
ON UNIFORM CONVERGENCE OF FOURIER SERIES 

OTTO SZÂSZ 

1. Introduction. In this section we collect some known concepts 
and simple facts, pertinent to our subject. 

Given a sequence of real numbers sn, w^O, consider for any X > 1 

lim sup max (sm — sn) = uÇk) g + <*> ; 

clearly uÇk) decreases as X J, 1 ; if 

(1.1) UmuÇK) ^ 0, 
x-n 

then the sequence {sn} is called slowly oscillating from above; simi­
larly slow oscillation from below is defined by 

(1.2) lim lim inf min (sm — sn) ^ 0. 
X—>1 n—>oo n<m£aXtt 

If both (1.1) and (1.2) hold, that is if 

(1.3) lim lim sup max | sm — sn \ = 0, 
X-+1 n-+<*> n<m£\n 

then the sequence is called simply slowly oscillating. If Sn^^la» is 
the nth partial sum of a series X)JV, then (1«3) c a n be written as 

(1.4) lim lim sup max 
ri+l 

= 0. 

A more restricted class of series is defined by 

(1.5) lim lim sup 23 | a„| = 0. 

Special cases: If for some p>Q, n\an\ <p for all n, then 

Hence (1.5) holds. 
If only 

nan > — p for all n, 

then 
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n(\on\ - an) < 2pt 

hence 

Xn 

(1.6) lim limsup ^J ( | a,\ — av) = 0. 
X-+1 n-+eo n 

This relation implies (1.2), but not necessarily (1.4). The following 
lemma is immediate : 

LEMMA 1. Every convergent series satisfies (1.3) ; furthermore (1.3) and 
(1.6) imply (1.5). 

A sequence of functions sn(t), defined at a point set £ having t=r 
for a limit point, is said to be uniformly convergent at t=r if 
lim sn(tn) exists for any sequence tn—»r. I t is an immediate conse­
quence of the definition that the limit of sn(tn) is then unique. 

If for each nf sn(t) is defined and continuous at / = r , then clearly a 
necessary condition for uniform convergence at / = r is that \imn^ooSn(r) 
= 5 exists. 

We restrict ourselves to such sequences; then the following lemma 
holds: 

LEMMA 2. The f oil owing two properties are equivalent: 
(a) sn(tn)—>sas tn-^r; 
(b) 5n(r)—>siand\sn(T)— sn(t)\ <eforany e>ûtandfor\T — t\ <S(e), 

n>n0(ô, €)—n0(e). 

Thus either (a) or (b) defines uniform convergence at 2=r . 
For the proof assume that (a) holds; if (b) would not hold, there 

would exist an € = e0, so that lim suptn+T\sn(r)-~sn(tn)\ >c0 . But this 
contradicts (a). Similarly if (b) holds, then (a) follows. 

2. The cosine series. We now prove the following theorem. 

THEOREM 1. Suppose that the coefficients of the Fourier cosine series 

00 

(2.1) 4>(t) ~ a0/2 + X) a>n cos nt 
l 

satisfy the condition (1.6), and that <j>(t) is continuous at / = 0; then the 
series (2.1) is uniformly convergent att = 0. 

Let 

do a0 " 1 A 
So = — y sn(t) = — + 2^ ^ cos vt, <rn(t) = — — 2^ sv(t). 

2 2 i n + 1 o 
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By a theorem of Fejér [ l ] 1 

(2.2) crw(*n)-» 0(0) a s * n - > 0 ; 

in particular 

(2.3) <rn(0) -> 0(0) as n -» co. 

By a well known theorem of Tauberian type, (2.3) and (1.6) (or only 
(1.2)) imply that 

(2.4) *n(O)-*0(O). 

By Lemma 1, (1.6) and (2.4) imply (1.5). 
We next employ the often used identity 

n 1 A 
sn — <rn+v = — — (<rn+t> — o"w_i) — 2_j\v — k + l)cn+fc, 

(2.5) ^ + 1 v + 1 fe-j 
n^ 1, ^ 1, 

where sn, <rn are the partial sums and arithmetical means respectively 
of the series X)c». Thus 

Sn(0) - Sn(t) - {(Tn+,(0) - <Tn+v(f) } 

ft 
,- ^ = —7 {^+,(0) - <rn-|,,(0 ~ [ö-n-l(O) - ÖV-l(*)]} 
(2.6) ^ + 1 

1 v 

X) (v — fc + 1) [l — COS (W + k)t]On+h* 
V + 1 l 

By (2.2) and Lemma 2 

| (Tn(0) - <r»(*) | < e for | 11 < 8(e) and n à »o(«); 

hence, from (2.6) 

| 5,(0) - sn(t) | < c + - ^ 7 + — — I > - * + 1) | «H.*I 
j> + 1 v + 1 i 

(2.7) 2^6 ' . 
< « H —• + 2 2^ I <*»+* I » 

v + 1 i 
| / | <«(€), w > no(«). 

Write 
Xn 

lim sup ]C I a* I ^ w00> 
then 

1 Numbers in brackets refer to the literature listed at the end of the paper. 



590 OTTO SZÂSZ [August 

Xn 

(2.8) ]£ I av | < e + w(X) for n > n^e, X). 
n 

Given €>0, choose v=* [ne112], and X = l+e1 /2 , then, from (2.7) and 
(2.8), 

| sn(0) - sn(t) \ <e + 2e1'2 + 2(e + co(l + e1'2)) for n > W2W, 

when n2 is the larger of the two numbers n0t »i. The theorem now fol­
lows from (1.5) and Lemma 2. 

The identity 

1 » 
sn(t) — <rn{t) = Z-r ^ c o s v* 

n+ 1 i 
yields the corollary: 

COROLLARY TO THEOREM 1. Under the assumptions of Theorem 1 
w"1Ei^y cos vt—»0 uniformly att — 0. 

3. The sine series. In this case convergence at J = 0 is trivial; we 
introduce two lemmas. 

LEMMA 3. Suppose that the coefficients of the Fourier sine series 
00 

(3.1) ip(t) ~ ]T) bn sin nt 
l 

satisfy the condition (1.2) with Sn=]Cï^> aw^ *^a* 

2k"1 f t(t)dt->d as A10, 
J o 

then 

n 

1 

This is Lemma 6 of our paper [6]. 

LEMMA 4. /ƒfor a sequence {bn} 
n 

lim n~x ̂ vbv = / 
l 

exists, and if 
Xn 

(3.2) lim lim sup ]£ ( | i, | - bv) = 0, 
x i i »-*« n 

//tew 
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Xn 

(3.3) lim lim sup ŜC | ft» | = 0. 
X i l n-*oo w 

Write 
Xn 

limsup Z ( | ft»| ~ ft,) = £(x)> x > !> 

then by (3.2), %(\)-*0 as X 1 1 . We have 

2>(IM - Msx»E(|k| -W. 
n n 

hence 
Xn 

lim sup n~lY, K I ̂  I - W ^ X*(X). 
n 

Furthermore 

n - i ^ „J, « X(Xw)-1 § ?ft, - n ^ S vbv -> (X - 1)/, 
n 1 1 

hence 
Xn 

lim sup i r 1 2 > I ft, I S (X - 1)/ + X*(X). 

But 

23|ft,| Sn^EH^It 
n n 

hence 
Xn 

lim sup 23 | ft, | ^ (X - 1)1 + X£(X). 
n 

Letting X j 1, we get (3.3). 

THEOREM 2. Suppose that the function yp{t) is continuous at / = 0, 
that is ^ ( 0 ) = 0 , and that its Fourier coefficients satisfy (3.2). Then 
23ï^ftv = ö(w), and /Âe series (3.1) is uniformly convergent at £ = 0. 

We now write 

n 1 n 

*«(*) = 23 &" sin vt, <rn(t) = — — 23 s9(t); 
l w + 1 l 

then by the theorem of Fejér 

(3.4) *•„(*„)->0 astfn-»0. 

Also by Lemma 3 
n 

2 3 ^ ^ <>(»)» 
i 
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and Lemma 4 now yields (3.3). Finally from (2.5) with cn**bn sin nt, 
applying (3.4) and Lemma 2, 

2ne n+p 

\sn(t)\ < € + -——•+ S I * * I. for |^| < 8(e) and n > m(e). 
V + 1 n+l 

Write 
Xn 

lim sup S | M = v($)t 

then by (3.3) 
v(\) -» 0 as X J 1. 

We now choose v— [ne112], then, as in §2, 

| sn(t) | < 3c1/2 + 2z;(l + €1/2) for | /1 < 0(e) and n > Wi(e), 

which proves the theorem. 

COROLLARY. Under the assumptions of Theorem 2 
n 

n""1^ vb* s^n vt~~*0 uniformly at t « 0. 
l 

This follows from sn(t) -~<rn(t) = ( n + l ) - ^ ? ^ sin itf. 

4. A converse theorem. To prove a converse of Theorem 2, we in­
troduce the lemma. 

LEMMA 5. Suppose that Bn*z0, that for some c>0 

(4.1) Bn+1 S (1 + <?/»)£., » - 1, 2, 3, • • • , 

and that the sequence {Bn} is Abel summable to B; then Bn-*B. 

It is known that Bn^0 and Abel summability imply (C, l)J5n—>3, 
that is 

(4.2) B: - *£B,~nB. 
l 

From (4.1) 

£n+* S (1 + */»)**», * - 0f 1, 2, • • • t 

hence 

fc-0 &«0 

or Bnâ^~M(1+c/n)H"1-"1}""1W+r--JBnLi). To any given Ô>0 
choose v= [Sn]y so that vn~l—>5. Then 
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lim inf Bn à c(ea - 1)-X{(1 + t)B - B} = c8B(ecS - l )" 1 ; 
n-*oo 

letting 5 I 0, we get 

(4.3) lim inf Bn ^ £ . 

Similarly from (4.1) by induction 

Bn-k ^ (1 + c/(n - k))-k-*Bn+1 â (1 + c/v)-*-*B^i 

for w — k à ? > 0, 
hence 

ra—y n—v/ ç \~-k~l t / C \v"~n"""*V 

E £w_* ^ -Sn+lE( 1 + —) = ^n+ir-M 1 - ( 1 + — ) \> 
fc-0 *=0 \ V / \ \ V / ) 

or 

Bn+1 Û ciri{l - (1 + c/vy-^-KB'n - BLt). 

Again to any given positive ô<l choose v= [nô]; then 

1 ~ * l imsup£w + i £ c{l - «•"•««-1}-i(j58-i - J?) « rf-^B 

1 — exp {c — cô""1) 

Letting S Î 1 we find 
(4.4) lim sup Bn g B. 

(4.3) and (4.4) prove the lemma. 
I t is easily seen that the assumption (4.1) is equivalent to saying 

n~yBn is decreasing for some y ; our lemma is in close connection to a 
lemma due to Hardy [3, p. 442]. 

THEOREM 3. Suppose that\[/(t)~%jbn sin nt, that 

(4.5) W)-+vA/2 as Uu , 

and that for some constants p and c 

(4.6) 0£(n+ l)bn+1 + p g (1 + c/n)(nbn + p), n à 1. 

Then nbn—*A. 

Let 
00 

g(t) = (TT - t)/2 = ] £ ra-1 sin nt, 0 < * g TT, 
Î 

and 

(4.7) x ( 0 = *(*) ~ ^S(') ~ E (&» ~ ^n"1) sin nt~"£§n sin *t, 

file:///~-k~l
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then, from (4.5), 
*(*)-> 0 as U0. 

Furthermore 

nfin = ribn — A *£ — p — A = — q, 

say, and 

(n + l)j8„+i + ? = (n + l)5n+1 + # = (1 + <;/»)(*& + q). 

Thus we need only prove tt/3w—»0, that is Theorem 3 is reduced to the 
case -4=0. Now for this case Theorem 2 yields y^J[vbv — o{n)\ finally 
Lemma 5 applied to Bn = nbn+p gives Theorem 3. 

A special case. Let p = 0 ; c = 1 ; then (4.6) reduces to 0 g bn+i = bn. 
For this case and -4=0 the theorem is due to Chaundy and Jolliffe, 

while for -4^0 it is due to Hardy [3, 4]. As Hardy remarked, here 
the case -4^0 is not immediately reducible to the case A =0. Our 
generalization has the advantage of such reduction. 

5. On Gibbs' phenomenon. We shall apply Theorem 2 to the 
Gibbs' phenomenon (cf. [7, p. 181]). Consider again the assumption 
(4.5); that is \J/(t) has the jump 7T-4, while %W is continuous at 2 = 0. 
We assume in addition (3.2); then evidently the j8n satisfy the same 
assumption, hence by Theorem 2 

n n 

23 v& — 23 vh — nA = o(n), 
l l 

and the series (4.7) is uniformly convergent at / = 0. On the other 
hand Fejér proved that 

n n p ie 

lim sup 23 v~l sin vtn = lim 2^ v~l s^n v*n = I t~l sin tdt, 
tni0 l ntn->x i JQ 

hence assuming, as we may, A > 0, 

n n /* ir 

(5.1) lim sup 23 fo s i n v^n = Hm 23 ^ s i n ^n = A I /_1 sin tdt. 
*nlo i «V-** i • 'o 

We have thus proved the theorem : 

THEOREM 4. Suppose that \l/(t)~%2bn sin nt satisfies the conditions 
(4.5) and (3.2) ; then 

n 

23 vbp ~ An, 
l 

and 
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Yl bv sin vtn — A ]T) ̂ 1 sin *>£n —» 0 as £n —• 0; 
l l 

i» particular (5.1) AoZd,?, tóa* w the two series of \j/(t) and Ag{t) present 
the same phenomenon of Gibbs. 

For the special case nbn = 0(l) Gibbs' phenomenon was observed 
by Rogosinski [5, pp. 134-135], however it is difficult to follow his 
argument. 

6. A contre example. We cannot replace in Theorems 1 and 2 the 
conditions (1.6) and (3.2) by (1.3) with sn=^\av or sn~^Jlby respec­
tively. This is seen from an example constructed by Fejér [2] for a 
similar purpose. I t is a power series ]JC*°-i£*s* with the following prop­
erties [2, pp. 38-46]: The coefficients are all real; the power series is 
convergent for | s | 2*1; the function ƒ(z) ==^ci&h is continuous for 
\z\ ^ 1 ; the power series is uniformly convergent for z=*eu, € ^ : g 2 i r 
— e, e>0 , but neither of the series ^2ak cos ht, ^ a * sin ktis uniformly 
convergent for | / | g c . I t follows easily that neither series is uniformly 
convergent at £ = 0, for this would imply uniform convergence on the 
entire unit circle. 
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