
INTEGRAL THEOREMS IN THREE-DIMENSIONAL 
POTENTIAL FLOW 

R. v. MISES 

1. Introduction. A potential flow can be described as a vector dis­
tribution q(r) (<jr = velocity vector, f = position vector) subject to the 
two conditions 

(1) div £ = 0, curl £ = 0. 

Instead of (1) one can also ask that a scalar function 0(f) exist so that 

(2) q = grad 0, A0 = 0. 

If both q and f are restricted to two dimensions, a third form of rep­
resentation is possible. One can combine the components x, y of f and 
u, v of q to two complex numbers 

(3) x + iy = f, u — iv = v 

and then state that v is an analytic function of f. In this case, the 
Cauchy formula holds, 

(4) ƒƒ(*>, r )# = o, 

if ƒ is an analytic function of v and f and the integral is extended over 
the complete boundary of a region in which ƒ is regular. 

In the dynamics of the two-dimensional potential flow several equa­
tions of the form (4) play a decisive role. It must be expected that the 
analogous theorems are valid in three-dimensional potential flow also. 
But the question has not yet been answered: For what vector f unctions 
f of q and f is the equation 

(s) J7ö,o-<ö-o 
correct if the integral is extended over the complete boundary of a region 
in which ƒ has continuous derivatives of the first order with respect to 
the six components x, y, z of f and u, v, w of qi Here, obviously, dS is 
the vectorial area element whose direction is that of the outward nor­
mal, and the dot means scalar multiplication. The surface may consist 
of a finite number of analytic pieces. 

The main results of this paper were presented in an address delivered at the New 
York meeting of the Society on April 4, 1942, by invitation of the Program Commit­
tee; received by the editors May 19, 1944. 

599 



600 R. v. MISES [September 

The present note will answer this and some related questions and 
illustrate the applications which can be made in the theory of three-
dimensional potential flow. 

2. The general form of the function ƒ(£, f). As q is a function of f 
according to (1), one may write/(g, f) = F(f). Then the necessary and 
sufficient condition for (5) being correct for all surfaces is 

(6) div F = 0. 

lffz>fv,fz denote the components of ƒ we find by differentiation: 

,. ^ dfx dfy dfz du dfx dv dfx dw dfx 

div F = 1 1 1 1 1 
dx dy dz dx du dx dv dx dw 

(7) 
du dfy dv dfy 

+ --—+- — +-•• + '-•. 
dy du dy dv 

I t can be seen easily that the right-hand expression is zero, by virtue 
of (1), if the following conditions are fulfilled: 
(a) dfjdx + dfy/dy + dfz/dz = 0, 
(b) dfjdu = dfy/dv = dfz/dWy 
(c) dfz/dv + dfy/dw = dfx/dw + dfz/du = dfy/du + dfx/dv = 0. 

On the other hand, these conditions are also necessary, as the 
following examples show. First, take « = 1, u = l , w = l, then condi­
tion (a) follows. Second, take u = x, v= —y> w = 0 in accordance with 
(1), then the first equality (b) follows. Finally, choose u~y, v~x, 
w = 0 which also fulfills (1), then the last equality (c) appears as neces­
sary. Thus, the three components ƒ x, ƒ y,fz have to satisfy the six differ­
ential equations (a), (b), (c). 

The five equations (b) and (c) express the fact that the infinitesimal 
transformation of the g-space, given by 

(8) dq/dt=f(q,r) 

for any constant f {t — scalar parameter), is conformai (angle preserv­
ing). Without using this fact the general solution of the equations (b) 
and (c) can be found in the following way. 

Assume that fx, fy, fz are developable into a power series with re­
spect to u, v, w within some finite region. Then (b) and (c) furnish 
relations between the coefficients of terms of the same order n. There 
are three times (n + l)(n+2)/2 such coefficients and five times 
n(n-\-l)/2 relations. I t can be seen that these relations are linearly 
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independent of each other. The excess of the number of coefficients 
over the number of equations is 

e = 3 0 + 1)0 + 2)/2 - 5n(n + l)/2 = (n + 1)(3 - n), 

(9) that is, e = 3, 4, 3, 0, < 0 

for n = 0, 1, 2, 3, > 3. 

Consequently, there exist oo8 solutions of order zero, oo4 solutions 
of order 1, and <*>3 solutions of order 2 and no other ones. All these 
solutions can be found by setting up the linear equations for the co­
efficients, and so on. But, at least for n = 0 and n = 1, they are obvious : 

For w = 0we have the translations 

(10a) ƒ = l o 

where the vector Ao is independent of q. For w= 1 one has the homog-
raphy and the rotation 

(10b) f=Kq+(AX q) 

where the scalar K and the vector A are functions of f alone (cross 
denoting the vector multiplication). For n = 2 one may find by com­
putation or by certain geometrical considerations 

(10c) f = Lg2-2(L-q)q 

where q2 = u2+v2+w2 and Z is a vector depending on f but not on q. 
Each infinitesimal transformation of this group consists of an inver­
sion, an infinitesimal translation in direction of L, and another in­
version. 

The general, ten-parametric, expression for ƒ is thus 

(10) ƒ = Jo + Kq + ( I X q) + Lq2 - 2(L-q)q. 

This expression has now to satisfy the condition (a) independently 
of q. For Ao, K, A one finds immediately 

(11) divlo = 0, 

(12) grad K + curl J = 0, • • • (AK = 0), 

while L has to fulfill the six equations 

dLx/dx = dLy/dy = dLz/dz = 0, 

dLz/dy + dLy/dz = dLx/dz + dLe/dx « dLv/dx + dLx/dy = 0. 

This means that the space transformation dfjdt = Z is angle preserv­
ing and length preserving. Thus 
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(13) L « U + (lx X f) 

with Zo and Li constants. 
The result can be stated: The most general function ]($, f) which 

satisfies (5) for an arbitrary surface S and any $(r) fulfilling (1) is 
given by (10) provided the functions Z0, K, Î4, and X of f satisfy (11), 
(12), and (13) with Zo and L\ constants. 

3. Simple examples. The first term, Zo, in the expression for ƒ 
which is independent of q can be disregarded. 

The simplest linear function is determined by K = const., Z = 0. 
This gives nothing else than the integral form of the divergence condi­
tion: 

(14) f Q-dS = f (q-n)dS = f qJS « 0. 

Here and in the following, n is the unit vector in the direction of the 
outward normal and the subscript n refers to the vector component 
in this direction. 

If 2^ = 0 and Z = const. one finds, using the formula (AXq)"fi 
= (q Xw) • 3T, that each component of 

(15) ƒ (q X n)dS = 0 

is justified. This vector integral may be considered as a surface circu­
lation. If it is extended over a surface surrounding a rigid body (that 
is, not over the complete boundary of a region of regular q), it may 
have a constant value different from zero. If the region outside the 
body includes a discontinuity surface S', one has to add the integral 
of (gi — <jr2) Xw', extended over S' where n' is the unit vector of the 
normal to 5 ' in the direction from 1 to 2, and q\ and q$ are the veloci­
ties on both sides. This vector (#1—^)Xw; has the direction of the 
vortex line and the magnitude of the vortex density on 5 ' if the dis­
continuity surface is regarded as a vortex sheet. In a field of vortex 
motion the left-hand side of (15) equals the volume integral of 
—curlg. 

As a next step one may take, with UT = 0, for "A some gradient, 
for example a function g(r) f. Then the formulae 

(16) ƒ g(r)(f X q)-dS = ƒ g(r)(q X ft) -fdS - 0 

result. These integrals are zero even when extended over a surface 
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surrounding an obstacle since they vanish for the spheres r = const. 
It is understood that singular points of g(r) have to be excluded. 

If K is chosen to equal x, the vector ~A must be (except for a gradi­
ent which always can be added) f X**/2 where ix is the unit vector 
in ^-direction. Combining this with the analogous formulae for y and 
z, the following vector equation results: 

(17) 

f[Ki-*)-(?/2)X(iX*)]dS 

f [r($>il) - ü(r-n)/2 + n(r-q)/2Sd] « 0. 

This may be considered as a relation for the moment of surf ace circula­
tion. 

If any spherical harmonic is taken for K, it is easy to find a corre­
sponding vector X Two examples may suffice: 

(18) K-xy, A,~0t Ay~0, A, =* (y2 - x2)/2 

and 

(19) K « 1/f, Ax « zy/r(x2 + y2), Av =* - zx/r(x2 + y2), Az = 0. 

Again, one may combine three expressions of each kind and thus 
form a vector integral, like (17), which vanishes when taken over the 
complete boundary of a region of regularity. 

4. Cauchy formula. In the two-dimensional case the value of any 
analytic function of x+iy and u—iv in an arbitrary point can be ex­
pressed in terms of its values on a curve surrounding this point. This 
is based on a formula of the type (4) where the ƒ has such a singularity 
at f = 0 that the integral over a circle of radius p has a finite limit when 
p tends toward zero. To achieve this kind of singularity one has sim­
ply to take ƒ (u, f) =g(v, f)/f where g is regular in f = 0, since 

C dt 
(20) lim I — « 2iri 

>-o Jcp t 
(where Cp is the circle |f | = p). Then, if g is continuous at f = 0, 

g(v, ftdt 
(21) lim f g{v' f)<*f - 2xig(0, v[0]). 

In order to obtain analogous equations in the three-dimensional 
case we have to look for functions ƒ such that/r2 remains finite when r 
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tends to zero. I t is seen from the general result in §2 that this can 
never be the case with a term of second order in q since its coefficient 
is linear in f. We omit the case of order zero terms, that is, of terms 
which do not involve q. Thus only the terms Kq and AXq are left 
where K must be a harmonic function according to (12). 

The only harmonic functions which behave like 1/V2 a t the origin 
are x/rz, y/rz, z/r*. Taking the first for K one can easily find from 
equation (12) the components of A (as in the examples (18), (19)): 

(22) K = x/rz, Ax = 0, Ay = - z/rz, Az = y/rz. 

The components of Kq+(A Xq) are then, except for the factor 1/r3: 

(23) xu — yv — zw, xv + yu, xw + zu 

and, if y/rz and z/r3 are taken for K: 

yu + xv, yv — zw — xu, yw + zv, 

zu + xw, zv + yw, zw — xu — yv. 

If each of the three vectors represented by (23) and (23') is multi­
plied by n, the three scalar products form the components of one vec­
tor which can be considered as a particular triple product of f, q, and w. 
This product may be designated by (f, q; n) and can be expressed in 
three different forms by combinations of the usual products: 

(f, q; n) = r(q-fi) + q(r-n) - n(q-r) 

(24) = f(q-n) + r X (q X n) 

= q(r-n) +qX(rXn). 

On a sphere r = const., where n = f/r, this reduces to rq, as the last 
expression shows. Therefore, the integral over an infinitesimal sphere 
reduces to 

/

rq r dS 

-±dS = q(0) - = 4TT(Z(0) 
- - (SP) rz J (sP) r2 

and the Cauchy formula for the three-dimensional space reads 
1 C (f> Q\ n) 

4irJ rz 

where the integral has to be extended over a surface surrounding the 
origin and including no singular point of the velocity distribution.1 

1 This formula has already been given by Fulton and Rainich (Amer. J. Math, 
vol. 54 (1932) pp. 235-241). See also S. Bergman, Bull. Amer. Math. Soc. vol 49 
(1943) p. 174. 
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The equation (26) is the only formula of Cauchy type involving the 
velocity of a potential flow in three dimensions. I t follows from the 
preceding that for no other function of f and q, for example the prod­
ucts fq and rXq, its value in an arbitrary point can be computed 
from the values the function assumes on a surrounding surface. This, 
however, is only seemingly less general than what is the case in the 
two-dimensional problem. Here, any analytic function of v and f can 
be computed in the form (21). But giving the values of g(u, f) at all 
points of the contour is the same as giving here v, while in space the 
knowledge of a function, for example rXq, is not sufficient to deter­
mine q. If q is given in all points of 5, equation (26) supplies the values 
of any function of f and q in an arbitrary point (within the range of 
regularity). 

The matrix formed by the nine quantities (22) and (22') can be 
considered as a symmetric tensor by which the unit vector ft has to 
be multiplied. Using Gibbs' notation of dyadics and the sign I for the 
unit tensor, one can write this tensor as 

(27') (f,ü) + (q;f)-I(r-q) 

or, applying Jaumann's dyadics also, as 

(27) (f ; q) + (rX g). 

The linear transformation determined by this tensor consists of the 
reflection with respect to the bisectrix of f and q and a contraction 
at the rate cos (f, q) in the direction normal to the plane extended by 
f and q. In the two-dimensional case the reflection only remains, 
which is easily expressed in terms of complex numbers. 

5. Biot-Savart formula. The Cauchy formula (26) shall now be ap­
plied to the following case. We consider the space included in a sphere 
of infinite radius. The velocity at infinity has the constant value q*. 
We admit a finite number of discontinuity surfaces Su 52, 53, • • * 
which, of course, are tangential to the velocity vector, that is, qn — 0 
on both sides of each 5„. Some of the 5„ may be closed surfaces, in the 
inner of which q must necessarily vanish. Such 5„ represent rigid 
bodies (obstacles) that are surrounded by the flow. 

If any point not on a discontinuity surface is chosen as origin, 
equation (26) will give its velocity vector §(0), if the integral is ex­
tended over the infinite sphere and both sides of each discontinuity 
surface. The integral over the sphere supplies ^irq*» according to what 
was said in connection with (25). On a closed 5„ the integral for the 
inner side is zero, since here q = 0. Denoting now by fi the outward 
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normal of the body ( = inside normal of the fluid mass), we have to 
reverse the sign of the integrand in (26) which then reads, according 
to <z-n = 0 and the second expression (24), {qXn)Xf/rz. On each 
open discontinuity surface, q may refer to the side toward which n 
points. Then (26) becomes 

i riüXn) Xf 
(28) <z(0) = & + - ; dS, 

where the integral has to be extended over both sides of all discon­
tinuity surfaces. If only the outer side of the closed Sp and one side 
of the open S? is taken and q' called the velocity on the opposite sides, 
one can write instead of (28) : 

4TTJ 

[(<z - <z') x a] x f 
(280 J(0) = «Zoo + - — ^ ~ - dS, 

4?r J rz 

where q' = 0 for the closed Sy which represent obstacles. 
The equations (28) and (28') are in close analogy to the so-called 

BiotSavart formula which—in hydrodynamic terms—gives the veloc­
ity "induced" at the point r = 0 by a "vortex line" of vorticity C: 

1 r C X r 

(29) i<®=r\ —I-*' 
4w J r% 

the integral being taken over the arc length of the (closed) vortex 
line. Thus, the result (28') can be stated as follows: The velocity excess 
q — q«> can be considered as induced by vortex sheets extended over all dis-
continuity surfaces {including the obstacle surfaces), with a vortex-line 
density of magnitude q — q', directed perpendicular to Q—q' in the tan­
gential plane {qf = 0 on the closed surfaces). 

This statement is the basis of the three-dimensional wing theory of 
Lanchester and Prandtl. Its equivalent was deduced by Prandtl and 
his followers from certain assumptions about impulsive forces and fic­
titious mass forces inside the bodies. 

The formula (28) or (28') is valid only if the origin O is not a point 
of one of the discontinuity surfaces. If O approaches 5, the limit of 
the expression on the right-hand side includes, in addition to the in­
tegral over 5, the quantity [<z(0)— <z'(0)]/2, as can be shown easily 
in the usual way. Therefore (28') becomes, for O on S: 

(30) 
ATTJ r% 

where again q'{0) vanishes if the point under consideration falls on a 
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closed discontinuity surface. This relation, in connection with the fact 
that on both sides of a free discontinuity surface the pressure (the 
velocity amount) must have the same value, leads to the integral 
equations which determine the vortex distribution on S as well as 
the shape of those parts of 5 which constitute the free discontinuity 
surfaces. 

6. The second order terms. Momentum theorems. The last two 
terms in (10) with L satisfying the condition (13) lead to two new 
integral formulae. First, taking Zi = 0 we have 

(31) ƒ [Loq2 - 2(Lo'q)q]'dS = ƒ [gKlo-fi) - 2(L^i){q-n)]dS. 

If Lo is identified with the unit vector in ^-direction, (31) is the ^-com­
ponent of the equation 

(32) f [qH- 2(q-n)q]dS = 0. 

The vector n' defined by 

(33) w' = n-2((q/q)-n)$/q 

is easily seen to be a unit vector, symmetrical to ft with respect to 
the plane normal to q. Equation (32) can then be written as 

(320 f g*n'dS = 0. 

If, on the other hand, in equation (13), Z0 is taken as zero the in­
tegral formula will read 

(34) ƒ [(Zx X r)q* ~ { 2 ^ X r)-q}q]-dS - 0. 

Setting here dS = ndS and using the identity (àXh)-c=*d-(hXc)9 

equation (34) becomes 

ƒ {g2Zr(f X n) - 2[Lv(f X q)](q-n)}dS = ƒ q*Lv(r X n')dS = 0. 

This is, if Zi is considered as the unit vector in ^-direction, the ^-com­
ponent of the equation 

(35) f f X [q2n - 2(£- n)q]dS = 0 



608 R. v. MISES [September 

or using (33) 

(350 f q\f X nf)dS = 0. 

The two relations (32') and (35') are the three-dimensional gen­
eralizations of fv2d£ = 0 and fÇv2dÇ=0 which are sometimes known as 
the Blasius formulae. In fact, when applied to a two-dimensional 
velocity distribution and a cylindrical S, our equations (32') and 
(35') coincide with those complex integrals. The argument of the com­
plex number v2d£ corresponds to the direction of the "reflected nor­
mal" n'. 

The physical meaning of the integrals (32) and (35) can easily be 
understood. If S is the closed surface of a rigid body, q • n equals zero 
on 5 and ( — p/2)q2 where p is the density can be considered as the 
pressure value. As n is the direction of the thrust upon the body, the 
integrals of ( - p/2)fq2n'dS and ( - p/2)fq2(f X n')dS give the resultant 
force and the moment of the fluid reaction upon the body. Thus the 
equations (32') and (35') allow the following statement: If S is a 
closed surface the inner of which consists of some rigid bodies with sur­
faces Su S29 Sz, ' m • and of a fluid mass with finite velocity distribution 
satisfying (1), then the resultant force F and the moment M of the fluid 
reaction upon Si, S2, S3, • • • are given by 

(36) I = — f qH'dS, M = — f q\f X n')dS 

where n', at each point of S, is the normal vector reflected with respect to 
the plane perpendicular to q. 

These are evidently the momentum theorems for the reactions upon 
bodies surrounded by a potential flow. Note that free discontinuity 
surfaces inside S do not invalidate (36) since q2 must have the same 
value on both sides and q- n must vanish at each point of such a sur­
face. Another useful form of the momentum theorems would be this : 
If the complete boundary S of a region of potential flow with finite 
velocities consists of two parts S' and S " where S " is tangential to the 
flow, the integrals (36), extended over S' only, give the fluid reactions 
exerted along S " . This would apply, for example, to the flow through 
a channel where S" consists of the walls of the channel and S' of 
two cross sections, one at the entrance and the other at the exit. 

7. D'Alembert's paradox and the generalization of Joukowski's 
formula. If a rigid body or a group of bodies is moving at constant 
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velocity — c through a bulk of fluid at rest, the inverse motion, with 
the bodies at rest and the fluid velocity q* = c at infinity, is a potential 
flow. Setting 

(37) q = &> + q' = c + q\ 

q' as well as # fulfill the equations (1) and q' vanishes at infinity. 
To find the fluid reactions upon the moving bodies we introduce 

(37) in the expression q2n — 2(q-n)q of (32): 

q2n — 2(q-n)q = c2fl — 2{c-n)c 

(38) + 2{c-qf)n - 2(c-n)q' - 2(q'-n)c 

+ qnfl — 2(q'-ri)n. 

The first terms, depending on c only, give no contribution to either 
of the integrals (32) or (35). The bilinear terms in the second line 
can be written, according to (24), as 

(39) - 2(cf, q'\ n) = - 2c{q'-n) - 2c X (<f X n). 

Let us now assume that q can be developed into a power series at 
r= oo. Then, since q is the gradient of a harmonic function corre­
sponding to (2), the first terms are 

(a0 à f \ 

— + — H ), 
(40) 

— aor Va 3(â-f)f"l 
r3 Lr3 r5 J 

The first term in qf implies a source or sink at infinity. If this is ex­
cluded, the lowest terms are of order r~z and that means that the con­
tribution to the integral (32), if it is extended over the sphere r = oo, 
is zero. Thus the conclusion is reached : If some bodies are moving at 
constant velocity —c through a bulk of fluid at rest and the velocity dis-
tribution is supposed to be developable at infinity and no source or sink 
admitted, then the total air reaction upon the bodies can consist of a 
couple only, the resultant force being zero. 

This statement includes the so-called d'Alembert paradox which 
states that a sphere moving through a fluid at rest experiences no 
resultant force under normal conditions. It is seen from our argument 
that this is still valid if some discontinuity surfaces, not extending to 
infinity, are present. 

If the boundary of one of the rigid bodies or a discontinuity surface 
extends to infinity, the assumption of a developable ^-distribution is 
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not permitted. Then, a resultant force determined by the second and 
third groups of terms in (38) may exist. It follows from (39), since 
the integral of q'- n over a closed surface must vanish, that the terms 
linear in q' are determined by the product of 2 c and the integral of 
g;Xw which is obviously the same as that of qXft, that is, the surface 
circulation according to (15). Thus the following conclusion is 
reached: The resultant force of the fluid reaction upon bodies moving at 
a constant speed — c through a fluid at rest consists of two parts ; the 
first one, linear in qf, is 

(41) Tx = - pc X C 

where C is the surface circulation, defined as the left-hand expression 
in (IS) ; the second, quadratic, part is 

(42) F2 = — f q'2n'dS 

where n' is the normal vector reflected on the plane perpendicular to q'. 
In the two-dimensional case, if there are no discontinuity surfaces, 

only Fi exists and the analogy to (41) is known as the Kutta-Joukow-
ski formula. In the case of flow with separation (Helmholtz flow) ft is 
prevailing.—Note that in the three-dimensional problem, ft is per­
pendicular to the velocity vector c while, in general, nothing can be 
said about the direction of F2. 

In the "regular" case, that is, with £ developable at infinity, the 
order of magnitude of qr is r~~z and thus the surface circulation C as 
well as the integral in (42) vanish. 

Let us, finally, compute the first order terms Hi (the terms linear 
in q') in the expression for the moment. From the second equation 
(36) and the second line in (38) we find 

jjf = - p ƒ r X [(q'-n)c+ {5-n)qf - (t-q')n]dS 

(43) 

= ~ p \ f X {c,q'\n)dS. 

If $' is introduced from (40) with ao = 0 and a sphere of radius r with 
ft = f/r taken for S, one has 

q'-n = - 2a-f/r4, f X g ' = r X d/rz, r X ft = 0. 

On the other hand, Mi can be identified with the total moment M 
since for an infinite r the quadratic term 3?2 vanishes. Thus 
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C â-f C c-r 
M = pcX I - 2 —~ fdS + pâ X I —rdS. 

It can be seen easily that for any sphere of radius r 

/

4:TT 
(â-f)fdS = — r*â. 

Therefore 

(45) M « (4ir/3)[- (2ö X a) + (â X c)] - 47r(a X c). 

Since â is proportional to £' and, other things being equal, q' must 
be proportional to c we have obtained the result—known in the clas­
sical theory: In the regular case, that is, with q' developable at infinity», 
the fluid reaction upon bodies moving at constant speed —chas a moment 
vector perpendicular to c and proportional to p and c2. 

A more detailed discussion of this and related questions is beyond 
the scope of the present note. 
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