18) that the maximum value of ||yi||, denoted by 5 , 
consistent with u<0 is given by 

(3.21) IB - AB1** + 9e. 

In view of equations (1.08) and (3.19) it follows that in all cases 

(3.22) | |* - yj| £ sup (5e, IB - 5c). 

Evidently B depends on p and e alone and goes to 0 with €. Since 
1 <<Z ŝ2 it can be verified that for A+9€<2, for instance, 

B S ((A + (A2 + 72€)1'2)/4)*. 

Instead of continuing with the determination of explicit bounds 
for B from equation (3.21) it seems preferable to present an alterna­
tive argument which has the merit of yielding a convenient bound 
directly. The idea behind this argument is borrowed from [l] and 
consists of the observation that for all sufficiently large multiples of x, 
say lx, T(lx) has a positive y\ component. This is of course obvious, 
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since we need merely satisfy l\\x\\ ^B. Accordingly if u<0, there is 
an integer m such that in the general case 

T(2mx) « - ih2myx + w2Zo, 

T(2m+lx) * Ui2m+lyi + wiZo, 

where u\ and u^ are non-negative and *o and Zo have unit norm and 
are determined in the same way as y0. The argument leading to equa­
tion (3.18) shows that 0^w^2et j = l, 2. The possibility that either 
(or both) of T(2mx) and r(2w+lx) is collinear with y\ and 0 is formally 
included by taking the corresponding w as 0. We write * for 2myi. 
Thus ||^i|| â||*||• Then, in view of equations (1.01) and (3.23), 

I ||(2«i + ih)z - w2Zo + WxZoW - ||s|| | <€ 

and 

(3.24) | 2ui + uz - 1J ||*|| £ 5€. 

Similarly the analogues of equation (3.19) are 

(3.25) I 2m - 2 I||*|| à 3é, 
(3.26) I in - 1J j|sj| S 36. 

There are several cases to consider, depending on whether («1, u2) and 
2ui+U2~l are larger or smaller than 1. The largest value of ||z|| is 
admitted in the event sup (ui, 112) £ 1 ^2wi+w2 ^ 3 . On combining the 
inequalities in (3.24), (3.25), and (3.26) we obtain in this case 

||*|| â 116/2. 

Since ||yi|| g||*|| we infer for u <0 and then, by equation 3.20, for all w, 

(3.27) || r(*) - U(x)\\ S 2\\yi\\ + 6 g 126. 

The developments just concluded motivate the generalization 
presented below. Elements in the Banach spaces £1 and E2 are 
denoted by x and by y or * respectively. Our restrictions bear on 
£2 alone. Henceforth we assume £2 is a uniformly convex Banach 
space [3], that is to say |l*i—*2|| i£7 sup (||*i||, ||*2||), 7 > 0 , implies 
|lsi+22|i S2 (1 — 0(7)) sup (||*i||, ||*2||), where 8(7) is strictly monotone 
with 6(0) =0, 5(2) = 1. We define 7 ' for all positive ô as sup {7I 6(7) 
ginf (1, 5)} and write 7'=^(S). We drop the primes in the sequel. 
We require that £2 satisfy the following restrictions, also, 

00 

(A) £ *(2-BC) < 00 
n - l 
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for every positive C, 

(B) £x.o, twM(||y* + z - Xyi|| - \\yo + z\\)/\ - 0, 

where Ĥ ofl — l and z and yi lie in the linear space {y|/o(y)=0, 
foiyo) — 1, Ij/oll—l}. (It is easy to verify that these conditions are 
satisfied by £r(0, 1), Kr< <*>.) 

THEOREM 4. Le2 T(x) be an e isometry of £i into £2 wtó T(0i) = 02. 
!TA0# £/(#) =in-*oor(2n^)/2n exists for each x and U(x) is an isometric 
(linear) transformation. 

Evidently sup ( | | r (2*)-r(*) | | , ||r(*)||) can be written ||*||+P 
where \p\ <€. Then 

||(r(2*)-r(*))-r(*)||i7(NI + p) 
implies 

IHI - e/2 g ||r(2*)/2|| g (1 - 5M)(\\x\\ + p). 

Hence 

d(y) g 3c/2||*||. 

Let 5n = 3€/2,tt+1||^||. Then, since \p\ <€, 

||r(2-H"1*) - 2T(2mx)\\ g ym(2i\x\\ + «). 

Evidently ym is a monotone nonincreasing function on the positive 
real axis with Zö*fl-oo 7m=0. In view of (A) 

(4.01) f; 2-i||r(2^)-2r(2^)||s(|H|+«) E 7/-*(INI)(NI+«)-
j - 1 3 - 1 

It is important to observe that &(||tf||) is a monotone nonincreasing 
function of ||#|| and 

(4.02) ilWI^(IIHI) « 0. 
Since £2 is complete, the demonstrated convergence of the left-hand 
side of equation (4.01) ensures the existence of U(x) given by 

U(x) « Ln^T(2"x)/2\ 

It is easy to see that U is an isometry on £1 to £2 and that 

(4.03) ||r(*)-ff(*)|| s *(NI)(NI + «)• 
THEOREM 5. If T is onto E then U is onto £ . 

The simple demonstration below covers more general £2 spaces 
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than those of our hypotheses. Let E{ be the range of V. Then E{ is 
closed in £2 [2, p. 145]. Assume the assertion of the theorem invalid, 
that is to say E{ is a proper subspace of E*. Evidently for some posi­
tive $0, s^so implies k(s)($+€) t&s+e — 2. It is well known [2, p. 83] 
that for some z0 of unit norm, jf̂ o—z\\ «£l — (so+c)""1 for all z in El. 
Let x satisfy T(x) — (SQ+€)Z0, Then 5oSâ||#|| =*So+2e and 

(5.01) || T(x) - 17(*)|| - (so + e)||s0 - U(x)/(s0 + «)|| 2 50 + e - 1 . 

On the other hand, using equation (4.03), 

(5.02) || T(x) - U(x)\\ g 5o + c - 2 . 

Since equations (5.01) and (5.02) are incompatible, our theorem is 
established. Hence incidentally £1 and E2 are equivalent [2, p. 180]. 

THEOREM 6 If T defines an e isometry of E\ onto E% with T(0x) = 02 
then \\T(x)-U(x)\\£12e. 

We continue the notation introduced in the course of the proof of 
Theorem 3. The results through equation (3.09) hold subject to the 
trivial modification of replacing -4||^i||1/*+4€ by ^(||yi||)(||yi||+c). 
Moreover the analogues of equations (3.09) and (3.10) establish 

- 4(2»)(2» + e) S In £ €, ||F»|| ^ 2*(2»)(2» + e). 

In view of equation (4.02) we can assert || Fn(|/(2n — |/n | ) and ln/2
n 

go to 0 with n. Then by (B) 

(6.01) ||r(2»*o)|| - ||r(2»*0) - r(*)|| ^ ||2-y0|| + e - | | 2 > - yi\\ + € 

g 2e + o(l). 

The left-hand side of equation (6.01), for large n, is 

( /Il Yn II [| Yn-uyi II) 

(6.02) 

I V 2» + ln-wf 

With z=F„/(2w+/n-w)> \ = u/(2n+ln-w) it follows readily from 
(B) that the first brace of terms goes to 0 with n and hence w+o(l) 
£2e+o(l) or 

w g 2«. 

For some positive B, k(B)(B+e)+2€£B in view of equation (4.02). 
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Then a simple argument using equations (4.03) and (3.18) shows 
u>0 for ||yi|| >J3. The remainder of the proof follows the pattern of 
the proof of Theorem 3 in detail and is therefore omitted. It will be 
noted that the possibility that the functional ƒ o (cf. Theorem 3) may 
not be unique does not disturb the proof. 

REMARK. Since U is linear T is a 36e linear transformation [ó]. 
Moreover U(x) is the unique distributive operation satisfying 

z,N,^||r(*)-7(*)/|WI<«>. 
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