
GROUPS WITHOUT PROPER ISOMORPHIC 
QUOTIENT GROUPS 

REINHOLD BAER 

If ƒ is a homomorphism of the group G, and if g is an isomorphism 
of the image group Gf, then f g is a homomorphism of G too ; and this 
homomorphism is an isomorphism if, and only if, ƒ is an isomorphism. 
Consequently the following three properties of the group G imply 
each other. 

(1) Homomorphisms of G upon isomorphic groups are isomorphisms. 
(2) Homomorphisms of G upon itself are isomorphisms. 
(3) If N is a normal subgroup of G such that G and G/N are iso­

morphic, then N= 1. 
Groups meeting these requirements (1) to (3) shall be termed 

Q-groups. A direct product of an infinity of isomorphic groups differ­
ent from 1 is certainly not a Q-group. On the other hand it is readily 
seen that groups satisfying the ascending chain condition for normal 
subgroups are Q-groups. Deeper is the fact that the group G is a 
Q-group if it belongs to one of the following three classes of groups. 

(a) Free groups on a finite number of generators.1 

(b) Groups of finite dimensional matrices with coefficients from a 
field, which are generated by a finite number of elements.2 

(c) Free products of a finite number of abelian groups each of 
which is generated by a finite number of elements.8 

All these groups are generated by a finite number of elements. But 
we are able to show that this latter condition is neither necessary 
nor sufficient for a group to be a Q-group. The complexity of the situ­
ation is increased by the fact that neither subgroups nor quotient 
groups of (?-groups need be Q-groups. Thus it becomes desirable to 
obtain general criteria for a group to be a Q-group, and this is the 
main object of the present note. 

The subgroup S of the group G shall be termed completely charac­
teristic, if S = Sf for every homomorphism f of G which satisfies G=^Gf. 
Examples of completely characteristic subgroups are the commutator 
subgroup of G and its generalizations. If G happens to be a Q-group, 
then every characteristic subgroup of G is completely characteristic. 

Presented to the Society, April 29, 1944; received by the editors January 5, 1944. 
1 Levi [ l ] ; Magnus [2], The numbers in brackets refer to the bibliography at the 

end of the paper. 
2 Malcew [l] , 
8 Fouxe-Rabinowitch [ l] . 
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THEOREM 1. The group G is a Q-group if there exists a well ordered 
ascending chain of completely characteristic subgroups Sv with the fol­
lowing properties. 

(i) So = 1 ; Sk = G for some k. 
(ii) Sv+i/Sv is a Q-group for every v<k. 
(iii) If v is a limit ordinal, then every element in Sv is contained in 

some Su with u<v. 

PROOF. Suppose that ƒ is a homomorphism of G satisfying G — G*, 
and that N is the kernel4 of this homomorphism ƒ. We are going to 
prove by complete (transfinite) induction that the crosscut5 of N and 
Sv is 1. Since this assertion is certainly true for v = 0, we may assume 
its validity for every u<v. 

Case 1. v=*u+l is not a limit ordinal. 
Then we infer from our induction hypothesis that iVP\5tt = l. We 

deduce furthermore SV = S! and Su — S^ from the fact that the sub­
groups 5 are completely characteristic subgroups of G and that G = G/. 
Thus ƒ induces a homomorphism of Sv/Su such that Sv/Su = (Sv/Su)

f* 
But Sv/Su is by (ii) a Q-group and ƒ consequently induces an iso­
morphism in Sv/Su» If x is an element in the crosscut of N and SVf 

then (Sux)f — Su- Hence Sux=*Su and x is in 5„. But the crosscut of 
Su and N is 1, proving x = 1. Thus Nr\S* = 1. 

Case 2. v is a limit ordinal. 
If x belongs to Svr\N, then x belongs by (iii) to 5uHiV for u<v. 

Hence x = 1 may be inferred from the induction hypothesis, showing 
again that NC\SV^\. 

Thus it follows in particular that N=Nr\G = Nr\Sh = l, proving 
that ƒ is an isomorphism, as we desired to show. 

The subgroup S of the group G has been termed strictly characteris­
tic? if Sf^S for every homomorphism f of G satisfying G* — G. The 
members ZV(G) of the ascending central chain of the group G are 
strictly characteristic subgroups of G. To prove this it suffices to re­
call their inductive definition. 

(i) Zo(G) = l. 
(ii) Zv+i(G)/Zv(G) is the center7 of G/ZV(G). 
(iii) If v is a limit ordinal, then ZV(G) is the (set theoretical) join 

of the subgroups ZKU{G) for u<v. 
4 The kernel of the homomorphism ƒ consists of the elements in G which are 

mapped upon 1 by/. 
* The crosscut of the sets A and B will always be denoted by AC\B. 
6 For a discussion of this and related concepts see Baer [2]. 
7 The center of the group G consists of all the elements s in G which satisfy zx=*xz 

for every x in G. 
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Let us note that the group G is termed nilpotent^ if there exists an 
ordinal % such that G ~Zg(G). 

The members of the ascending central series, though strictly char­
acteristic, need not be completely characteristic. This will be appar­
ent from the following example,9 which shows at the same time the 
impossibility of substituting "strictly characteristic" for "completely 
characteristic" in Theorem 1. 

Let B be an abelian group of type £°°. Then B contains one and 
only one subgroup Bi which is a cyclic group of order p\ and every 
element in B is in at least one Bi. Denote by G the group obtained 
by adjoining to B an element g subject to the relation 

gT*xg = xl+p 

for x in B. It is readily seen that Bi = Zi(G) for finite i, that J5 = Z«(G) 
and that G — Za+iiG). Thus G is nilpotent and the quotient groups of 
successive terms in the ascending central series are cyclic groups (and 
therefore Q-groups). But G is not a Q-group, since G and G/Bi are 
clearly isomorphic groups. 

COROLLARY. If G is a nilpotent group and if every Zv+i(G)/Zv(G) is 
a Q-group, then the following condition is necessary and sufficient for G 
to be a Q-group. 

Every ZV(G) is a completely characteristic subgroup of G. 

The sufficiency of this condition is an immediate consequence of 
Theorem 1; its necessity may be derived from the fact that every 
characteristic subgroup of a Q-group is completely characteristic. The 
impossibility of omitting this condition from the statement of this 
corollary is a consequence of the considerations immediately preced­
ing this corollary. 

LEMMA. If S is a strictly characteristic subgroup of the group G, and 
if G/S is a Q-group, then S is completely characteristic. 

PROOF. If ƒ is an endomorphism of G such that G-G*, then Sf S S 
and an endomorphism of G/S upon itself is defined by mapping the 
coset X in G/S upon the coset SXf in G/S. Since G/S is a Q-group, 
it follows that this endomorphism of G/S is an automorphism. From 
this fact we conclude that the element x in G belongs to S if, and only 
if, xs belongs to S. But to every element y in S there exists an element 
z in G such that zf=y; and from the preceding remark we infer now 
that z belongs to 5 too, proving S=*Sf, as we desired to show. 

8 See Baer [ l ] f or a discussion of this concept of nilpotency. 
9 This is essentially a restatement of Baer [l , Example 2.5, p. 406], 
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The next criterion is an almost exact dual to Theorem 1 with the 
important difference that we need only consider strictly characteristic 
subgroups. 

THEOREM 2. The group G is a Q-group if there exists a well ordered 
descending chain of strictly characteristic subgroups Sv with the follow­
ing properties. 

(i) So = G; Sfc = l for some ordinal k. 
(ii) Sv/Sv+i is a Q-group for every v<k. 
(iii) If v is a limit ordinal, then Sv is the crosscut of the subgroups Su 

foru<v. 

PROOF. If the homomorphism ƒ of the group G satisfies G = Gf, then 
we are going to prove the following assertion by complete (transfinite) 
induction with respect to v. 

(v) Sv = £ƒ and ƒ induces an isomorphism of G/Sv. 
Since this assertion (u) certainly holds true for w = 0, we may as­

sume its validity for every u<v, in order to prove (v). We distinguish 
two cases. 

Case 1. v = u + l is not a limit ordinal. 
Then we infer from the induction hypothesis that Su = S„ and that ƒ 

induces an isomorphism in G/Su. Since Sv is strictly characteristic, 
we have S/^S». If X is a coset in SU/SV1 then mapping X upon SvX

f 

effects a homomorphism of Su/Sv upon itself, that is, Su/Sv is the 
image of Su/Sv under this homomorphism. But Su/Sv is by (ii) a 
(?-group, and thus ƒ induces a proper automorphism of Su/Sv. Sup­
pose now that X is a coset of G/Sv which is mapped upon 1 by the 
homomorphism ƒ of G/Sv. Then Xf S Sv and therefore SuX

f = 5W. But 
ƒ induces an isomorphism in G/Su so that X^SU and X is a coset of 
Su/Sv. But then X = l, since ƒ induces an isomorphism in Su/Sv, and 
we have shown that ƒ induces a proper automorphism of G/Sv If x 
is an element in Sv, then there exists an element y in G such that x=yf. 
The coset Svy is mapped by ƒ into part of Sv. Since ƒ induces an iso­
morphism in G/SV1 as we have shown just now, it follows that 
Svy — Sv, and this proves Sv = Sl, completing the proof of the case 
(») = («+1).^ 

Case 2. v is a limit ordinal. 
If X is a coset of G/Sv such that Xf^Svt then Xf^Su for u<v. 

From the induction hypothesis we infer that ƒ induces an isomor­
phism in G/Su for u<v. Since ƒ maps the coset SUX of G/Su upon the 
identity of G/SU1 it follows that XSSU for u<v, and we infer from 
(iii) that X^SV- Thus ƒ induces a proper automorphism of G/Sv; the 
fact that Sv = Sf is verified as in Case 1. 
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Thus we have verified (v) for every v^k. From condition (i) and 
proposition (k) we infer finally that ƒ is an automorphism of G, as 
we desired to show. 

To enunciate two important consequences of this theorem we need 
the descending central series of G, whose members VG are denned in­
ductively as follows: 

(i) QG = G. 
(ii) V+1G is generated by all the commutators x~ly~lxy for x in G 

and y in VG. 
(iii) If v is a limit ordinal, then VG is the crosscut of all the UG 

îoru<v. 
It is readily verified that vGf^vG for every endomorphism10 ƒ of G; 

that is, the subgroups VG are fully invariant,11 and they are both com­
pletely and strictly characteristic subgroups of G. This descending 
central chain certainly meets the requirement (iii) of Theorem 2, and 
thus we obtain the following criterion. 

COROLLARY 1. The group G is a Q-group, if there exists an ordinal 
k such that hG = 1, and if the {abelian) groups vG/vJnlG are all Q-groups. 

An abelian group is certainly a Q-group if it is generated by a 
finite number of elements. It is well known furthermore that ^I^G, 
for finite i, is generated by a finite number of elements if G is gener­
ated by a finite number of elements. Thus the following fact is a spe­
cial case of Corollary 1. 

COROLLARY 2.12 The group G is a Q-group if it is generated by a finite 
number of elements, and if WG = 1. 

If F is a free group, then Magnus18 has shown that "F = 1, and thus 
the last criteria are generalizations of the theorem14 that free groups 
on a finite number of generators are Q-groups. 

In order to apply Theorem 2 to abelian groups we introduce some 
notations. If A is an abelian group, then denote by FP(A) the set 
of all the elements in A whose order is a power of the prime num­
ber p. Clearly FP(A) is a fully invariant subgroup of A. The product 
F(A) of all the FP(A) is their direct product and consists of all the 
elements of finite order whereas A/F(A) contains no elements of 
finite order except 1. 

10 Endomorphisms of the group G are homomorphisms of G into G. 
11 This concept is due to Levi [ l ] ; for further discussion see Baer [2]. 
12 Fouxe-Rabinowitch [l] , 
13 Magnus [ l ] . 
14 See footnote 1. 
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COROLLARY 3. If A/F(A) as well as every FP(A) is a Q-group, then 
the abelian group A is a Q-group. 

PROOF. Let 50=-4, Si~F(A), Si^JliSjF^A) where ph p2, • • • 
is some enumeration of the primes. The subgroups Si are clearly 
strictly characteristic and their crosscut S« = 1. Since So/Si~A/F(A) 
and since Si/Si+i is, for positive i, isomorphic to FPi(A), the hy­
potheses of Theorem 2 are satisfied by this descending chain of sub­
groups, proving the validity of our present contention. 

Let us note that FP(A) is a Q-group if it is finite, and that F/F(A) 
is a Q-group if it is of finite rank, that is, if there exists an integer k 
such that every subgroup of F/F(A) which may be generated by a 
finite number of elements may also be generated by k elements. Com­
bining Corollaries 1 and 3 and the preceding remarks it is easy to 
construct any number of examples of Q-groups that cannot be gen­
erated by a finite number of elements. 

Examples. 1. It is known that the free group on two generators 
contains a free group on an infinity of generators as a subgroup.15 The 
former group is a Q-group, the latter is not. This shows that not every 
subgroup of a Q-group need be a Q-group. 

2. The additive group R of the rational numbers cannot be gen­
erated by a finite number of elements. But R is a Q-group. For if R 
is considered modulo a subgroup different from 0, then all the ele­
ments in the quotient group are of finite order. If / is the subgroup of 
the integers in R, and if E is the subgroup of the even integers in R, 
then E^J and R/J and R/E are isomorphic groups so that R/E is 
not a Q-group, showing that quotient groups of Q-groups need not be 
Q-groups. 

3. We are going to construct an example of a group G with the 
following properties. 

(a) G is generated by two elements. 
(b) (G,G") = 1. 
(c) G is not a Q-group. 
Here we denote by Gf the commutator subgroup of G, by G" the 

commutator subgroup of G', and by (G, G") the subgroup generated 
by all the commutators x~~ly~lxy for x in G and y in G". 

This example shows that Corollary 2 of Theorem 2 is in certain 
respects a "best" result. 

To construct the group G we proceed as follows. Let F be a free 
group on two generators and denote by u, v a free pair of generators 
of F. Then F/F' is the free abelian group of rank 2. The group F'/F" 

u For example, the commutator subgroup. 
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may be shown to be a free abelian group, a basis of which is given by 
the elements 

for integral i,j. We put iV= (F, F"). Then F"/N is part of the center 
of F/N; it is a free abelian group, generated by the elements (com­
mutators) 

ajxïj'XijyKïj')-1. 
Every subgroup of F"/N is a normal subgroup of F/N, since F"/N 

is part of the center of F/N. We denote by U the subgroup of F gen­
erated by N and the elements (0, j)(0, j')(09 j)"1^, j ' ) ~ l f° r aH posi­
tive j , j ' , and we denote by V the subgroup of F generated by N and 
all the elements (0, j)(0, j ' )(0, j)-x(0, j')"*1 îorj,j' not negative. It is 
clear that U and F are normal subgroups of F and that 

N < V < U < F". 

We are going to prove now that G — F/V is the desired group. It 
is immediately clear that conditions (a) and (b) are satisfied by G. 
To prove (c) we construct an automorphism of the group F which 
maps V upon U. There exists one and only one automorphism ƒ of F 
which maps u upon uv and v upon v. We have 

F'' = F\ F"' = F", JV* = N, 

since these subgroups are characteristic subgroups of F. Furthermore 
we have 

(0, 0y = (u-h^uvY = (uv)-lv~l(uv)v = v~l(0, 0)v = (0, 1), 

and consequently 

(0, i) ' - (0, i + l) 
for integral j . From this last equation one derives the equality F / = U, 
completing the proof. 

From the preceding arguments one deduces readily the noteworthy 
fact that the ascending chain condition is not satisfied by the normal 
subgroups of a nonabelian free group. 

Dualizing the concept of a Q-group we define as an S-group a group 
G meeting the following requirement. 

(5) If the subgroup S of G is isomorphic to G, then S = G. 
It is readily seen that every group satisfying the descending chain 

condition for subgroups is an 5-group. An example of an S-group not 
satisfying this chain condition is the additive group of rational num­
bers. 
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To enunciate conveniently a criterion for 5-groups we need the 
following concept. The subgroup C of the group G is said to be an 
S-characteristic subgroup of G if Cf^C for every isomorphism ƒ of G 
into itself. Clearly every fully invariant subgroup is S-characteristic 
and every ^-characteristic subgroup is characteristic. If G happens to 
be an 5-group, then conversely every characteristic subgroup of G is 
^-characteristic. 

THEOREM 3. The group G is an S-group if there exists a well ordered 
ascending chain of S-characteristic subgroups N(v) of G with the follow* 
ing properties. 

(i) N(0) = 1 and N(t) =Gfor some ordinal t. 
(ii) N(v + 1)/N(v) is an S-group. 
(iii) If v is a limit ordinal, then every element in N(v) is contained 

in some N(u) for u<v. 

PROO#. Suppose that ƒ is an isomorphism of G upon some subgroup 
S of G. We are going to prove by complete (transfinite) induction 
that N(v)f = N(v) for every v. This assertion is certainly true for v = 0 ; 
and thus we may assume its validity for every u<v. If v happens to 
be a limit ordinal, then our contention is directly derived from (iii) 
and the induction hypothesis. If, however, v — u+1 is not a limit 
ordinal, then we deduce from N(u)f = N(u) and N(v)f^N(v) that ƒ 
induces an isomorphism of the group N(v)/N(u) upon a subgroup of 
N(v)/N(u). But it follows from (ii) that N(v)/N(u) is an S-group. 
Hence (N(v)/N(u)Y = N(v)/N(u) or N(v) = N(yYN(u) = N(vYN(uY 
=.N(vY, as we desired to show. Now G = N(t) = N(tY = Gf is a conse­
quence of (i). 

We are interested in the relations between Q-groups and 5-groups. 
There are groups that are both, like the finite groups or the additive 
group of rational numbers. Any direct (or free) product of an infinity 
of isomorphic groups ( F ^ I ) is neither. The infinite cyclic groups are 
Q-groups, but not 5-groups, and the abelian groups of type p™ are 
5-groups, but not Q-groups. Thus the following theorem seems to be 
of some interest. 

THEOREM 4. If N is a fully invariant subgroup of the free group F, 
and if G = F/N is an S-group, then G is a Q-group. 

PROOF. If L is a normal subgroup of G such that G and G/L are 
isomorphic groups, then denote by M the uniquely determined nor­
mal subgroup of F such that N^M and M/N — L. There exists an 
isomorphism g of G upon G/L, and hence there exists an endomor-
phism ƒ of F satisfying X° = MXf for every coset X of F/N = G. (To 
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prove the existence of ƒ, consider a free set of generators of F and 
define ƒ on this free set of generators in accordance with our require­
ment. Then ƒ can easily be seen to be a desired endomorphism.) Then 
F=*FfM and FfC\M — Nf^N, since N is a fully invariant subgroup 
of F. Since M and N are normal subgroups of F, we deduce from 
Dedekind's law that 

F'Nr\M = (F' r\ M)N = N*N = N, 

and from N^Mwe infer (F'N)M=FfM = F. The subgroup (F*N)/N 
= V of G = F/iV has therefore the following properties: 

VC\L = 1 and VL = G. 

Thus every coset of G/L contains one and only one element of the sub­
group V of G, proving that V and G/L are isomorphic. But G/L and 
G are isomorphic and G is an S-group, proving that F=G. This im­
plies finally L = 1, showing that G is a Ç-group. 

It is apparent from the proof of this theorem that it remains valid 
if we substitute for the hypothesis that F be a free group the following 
assumption : 

If M and N are normal subgroups of JF, if N g M, and if g is an iso­
morphism of F/N upon F/M, then there exists an endomorphism ƒ 
of F, satisfying 

X° « MX' 

for every coset X of F/iV. 
It has been shown that the properties (1) to (3) may be deduced 

(a) from the existence of an ascending chain of completely character­
istic subgroups, meeting certain requirements (Theorem 1), and 
(b) from the existence of a descending chain of strictly characteristic 
subgroups, satisfying certain conditions (Theorem 2). But these prop­
erties (a) and (b) are not independent. For the following correspond­
ence between subgroups maps every ascending chain of completely 
characteristic subgroups upon a descending chain of strictly charac­
teristic subgroups. If S is a subgroup of the group G} then let 5* be the 
centralizer of S in G, which consists exactly of those elements in G 
commuting with all the elements in S. To substantiate our contention 
we enumerate a number of properties of this operation. 

(1) If S ̂ T , then T*£S*. 
(2) If 5 is the (set theoretical) join of the subgroups SV1 then S* 

is the crosscut of the subgroups S*. 
These two properties are immediately obvious. It should be noted, 

however, that neither the dual nor the converse of (2) is true. 
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(3) If S is a completely characteristic subgroup of G, then S* is a 
strictly characteristic subgroup of G. 

PROOF. If G = Gf is satisfied by the endomorphism ƒ of G, if s is an 
element in 5, and if t is an element in 5*, then there exists an element 
s' in 5 such that s — sff ; and we find: 

proving that tf belongs to S* too, or S*f ^ 5*. 
REMARK. The impossibility of proving that S* is completely char­

acteristic, if S is completely characteristic, may be shown by the fol­
lowing example: If S = G, then 5 is certainly completely characteris­
tic. But 5* is the center of G; and we have pointed out before that the 
center is not always completely characteristic. 

Note that in the proof of (3) we actually verified the following fact. 
If 5 is a subgroup of G, if ƒ is an endomorphism of G, and if S£Sf, 
then S*f ^*S*. This implies in particular: 

(4) 5* is a normal subgroup of G, if 5 is a normal subgroup of G. 
To enunciate the next statement it will be convenient to introduce 

some notations. If X and Y are subsets of G, then we denote by 
(X, Y) the subgroup generated by all the commutators x~ly-lxy for x 
in X and y in Y. For these subgroups P. Hall proved the following im­
portant inequality: 

(H)16 If A, B, C are normal subgroups of G, then 

(A,(B,C)) £(B,(p9A))(Ç,(A9B)). 

Now we are able to prove 
(5) If (G, T) ^S is satisfied by the subgroups S and T of G, then 

(5*, S*)£T*. 
PROOF. We deduce from (H) that 

(T, (S*, S*)) ^ (S*, (5*, T)) £ (S*, (G, T)) S (S*, S) - 1, proving (5). 

We define the derived series G(v) of the group G inductively as fol­
lows. 

(i) GW = G. 
(ii) G(v+1) is the commutator subgroup of GM. 
(iii) If A is a limit ordinal, then G(v) is the crosscut of the subgroups 

G(u)foru<v. 
If in particular there exists an ordinal 5 such that G^G^, then G 

may be termed soluble.17 

» Hall [l]. 
17 A different concept of solubility which is narrower than the present one has been 

discussed in Baer [l]. 
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THEOREM 5. Nilpotent groups are soluble. 

PROOF. Put Cv = ZV(G)* for every v. Then we have Co = & = G, since 
Zi(G) is the center of G. From (G, Zv+i(G)) £ZV(G) and property (5) 
we deduce that 

If v is a limit ordinal, then ZV(G) is the join of the ZU(G) foru<vt and 
we infer from (2) that Cv is the crosscut of the subgroups Cu for u <v. 
Hence it follows by complete (transfinite) induction that 

G(v) ^ Cv for every v. 

Since G is nilpotent, there exists an ordinal k such that G~Zk(G). 
Clearly C* is the center of G. But G(&) is part of C* and C* is abelian. 
Hence G(fc+1) = l, proving the solubility of G. 

Appended to Theorem 1 is a discussion of an example of a nilpptent 
group G which can be shown to have the property lG = 2G?*l. Thus 
nilpotency does not imply that the descending central series ends 
with 1. 

On the other hand it may be worth noting that the nonabelian 
free groups F satisfy <aF=l, though their center is equal to 1, showing 
the impossibility of deducing nilpotency from the fact that the de­
scending central chain ends with 1. 

We note finally that the situation is altogether different if one is 
mainly interested in finite chains. For the following theorem is well 
known:18 G = Zn(G) for finite n if, and only if, 1 — mG for finite m. 
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A SUBSTITUTE FOR THE AXIOM OF CHOICE 

A. D. WALLACE 

The following result appeared in the 1914 edition of Hausdorff's 
Mengenlehre, p. 140: 

(A) Any partially ordered system contains a maximal simply ordered 
subsystem. 

This theorem is well known to be equivalent to the axiom of choice 
(though there does not seem to be a proof of this fact in the literature) 
and it has been suggested as an alternative for this axiom. The pur­
pose of this note (which is purely methodological) is to propose a 
simpler but equivalent formulation of (A) as a substitute for the 
Zermelo axiom. The simplicity lies in the fact that we make no as­
sumptions concerning the relation R which replaces partial order. 

Let Q be a set and R an arbitrary binary relation on Q. A subset 
of Q will be termed R-simple if for any pair of its elements, a and b, 
we have either aRb or bRa. The version of (A) we propose is: 

(B) Any R-simple subset of Q is contained in a maximal R-simple 
subset of Q. 

It is clear that (B) implies (A). Conversely, let Q0 be an i?-simple 
subset of Q. Let P be the partially ordered (by inclusion) system 
composed of all i?-simple subsets of Q which contain Ç0. Then by (A) 
there is a maximal simply ordered subsystem P0 of P. The union of 
all the sets in P0 is the desired maximal i?-simple subset. 
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