A NOTE ON KLOOSTERMAN SUMS
ALBERT LEON WHITEMAN

1. Introduction, In recent years the Kloosterman sum

Ay(n) = X' exp Qwin(h + h)/k)

hmod k
has played an increasingly important role in the analytic theory of
numbers. The dash ’ beside the summation symbol indicates that the
letter of summation runs only through a reduced residue system with
respect to the modulus. The number /% is defined as any solution of
the congruence hk=1 (mod k), and # denotes an arbitrary integer.
It was shown by Salié! almost fifteen years ago that 4:(z) may be
evaluated explicitly when % is a power of a prime. Salié’s result is
given by the following theorem.

THEOREM. Let k=p2, a=2, (n, k) =1, where p denotes an odd prime.
Then,

(i) if ais even,
Ax(n) = 2kV2 cos (4mn/k);
(ii) if a s odd,
2(n| k) k2 cos (4wn/k) for p = 1 (mod 4),
- 2(n| k)2 sin (4wn/k) for p = 3 (mod 4).
The symbol (n[ k) denotes, as is usual, the Legendre symbol.
Salié’s proof of his theorem is based upon induction. In the present
note a direct proof is given. The method consists in introducing a

transformation which expresses the Kloosterman sum in terms of
Gauss sums and certain types of Ramanujan sums.

Ax(n) = {

2. Two lemmas. A Gauss sum may be defined by

k—1

Gui = 2 exp (2wihm?/k).

Ma=(

We shall find it convenient to write G instead of Gy, The following
lemma? is classical.
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1 Hans Salié, Uber die Kloostermanschen Summen S(u, v; g), Math. Zeit. vol. 34
(1931) pp. 91-109.

2 See, for example, Edmund Landau, Vorlesungen tiber Zahlentheorie, vol. 1, p. 153.
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LeMMA 1. If k is an odd integer and (h, k) =1, then

(1) Gui = (k| k)G
and
2 G = i(G=DIDp1/2,

We shall also need the following lemma.

LeEMMA 2. Let p denote an odd prime; let n and o denote positive in-
tegers. Then

A3) 2 exp (2mink/p®) =

h mod p®

— po1if pefn but pot| m,
0 if p> 1) n(a > 1).
Furthermore, if o is odd, and if we put ny=n/p* when p““l n, we have
0 if p=|m,
, ) @012 (g, | p)pa—i2
@ 3 elpewaninp =40 ¢ bLf i n
0 if p= 1) n(a> 1).

The first part of this lemma follows at once from a well known
transformation formula® for Ramanujan sums or may easily be proved
directly. The second part of the lemma may be established in the
following way:

{ pa —_— pa——l if P«I n,

If p“In, then
2 (h] p%) exp 2mink/p=) = 33 (k| p) = 0.
khmod p® h mod p®

If p={n but po=1| %, then by (1)
' (k] p%) exp 2mink/p®) = 3 (k| p) exp (2winih/p)

h mod p%* h mod p®

= (m] Pp=1 X (k] ) exp (2wi/p).

Al
But it is easy to show that*
p—1
(5) Gip= 2, (hl p) exp (2wik/p).
b=l

Hence, by (2), the lemma is established in this case. Finally, if p*~1}n,

3 See, for example, Landau, loc. cit., vol. 1, bottom of p. 280.
¢ See, for example, Landau, loc. cit., vol. 1, p. 155.
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22 (k| p°) exp (2mink/p=)
h mod p%*
= 2 (h+ 2| 1) exp Qrin(h + p)/p°)

hmod p%

= exp 2min/pe?) Y./ (k| p%) exp (2wink/p%) = 0,

h mod p%
where we have noted that exp(2min/p*—1!) #1 since pe~*{n. This com-
pletes the proof of Lemma 2.

3. Proof of Salié’s theorem. Let us first observe that (2) may be
written in the form 1 =(—1 | k)G?*/k. Using (1) we may now transform
the Kloosterman sum A4 (%) in the following manner.

Ay(n) = (— 1| BGYk 2 exp Qui(— nh — k)/k)

hmod k&
= (— 1| &G/t X' exp Qui(— n*h — k)/k)
hmod k
k—1
- > (| k) exp (2wikm?/ k)
m==0
k—1
= (—1|BG/k 2" X (k| k) exp Qmihk(m? — n? — k?)/k)
hmod k m=0

= (— 1| BG/k X' kfj (k| k) exp 2wih(m? — n? + 2mh)/k)

hmod k m=0

since m+k runs through a complete residue system with respect to
the modulus 2 whenever m does. Interchanging signs of summation
we get

Aiy(n) = (— 1| k)G/ka—:l exp (4wim/k)

- X7 (k| k) exp 2mi(m® — n?)h/k.

hmod k

(6)

At this point we divide the discussion into two cases according as «
is even or odd. For a even, we have

%1
Ax(n) = G/p* D exp (dwim/p) > exp (2wi(m? — n2)h/p).
m=0 h mod p®

Referring to (3) we see that the last sum equals zero except when
p"‘"‘l m?2—n?. Now the solutions® of the congruence m?=n? (mod »*)

5 See, for example, G. H. Hardy and E. M. Wright, Az introduction to the theory of
numbers, pp. 95-96.
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are all given by m= +n (mod p?), and the solutions of the congru-
ence m?=n? (mod p* '), m mod p*, where m2£n? (mod p°), are
m= +n+gp>! (mod p*), 1 Sq¢=p—1. Hence, applying the first part
of Lemma 2, we obtain

Auln) = G/,,..{(,,a — po) exp (4min/pe)

p—1
+ (p= — po) exp (—dmwin/pe) — p1 3 exp (4wi(tn + gp=)/ P")}
gm=1
= 2G cos (47n/k),

which completes the proof of the theorem in the case in which « is
even.

We next consider the case which arises when a is odd. For this
purpose we return to (6) and obtain

Ax(m) = (1] p«)al.p«/pa’i“oexp (rim/p7) X (k| %)

h mod p*
exp (2mwi(m? — n®)h/p%).

From (4) we see that the last sum is zero except when p““lmz—n’
but pe{m?—n? Furthermore, let us observe that the number 7., de-
fined in Lemma 2, is here of the form =+ 2ng+4-¢?p*—. Hence, proceed-
ing as we did in the case in which « is even, we get

Axm) = (1] p«)G/papZ"; exp (dmi(+ 1 + gp1)/p*)

Ai-nm®(4 2nq| p)pe1i2}
= (= 1] $Guo/p" {0 9610

-exp (41rin/p“)p2 (2q| p) exp (47ig/p)

gl
p—1
+ (= 1] #0Gup exp (= drin/p) T (24 ) exp <4wiq/p)}
q-
= (1] p)Gupe/p2{ (= 1| p2)GLop*" exp (4min/p)
+ Gl pp1 exp (— dmin/p=)}.

This completes the proof of the theorem in this case in view of
Lemma 1.

4. Concluding remarks. The reader may have wondered why the
case a=1 is excluded in Salié’s theorem. The reason is that Salié’s
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method breaks down in this case as, indeed, does ours. For the sake
of completeness we shall now show that when a=1 our method leads
merely to a transformation formula.

For k=p, the last sum in (6) becomes a Gauss sum in view of (5).
Thus we have by (1) and (2)

p—1

A,(m) = (— 1| PG/p X exp (4mim/p) 3 (h] ) exp (2xitn® = w)i/p)

ma==0

= (= 1] 9)G¥/p 3 (m? — n?| p) exp (4mim/p)

m=0

p—1

= 2 (m* — 4n?| p) exp (2mim/p).

m=0

Hence, we obtain the transformation formula

p—1 p—1

> exp 2rin(h + k)/p) = 2 (m* — 4nt| p) exp (2wim/p),

h=1 m=0
which may, of course, be established directly without much difficulty.

Various sums related to the Kloosterman sum A(z) have been

evaluated by Salié® and Lehmer.” The author has verified that the
method of this paper may be employed to obtain new derivations of
these results.

WasHINGTON, D. C.

¢ Loc. cit.
7 D. H. Lehmer, On the series for the partition function, Trans. Amer. Math. Soc.
vol. 43 (1938) pp. 271-295.



