ON UNIFORM CONVERGENCE OF FOURIER SERIES
OTTO SZASz

1. Introduction. In this section we collect some known concepts
and simple facts, pertinent to our subject.
Given a sequence of real numbers s,, #=0, consider for any A>1

limsup max (sm — $2) = u(N) < + o;
n—0 n<m=in

clearly #(\) decreases as \ | 1; if
(1.1) lim «#(\) = 0,

Al

then the sequence {s,.} is called slowly oscillating from above; simi-
larly slow oscillation from below is defined by

(1.2) lim lim inf min (sm — s,) = 0.
Al n—o n<msS\n

If both (1.1) and (1.2) hold, that is if

(1.3) lim limsup max |sm — $.| =0,
A1 n—o n<mS\n

then the sequence is called simply slowly oscillating. If s,=2 ua, is
the nth partial sum of a series ) _ca,, then (1.3) can be written as

(1.4) lim limsup max |2, a |=0.
A1 n— o0 BR<MIM | 41

A more restricted class of series is defined by

(1.5) lim limsup >, |a&|=0.

Al n—o n<vSAn
Special cases: If for some p>0, nlanl <p for all n, then
An 1
2 lal<pX —=0@0N.
n<vS\n n V

Hence (1.5) holds.
If only
na, > — P for all #,

then
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n(| an| — an) < 2p,

hence
An
(1.6) lim limsup 3 (|a| —a) = 0.
Al n—o n

This relation implies (1.2), but not necessarily (1.4). The following
lemma is immediate:

LEMMA 1. Every convergent series satisfies (1.3); furthermore (1.3) and
(1.6) imply (1.5).

A sequence of functions s,(f), defined at a point set € having t=1
for a limit point, is said to be uniformly convergent at t=7 if
lim s.(¢,) exists for any sequence #,—r. It is an immediate conse-
quence of the definition that the limit of s,(¢,) is then unique.

If for each #, s,(f) is defined and continuous at ¢{=r, then clearly a
necessary condition for uniform convergence at { =7 is that limy .S (7)
=S5 exists.

We restrict ourselves to such sequences; then the following lemma
holds:

LeEMMA 2. The following two properties are equivalent:

(@) sa(tn)—>s as tu—7;

(b) sa(r)—s, and | s.(7) —sa(t) | <eforany e>0,and for |7 —t| <8(e),
n>n0(d, €) =ny(e).

Thus either (a) or (b) defines uniform convergence at t=7.

For the proof assume that (a) holds; if (b) would not hold, there
would exist an e=e¢, so that lim sup,n¢,| sa(7) —s,,(t,.)[ > €. But this
contradicts (a). Similarly if (b) holds, then (a) follows.

2. The cosine series. We now prove the following theorem.

THEOREM 1. Suppose that the coefficients of the Fourier cosine series

2.1) o(t) ~ ao/2 +§:an cos 7t

satisfy the condition (1.6), and that ¢(8) is continuous at t=0; then the
series (2.1) is uniformly convergent at t =0.
Let

Qo agy id 1 i
So = — Sa(l) = — ay COS vi, o,(l) = —— $»(2).
0= ) 2+le v, au(t) n_l_l;()
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By a theorem of Fejér [1]*

2.2) o (t) — ¢(0) as £, — 0;
in particular
(2.3) ¢(0) — ¢(0) as n— ©,

By a well known theorem of Tauberian type, (2.3) and (1.6) (or only
(1.2)) imply that
(2.9 5.(0) — ¢(0).
By Lemma 1, (1.6) and (2.4) imply (1.5).
We next employ the often used identity

n

- -k 1)
= V+1 Oty On-—1 V+ 1k-1 4 Cntky

Spn = Opt»

(2.5)
n=1l,v1,

where s,, 0, are the partial sums and arithmetical means respectively
of the series Y c.. Thus

5a(0) — sa(8) — {'-"n+t'(0) - o’,,+,.(t)}

n
(2.6) = T 1 {(T,H,.y(O) - 0'n+v(t) - [O'n—-l(o) - o'n-l(t)]}
—_ 1 2’: v —k4 D[t — cos (n+ k)t]am+la-

By (2.2) and Lemma 2
I c.(0) — o‘n(t)l <e for l tl <8(e) and n = nie);
hence, from (2.6)

2ne

2 v
| 52(0) — su(®) | <e+”+1+m;(v—k+1)|a,,+,,|

2.7 ) ,
(2.7 <e+vfl+2§13|a,,+k|,
|| < 8(e), 1> nale).

Write

An
limsup X | a | = w(M),

n—o n

then

1 Numbers in brackets refer to the literature listed at the end of the paper.
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A\n
(2.8) E‘ a,\ < € + w(X) for n > ni(e, N).
Given €¢>0, choose v = [ne!/2], and A =1-4¢!/2, then, from (2.7) and
(2.8),
| $.(0) — s.(2) l < e+ 2e12 + 2(e + w(1 + €/2)) for n > ns(e),

when #; is the larger of the two numbers 7, #;. The theorem now fol-
lows from (1.5) and Lemma 2.
The identity

1 n
Sn(l) — op(f) = —— a, cos vi
(&) — au(® w1 21:1* v
yields the corollary:

COROLLARY TO THEOREM 1. Under the assumptions of Theorem 1
11y tva, cos vt—0 uniformly at t=0.

3. The sine series. In this case convergence at ¢=0 is trivial; we
introduce two lemmas.

LeEMMA 3. Suppose that the coefficients of the Fourier sine series
(3.1) Y(t) ~ Y b, sin nt
1
satisfy the condition (1.2) with s,= 1b,, and that

h
2h1 f Y()dt — d as b 10,
0
then
w1y, vb, — 7.
1

This is Lemma 6 of our paper [6].

LeMMmA 4. If for a sequence {b,.}

lim #1> vb, = 1
1

exists, and if

An
(3.2) lim limsup ., (| 4| — &) = 0,
A1l o n

then
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An
(3.3) lim limsup .| &,| = 0.
Al n—o n
Write .
limsup 2° (| 8| = 5) = £, A> 1,
75— 0 n

then by (3.2), E(\)—0 as X | 1. We have

An An
ZV('byl _bﬂ) é)\nZ(lbrl _bv)y

hence .
lim sup 713 »(| b,,| — b,) £ ND).
Furthermore "
An An n—1
w1y vhy, = NM)1 D vb, — w1 wh, — (A — 1),
n 1 1
hence .
lim sup #1 X v| b,| < (A — DI 4+ AED).
But "
An An
DM EAE-SED IR AN
hence " "

An
limsup X, | 6| < (N — DI 4+ M.

Letting N | 1, we get (3.3).

THEOREM 2. Suppose that the function Y(f) is continuous at t=0,
that is ¥(0) =0, and that its Fourier coefficients satisfy (3.2). Then
wb,=o0(n), and the series (3.1) is uniformly convergent at t=0.

We now write
n 1 n
sa(f) = D b, sin o, oa(t) = —— D 5,(8);
1 n+17

then by the theorem of Fejér
(3.4) an(t,) =0 as &, — 0.
Also by Lemma 3

n

> vby = o(n),

1
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and Lemma 4 now yields (3.3). Finally from (2.5) with ¢, =5, sin nf,
applying (3.4) and Lemma 2,

2ne n+v
| saf)| < e+ ——+ 2| bi|,  for | ] < 8(e) and n > nele).
v+ 1 n+l

Write

An
lim sup ) | b,| = v(\),

then by (3.3)
?(\) -0 as A1

We now choose » = [ne!/2], then, as in §2,
| sa(®) | < 3et/2 4 29(1 4+ €1/?) for | tl < 8(¢) and n > n4(e),
which proves the theorem.
CoROLLARY. Under the assumptions of Theorem 2

w1y, vb, sin vt — O uniformly at ¢ = 0.
1

This follows from su(t) —aau(t) = (n41)=1> b, sin vt.

4. A converse theorem. To prove a converse of Theorem 2, we in-
troduce the lemma.

LeMMA 5. Suppose that B, =0, that for some ¢ >0
(4.1) Bny1 = (14 ¢/n)B,, n=1,2,3.--,
and that the sequence { B} is Abel summable to B; then B,—B.

It is known that B, =0 and Abel summability imply (C, 1)B,—B,
that is

(4.2) B! = Y B,~nB.
1
From (4.1)
Buix £ (1 + ¢/n)*B,, k=0,12,..-,
hence

53 Buyr = Bni (1 + ¢/n)* = nBuc{(1 + c/n)y*+ — 1},

k=0 k=0

or B»gcn‘l{ (14¢/n)*1—1}-Y(B!,—B.). To any given §>0
choose v = [8n], so that »n—1—43. Then
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lim inf B, = ¢(e®® — 1)~1{(1 + 8B — B} = ¢8B(e®® — 1)~1;

letting & | 0, we get
(4.3) lim inf B, = B.
Similarly from (4.1) by induction

Bow=(14c/(n— k) ¥ By = (14 ¢/») % Bupy
forn — kv >0,

hence
n—y n—v c —k—1. c y—n—1Yy ,
> Bux= -Bn+12 (1 + *‘) = VBn+1C_1{1 - (1 + “'“) }’
k=0 k=0 14 v

or

Bupp1 < o {1 — (1 4 ¢/vy—*1}~Y(B, — B,_y).
Again to any given positive § <1 choose » = [n3]; then
1-—35

lim sup By = c{l - e“‘”‘l}"l(Bé_1 — B) = ¢6™'B .
1—exp(c—cd™?)

Letting 6 T 1 we find
(4.4) lim sup B, £ B.

(4.3) and (4.4) prove the lemma.

It is easily seen that the assumption (4.1) is equivalent to saying
n~ 7B, is decreasing for some v; our lemma is in close connection to a
lemma due to Hardy [3, p. 442].

THEOREM 3. Suppose that Y(t) ~ b, sin nt, that

(4.5) () = md/2 astl0,
and that for some constants p and c
(4.6) 0= (n+ Dbor1+ p = (1 + ¢/n)(nbs + p), n = 1.
Then nb,—A.
Let
@) =([@—-28/2= in"l sin nt, 0<t=m,
and '

4.7 x@ =y@) — Ag@t) ~ Z (b, — A7) sin nt = Z Bx sin nt,


file:///~-k~l
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then, from (4.5),
x(® —0 as 0.

Furthermore
n =nbp —A Z2 —p—A=—yq,
say, and
(m+ DBurr+g=n+ Dbua+ p = (1 + ¢/n) (1B + g).

Thus we need only prove nf,—0, that is Theorem 3 is reduced to the
case 4 =0. Now for this case Theorem 2 yields D> b, =0(n); finally
Lemma 5 applied to B, =nb,+ gives Theorem 3.

A special case. Let p=0; c=1; then (4.6) reduces to 0 <b,,1 <b,.

For this case and 4 =0 the theorem is due to Chaundy and Jolliffe,
while for 450 it is due to Hardy [3, 4]. As Hardy remarked, here
the case 40 is not immediately reducible to the case 4 =0. Our
generalization has the advantage of such reduction.

5. On Gibbs’ phenomenon. We shall apply Theorem 2 to the
Gibbs’ phenomenon (cf. [7, p. 181]). Consider again the assumption
(4.5); that is Y(¢) has the jump 74, while x(¢) is continuous at t=0.
We assume in addition (3.2); then evidently the @8, satisfy the same
assumption, hence by Theorem 2

i vB, = i vb, — nAd = o(n),
1 1

and the series (4.7) is uniformly convergent at {=0. On the other
hand Fejér proved that

n n n
lim sup Z v~1lsin »t, = lim Z v~1sin v, = f ¢! sin ¢dt,
0

t, 10 1 nt,—ox 1

hence assuming, as we may, 4 >0,

(5.1) limsup Y b, sinwtf, = lim D b, sinwi, = 4 f 1 sin tdt,
0

t,lo 1 nt,—r 1

We have thus proved the theorem:

THEOREM 4. Suppose that Y(t)~2 b, sin nt satisfies the conditions
(4.5) and (3.2); then

> vb, ~ An,
1

and
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n n
Zb,sinvtn—AZu‘l sin vt, — 0 as ¢, — 0;
1 1

in particular (5.1) holds, that is the two series of Y(t) and Ag(t) present
the same phenomenon of Gibbs.

For the special case #b,=0(1) Gibbs’ phenomenon was observed
by Rogosinski [5, pp. 134-135], however it is difficult to follow his
argument.

6. A contre example. We cannot replace in Theorems 1 and 2 the
conditions (1.6) and (3.2) by (1.3) with s,=Y 7a, or s, = _1b, respec-
tively. This is seen from an example constructed by Fejér [2] for a
similar purpose. It is a power series Y ;. ,cx2* with the following prop-
erties [2, pp. 38-46]: The coefficients are all real; the power series is
convergent for |z| <1; the function f(g) =) cs* is continuous for
Izl =<1; the power series is uniformly convergent for z=e, ¢St <2w
—¢, €>0, but neither of the series de cos kt, Zak sin k¢ is uniformly
convergent for || Se. It follows easily that neither series is uniformly
convergent at £=0, for this would imply uniform convergence on the
entire unit circle.
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