GROUPS WITHOUT PROPER ISOMORPHIC
QUOTIENT GROUPS

REINHOLD BAER

If f is a homomorphism of the group G, and if g is an isomorphism
of the image group G/, then fg is a homomorphism of G too; and this
homomorphism is an isomorphism if, and only if, f is an isomorphism.
Consequently the following three properties of the group G imply
each other.

(1) Homomorphisms of G upon isomorphic groups are isomorphisms.

(2) Homomorphisms of G upon itself are isomorphisms.

(3) If N is a normal subgroup of G such that G and G/N are iso-
morphic, then N=1.

Groups meeting these requirements (1) to (3) shall be termed
Q-groups. A direct product of an infinity of isomorphic groups differ-
ent from 1 is certainly not a Q-group. On the other hand it is readily
seen that groups satisfying the ascending chain condition for normal
subgroups are Q-groups. Deeper is the fact that the group G is a
Q-group if it belongs to one of the following three classes of groups.

(a) Free groups on a finite number of generators.!

(b) Groups of finite dimensional matrices with coefficients from a
field, which are generated by a finite number of elements.?

(c) Free products of a finite number of abelian groups each of
which is generated by a finite number of elements.?

All these groups are generated by a finite number of elements. But
we are able to show that this latter condition is neither necessary
nor sufficient for a group to be a Q-group. The complexity of the situ-
ation is increased by the fact that neither subgroups nor quotient
groups of Q-groups need be Q-groups. Thus it becomes desirable to
obtain general criteria for a group to be a Q-group, and this is the
main object of the present note.

The subgroup S of the group G shall be termed completely charac-
teristic, if S=.S' for every homomorphism f of G which satisfies G=G’.
Examples of completely characteristic subgroups are the commutator
subgroup of G and its generalizations. If G happens to be a Q-group,
then every characteristic subgroup of G is completely characteristic.
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1 Levi [1]; Magnus [2]. The numbers in brackets refer to the bibliography at the
end of the paper.

3 Malcew [1].

8 Fouxe-Rabinowitch [1].
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THeEOREM 1. The group G is a Q-group if there exists a well ordered
ascending chain of completely characteristic subgroups S, with the fol-
lowing properties.

(i) So=1; Sx=G for some k.

(i) So41/S, s a Q-group for every v<k.

(iii) If v s @ limit ordinal, then every element in S, is contained in
some S, with u<v.

ProoF. Suppose that f is a homomorphism of G satisfying G=G’,
and that N is the kernel* of this homomorphism f. We are going to
prove by complete (transfinite) induction that the crosscut® of N and
S, is 1. Since this assertion is certainly true for v=0, we may assume
its validity for every u <v.

Case 1. v=u-1 is not a limit ordinal.

Then we infer from our induction hypothesis that NNS,=1. We
deduce furthermore S,=S/ and S,=S] from the fact that the sub-
groups S are completely characteristic subgroups of G and that G=G.
Thus f induces a homomorphism of S,/S, such that S,/Su=(S»/S.).
But S,/S. is by (ii) a Q-group and f consequently induces an iso-
morphism in S,/S,. If x is an element in the crosscut of N and S,,
then (S.x)’=S.. Hence Syx=S, and x is in S,. But the crosscut of
S. and N is 1, proving x =1. Thus NN.S,=1.

Case 2. v is a limit ordinal.

If x belongs to S,NN, then x belongs by (iii) to SuN\N for u<v.
Hence x =1 may be inferred from the induction hypothesis, showing
again that NN\S,=1.

Thus it follows in particular that N=NNG=NNS,=1, proving
that f is an isomorphism, as we desired to show.

The subgroup S of the group G has been termed strictly characteris-
tic® if S <.S for every homomorphism f of G satisfying G'=G. The
members Z,(G) of the ascending central chain of the group G are
strictly characteristic subgroups of G. To prove this it suffices to re-
call their inductive definition.

() Zy(G)=1.

(1) Z,+1(G)/Z,(G) is the center? of G/Z,(G).

(iii) If v is a limit ordinal, then Z,(G) is the (set theoretical) join
of the subgroups Z,(G) for 4 <v.

4 The kernel of the homomorphism f consists of the elements in G which are
mapped upon 1 by f.

§ The crosscut of the sets 4 and B will always be denoted by AM\B.

¢ For a discussion of this and related concepts see Baer [2].

7 The center of the group G consists of all the elements g in G which satisfy sx=x3
for every x in G.
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Let us note that the group G is termed nilpotent? if there exists an
ordinal 2 such that G=Z,(G).

The members of the ascending central series, though strictly char-
acteristic, need not be completely characteristic. This will be appar-
ent from the following example,? which shows at the same time the
impossibility of substituting “strictly characteristic” for “completely
characteristic” in Theorem 1.

Let B be an abelian group of type p*. Then B contains one and
only one subgroup B; which is a cyclic group of order ¢, and every
element in B is in at least one B;. Denote by G the group obtained
by adjoining to B an element g subject to the relation

g—lxg = xH—P
for x in B. It is readily seen that B;=Z;(G) for finite ¢, that B=Z,(G)
and that G=Z,.1(G). Thus G is nilpotent and the quotient groups of
successive terms in the ascending central series are cyclic groups (and

therefore Q-groups). But G is not a Q-group, since G and G/B; are
clearly isomorphic groups.

COROLLARY. If G is a nilpotent group and if every Z,,1(G)/Z,(G) is
a Q-group, then the following condition is necessary and sufficient for G
to be a Q-group.

Every Z,(G) is a completely characteristic subgroup of G.

The sufficiency of this condition is an immediate consequence of
Theorem 1; its necessity may be derived from the fact that every
characteristic subgroup of a Q-group is completely characteristic. The
impossibility of omitting this condition from the statement of this
corollary is a consequence of the considerations immediately preced-
ing this corollary.

LEMMA. If S is a strictly characteristic subgroup of the group G, and
if G/S is a Q-group, then S is completely characteristic.

Proor. If f is an endomorphism of G such that G=G’, then 'S
and an endomorphism of G/S upon itself is defined by mapping the
coset X in G/S upon the coset SX’ in G/S. Since G/S is a Q-group,
it follows that this endomorphism of G/S is an automorphism. From
this fact we conclude that the element x in G belongs to S if, and only
if, ’ belongs to S. But to every element y in S there exists an element
2 in G such that 2 =y; and from the preceding remark we infer now
that z belongs to .S too, proving S=.5/, as we desired to show.

8 See Baer [1] for a discussion of this concept of nilpotency..
9 This is essentially a restatement of Baer [1, Example 2.5, p. 406].
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The next criterion is an almost exact dual to Theorem 1 with the
important difference that we need only consider strictly characteristic
subgroups.

THEOREM 2. The group G is a Q-group if there exists a well ordered
descending chain of strictly characteristic subgroups S, with the follow-
ing properties.

(1) So=G; Sx=1 for some ordinal k.

(i) S./Svt1is a Q-group for every v <k.

(iii) If v ss a limit ordinal, then S, is the crosscut of the subgroups S,
Jor u <v.

Proor. If the homomorphism f of the group G satisfies G=G’, then
we are going to prove the following assertion by complete (transfinite)
induction with respect to v.

(v) S,=S! and f induces an isomorphism of G/S..

Since this assertion () certainly holds true for # =0, we may as-
sume its validity for every u <, in order to prove (v). We distinguish
two cases.

Case 1. v=u+1 is not a limit ordinal.

Then we infer from the induction hypothesis that S, =S] and that f
induces an isomorphism in G/S,. Since S, is strictly characteristic,
we have S/<.S,. If X is a coset in S,/S,, then mapping X upon S,X’
effects a homomorphism of S,/S, upon itself, that is, S,/S, is the
image of S,/S, under this homomorphism. But S,/S, is by (ii) a
Q-group, and thus f induces a proper automorphism of S,/S,. Sup-
pose now that X is a coset of G/S, which is mapped upon 1 by the
homomorphism f of G/S,. Then X’ £, and therefore S.X’=S.. But
f induces an isomorphism in G/S, so that X £S, and X is a coset of
Su/S». But then X =1, since f induces an isomorphism in S,/S,, and
we have shown that f induces a proper automorphism of G/S,. If x
is an element in S,, then there exists an element y in G such that x =19/,
The coset .S,y is mapped by f into part of S,. Since f induces an iso-
morphism in G/S,, as we have shown just now, it follows that
S,y=.S,, and this proves S,=SJ, completing the proof of the case
() = (u+1).

Case 2. vis a limit ordinal.

If X is a coset of G/S, such that X’ <.S,, then X' <S5, for u<v.
From the induction hypothesis we infer that f induces an isomor-
phism in G/S, for # <v. Since f maps the coset S, X of G/S, upon the
identity of G/S,, it follows that X =S, for #<v, and we infer from
(iii) that X <.S,. Thus f induces a proper automorphism of G/S,; the
fact that S,=.5/ is verified as in Case 1.
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Thus we have verified (v) for every v <k. From condition (i) and
proposition (k) we infer finally that f is an automorphism of G, as
we desired to show.

To enunciate two important consequences of this theorem we need
the descending ceniral series of G, whose members *G are defined in-
ductively as follows:

(i) 'G=G.

(ii) *+'G is generated by all the commutators x~'y~xy for x in G
and y in °*G.

(iii) If 9 is a limit ordinal, then °G is the crosscut of all the *G
for u <v.

It is readily verified that *G’ < *G for every endomorphism!? f of G;
that is, the subgroups *G are fully invariant,'* and they are both com-
pletely and strictly characteristic subgroups of G. This descending
central chain certainly meets the requirement (iii) of Theorem 2, and
thus we obtain the following criterion.

COROLLARY 1. The group G is a Q-group, if there exists an ordinal
k such that *G =1, and if the (abelian) groups *G/**'G are all Q-groups.

An abelian group is certainly a Q-group if it is generated by a
finite number of elements. It is well known furthermore that G/ G,
for finite 4, is generated by a finite number of elements if G is gener-
ated by a finite number of elements. Thus the following fact is a spe-
cial case of Corollary 1.

COROLLARY 2.2 The group G is a Q-group if it is generated by a finite
number of elements, and if “G=1.

If Fis a free group, then Magnus® has shown that “F=1, and thus
the last criteria are generalizations of the theorem!* that free groups
on a finite number of generators are Q-groups.

In order to apply Theorem 2 to abelian groups we introduce some
notations. If 4 is an abelian group, then denote by F,(4) the set
of all the elements in 4 whose order is a power of the prime num-
ber p. Clearly F,(A4) is a fully invariant subgroup of 4. The product
F(4) of all the F,(4) is their direct product and consists of all the
elements of finite order whereas 4/F(4) contains no elements of
finite order except 1.

10 Endomorphisms of the group G are homomorphisms of G into G.

1 This concept is due to Levi [1]; for further discussion see Baer [2].
12 Fouxe-Rabinowitch [1].

13 Magnus [1].

U See footnote 1.
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COROLLARY 3. If A/F(A) as well as every F,(4) is a Q-group, then
the abelian group A is a Q-group.

ProoF. Let So=4, Si=F4), S; =H.~§ iFp;(A) where p1, ps, -+ -
is some enumeration of the primes. The subgroups .S; are clearly
strictly characteristic and their crosscut S, =1. Since Sy/S1=A4/F(4)
and since .S;/Siq1 is, for positive 4, isomorphic to F,,(4), the hy-
potheses of Theorem 2 are satisfied by this descending chain of sub-
groups, proving the validity of our present contention.

Let us note that F,(4) is a Q-group if it is finite, and that F/F(4)
is a Q-group if it is of finite rank, that is, if there exists an integer %
such that every subgroup of F/F(A) which may be generated by a
finite number of elements may also be generated by k elements. Com-
bining Corollaries 1 and 3 and the preceding remarks it is easy to
construct any number of examples of Q-groups that cannot be gen-
erated by a finite number of elements.

Examples. 1. 1t is known that the free group on two generators
contains a free group on an infinity of generators as a subgroup.!® The
former group is a Q-group, the latter is not. This shows that not every
subgroup of a Q-group need be a Q-group.

2. The additive group R of the rational numbers cannot be gen-
erated by a finite number of elements. But R is a Q-group. For if R
is considered modulo a subgroup different from 0, then all the ele-
ments in the quotient group are of finite order. If J is the subgroup of
the integers in R, and if E is the subgroup of the even integers in R,
then E<J and R/J and R/E are isomorphic groups so that R/E is
not a Q-group, showing that quotient groups of Q-groups need not be
Q-groups.

3. We are going to construct an example of a group G with the
following properties.

(a) G is generated by two elements.

®) (G, G'")=1.

(c) Gis nota Q-group.

Here we denote by G’ the commutator subgroup of G, by G’ the
commutator subgroup of G’, and by (G, G’') the subgroup generated
by all the commutators x~'y~xy for x in G and y in G"'.

This example shows that Corollary 2 of Theorem 2 is in certain
respects a “best” result.

To construct the group G we proceed as follows. Let F be a free
group on two generators and denote by %, v a free pair of generators
of F. Then F/F' is the free abelian group of rank 2. The group F'/F"’

1 For example, the commutator subgroup.
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may be shown to be a free abelian group, a basis of which is given by
the elements
(3, §) = w v~ w o lyy vin’

for integral 4, j. We put N=(F, F'’). Then F'’/N is part of the center
of F/N; it is a free abelian group, generated by the elements (com-

mutators)
2, N, NG, D F)

Every subgroup of F/N is a normal subgroup of F/N, since F''/N
is part of the center of F/N. We denote by U the subgroup of F gen-
erated by N and the elements (0, 5)(0, 7/)(0, 7)~(0, 7/)~ for all posi-
tive j, j/, and we denote by V the subgroup of F generated by N and
all the elements (0, 7)(0, ')(0, 7)~(0, j')~1 for j, i/ not negative. It is
clear that U and V are normal subgroups of F and that

N<V<<UKLF"

We are going to prove now that G=F/V is the desired group. It
is immediately clear that conditions (a) and (b) are satisfied by G.
To prove (c) we construct an automorphism of the group F which
maps V upon U. There exists one and only one automorphism f of F
which maps # upon #v and » upon v. We have

Ff = F', F = F", N = N,

since these subgroups are characteristic subgroups of F. Furthermore
we have

0, 0) = (v 'uv) = (uv)~w(uv)y = v~1(0, O)v = (0, 1),
and consequently
(09 j), = (09j + 1)

for integral j. From this last equation one derives the equality V/=U,
completing the proof.

From the preceding arguments one deduces readily the noteworthy
fact that the ascending chain condition is not satisfied by the normal
subgroups of a nonabelian free group.

Dualizing the concept of a Q-group we define as an S-group a group
G meeting the following requirement.

(S) If the subgroup S of G is isomorphic to G, then S=G.

It is readily seen that every group satisfying the descending chain
condition for subgroups is an S-group. An example of an S-group not
satisfying this chain condition is the additive group of rational num-
bers.
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To enunciate conveniently a criterion for S-groups we need the
following concept. The subgroup C of the group G is said to be an
S-characteristic subgroup of G if C/ = C for every isomorphism f of G
into itself. Clearly every fully invariant subgroup is S-characteristic
and every S-characteristic subgroup is characteristic. If G happens to
be an S-group, then conversely every characteristic subgroup of G is
S-characteristic.

THEOREM 3. The group G is an S-group if there exisis a well ordered
ascending chain of S-characteristic subgroups N(v) of G with the follow-
ing properties.

(1) N(0)=1 and N(t) =G for some ordinal ¢.

(ii) N@+1)/N(2) is an S-group.

(iii) If v 4s a limit ordinal, then every element in N(v) is contained
in some N(u) for u<v.

PRroOF. Suppose that f is an isomorphism of G upon some subgroup
S of G. We are going to prove by complete (transfinite) induction
that N(v)’ = N(v) for every v. This assertion is certainly true for v=0;
and thus we may assume its validity for every # <v. If v happens to
be a limit ordinal, then our contention is directly derived from (iii)
and the induction hypothesis. If, however, v=u-41 is not a limit
ordinal, then we deduce from N(u)'=N(u) and N(v) <N(v) that f
induces an isomorphism of the group N(v)/N(x) upon a subgroup of
N(v)/N(u). But it follows from (ii) that N(v)/N(u) is an S-group.
Hence (N(v)/N(u))Y =N(@)/N(u) or N(w)=N@)N(u)=N@w)Nu)
=N(v)’, as we desired to show. Now G=N(t) = N(t) =G’ is a conse-
quence of (i).

We are interested in the relations between Q-groups and S-groups.
There are groups that are both, like the finite groups or the additive
group of rational numbers. Any direct (or free) product of an infinity
of isomorphic groups (1) is neither. The infinite cyclic groups are
Q-groups, but not S-groups, and the abelian groups of type p= are
S-groups, but not Q-groups. Thus the following theorem seems to be
of some interest.

THEOREM 4. If N is a fully invariant subgroup of the free group F,
and if G=F/N is an S-group, then G is a Q-group.

Proor. If L is a normal subgroup of G such that G and G/L are
isomorphic groups, then denote by M the uniquely determined nor-
mal subgroup of F such that N=<M and M/N=L. There exists an
isomorphism g of G upon G/L, and hence there exists an endomor-
phism f of F satisfying X¢= MX/ for every coset X of F/N=G. (To
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prove the existence of f, consider a free set of generators of F and
define f on this free set of generators in accordance with our require-
ment. Then f can easily be seen to be a desired endomorphism.) Then
F=FM and FFNNM =N’< N, since N is a fully invariant subgroup
of F. Since M and N are normal subgroups of F, we deduce from
Dedekind’s law that

FFNAM = (FF N\ M)N = NN = N,

and from N < M we infer (FFN)M = F/M = F. The subgroup (F/N)/N
=V of G=F/N has therefore the following properties:

VNAL=1 and VL =G.

Thus every coset of G/L contains one and only one element of the sub-
group V of G, proving that V and G/L are isomorphic. But G/L and
G are isomorphic and G is an S-group, proving that V'=G. This im-
plies finally L =1, showing that G is a Q-group.

It is apparent from the proof of this theorem that it remains valid
if we substitute for the hypothesis that F be a free group the following
assumption:

If M and N are normal subgroups of F, if N< M, and if g is an iso-
morphism of F/N upon F/M, then there exists an endomorphism f
of F, satisfying

X1=MX

for every coset X of F/N.

It has been shown that the properties (1) to (3) may be deduced
(a) from the existence of an ascending chain of completely character-
istic subgroups, meeting certain requirements (Theorem 1), and
(b) from the existence of a descending chain of strictly characteristic
subgroups, satisfying certain conditions (Theorem 2). But these prop-
erties (a) and (b) are not independent. For the following correspond-
ence between subgroups maps every ascending chain of completely
characteristic subgroups upon a descending chain of strictly charac-
teristic subgroups. If .S is a subgroup of the group G, then let S* be the
centralizer of S in G, which consists exactly of those elements in G
commuting with all the elements in S. To substantiate our contention
we enumerate a number of properties of this operation.

(1) If SST, then T*<S*.

(2) If S is the (set theoretical) join of the subgroups S,, then S*
is the crosscut of the subgroups SJ*.

These two properties are immediately obvious. It should be noted,
however, that neither the dual nor the converse of (2) is true.
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(3) If S is a completely characteristic subgroup of G, then S* is a
strictly characteristic subgroup of G.

Proor. If G=G’ is satisfied by the endomorphism f of G, if s is an
element in S, and if ¢ is an element in S*, then there exists an element
s’ in S such that s=s""; and we find:

st/ = s = (s't) = (ts') = V5" = Vs,

proving that ¢ belongs to S* too, or S* < S*.

REMARK. The impossibility of proving that S* is completely char-
acteristic, if .S is completely characteristic, may be shown by the fol-
lowing example: If S=G, then S is certainly completely characteris-
tic. But S* is the center of G; and we have pointed out before that the
center is not always completely characteristic.

Note that in the proof of (3) we actually verified the following fact.
If S is a subgroup of G, if f is an endomorphism of G, and if S£.%,
then S* <.S*. This implies in particular:

(4) S* is a normal subgroup of G, if S is a normal subgroup of G.

To enunciate the next statement it will be convenient to introduce
some notations. If X and Y are subsets of G, then we denote by
(X, Y) the subgroup generated by all the commutators x~1y~xy for x
in X and y in Y. For these subgroups P. Hall proved the following im-
portant inequality:

(H)® If 4, B, C are normal subgroups of G, then

(4, (B,0)) = (B, (C, ), (4, B)).

Now we are able to prove

(5) If (G, T) =S is satisfied by the subgroups S and T of G, then
(S*, S*)<T*.

Proor. We deduce from (H) that

(T, (5*,8%) = (§* (5%, 1)) = (5% G, 7)) = (5% 5) = 1, proving (5).

We define the derived series G® of the group G inductively as fol-
lows.

i) G©=gG.

(ii) G@*Y is the commutator subgroup of G®.

(iii) If v is a limit ordinal, then G is the crosscut of the subgroups
G for u <v.

If in particular there exists an ordinal s such that G=G®, then G
may be termed soluble.l”

1 Hall [1].

17 A different concept of solubility which is narrower than the present one has been
discussed in Baer [1].
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THEOREM 5. Nilpotent groups are soluble.

Proor. Put C,=Z,(G)* for every v. Then we have Cy= C1=G, since
Z1(G) is the center of G. From (G, Z,4+1(G)) £Z,(G) and property (5)
we deduce that

(Cv, Cv) é CV+1'

If v is a limit ordinal, then Z,(G) is the join of the Z,(G) for # <v, and
we infer from (2) that C, is the crosscut of the subgroups C, for u <.
Hence it follows by complete (transfinite) induction that

G® =< C, for every .

Since G is nilpotent, there exists an ordinal 2 such that G=2Z(G).
Clearly Cy is the center of G. But G™® is part of C; and Cj is abelian.
Hence G*+D =1, proving the solubility of G.

Appended to Theorem 1 is a discussion of an example of a nilpotent
group G which can be shown to have the property !G=2Gs1. Thus
nilpotency does not imply that the descending central series ends
with 1.

On the other hand it may be worth noting that the nonabelian
free groups F satisfy “F=1, though their center is equal to 1, showing
the impossibility of deducing nilpotency from the fact that the de-
scending central chain ends with 1.

We note finally that the situation is altogether different if one is
mainly interested in finite chains. For the following theorem is well
known:!® G=Z,(G) for finite #» if, and only if, 1 ="G for finite m.
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A SUBSTITUTE FOR THE AXIOM OF CHOICE
A. D. WALLACE

The following result appeared in the 1914 edition of Hausdorff’s
Mengenlehre, p. 140:

(A) Any partially ordered system contains a maximal simply ordered
subsystem.

This theorem is well known to be equivalent to the axiom of choice
(though there does not seem to be a proof of this fact in the literature)
and it has been suggested as an alternative for this axiom. The pur-
pose of this note (which is purely methodological) is to propose a
simpler but equivalent formulation of (A) as a substitute for the
Zermelo axiom. The simplicity lies in the fact that we make no as-
sumptions concerning the relation R which replaces partial order.

Let Q be a set and R an arbitrary binary relation on Q. A subset
of Q will be termed R-simple if for any pair of its elements, ¢ and b,
we have either aRb or bRa. The version of (A) we propose is:

(B) Any R-simple subset of Q is contained in a maximal R-simple
subset of Q.

It is clear that (B) implies (A). Conversely, let Q, be an R-simple
subset of Q. Let P be the partially ordered (by inclusion) system
composed of all R-simple subsets of Q which contain Q,. Then by (A)
there is a maximal simply ordered subsystem P, of P. The union of
all the sets in P, is the desired maximal R-simple subset.
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