
70 A. E. TAYLOR [February 

THE RESOLVENT OF A CLOSED TRANSFORMATION 

A. E . TAYLOR 

1. Introduction. In reading over Chapter IV of Stoned book, 
Linear Transformations in Hilbert Space, I was impressed by the 
fact that a number of the results obtained are valid for any complex 
Banach space. This generality does not always appear at once evi­
dent, and it may be worth while to explain briefly. 

The most interesting and important fact which underlies the ma­
terial is that the resolvent of a closed distributive* transformation 
depends analytically on a parameter X. This dependence is made pre­
cise in Stoned work with the aid of the inner product of Hilbert 
space; but this is not necessary, for it is known that the fundamental 
portions of the classical theory of analytic functions remain valid in 
complex Banach spaces.t In particular, Liouville's theorem admits a 
valid generalization. Thus we are able to prove that the spectrum 
of a (continuous) linear transformation whose domain is the whole 
space E is not empty. We shall now turn to the details. 

2. Preliminaries. We use E to denote a complex Banach space; 
Twill denote a distributive (additive, homogeneous) transformation, 
with domain and range both in E. We then write T\=T—\I, and 
Tr1 will denote the inverse of T\ when it exists. Here A is a complex 
number, and / the identity transformation. We recall that a trans­
formation admits an inverse if and only if it sets up a one to one 
correspondence between its domain and its range. When T is dis­
tributive, the necessary and sufficient condition that TJT1 exist is that 
T\f = 0 imply ƒ = 0. The set of values of X for which Trl is linear, 
with domain everywhere dense in E, is called the resolvent set of T. 
All other values of X constitute the spectrum of T. 

3. Discussion of the resolvent. We prove the following theorem: 

THEOREM 1. If T\~l exists and is linear, then Trl exists and is linear 
for each X such that |X —Xo | < l/M*Qi where M\Q is the modulus of T\~l. 

* We use distributive where Stone uses linear, preferring to reserve the latter term 
for continuous distributive transformations. For the definition of a closed trans­
formation see Stone, loc. cit., p. 38. 

t For the independent variable a complex number this was pointed out by Wiener, 
Fundamenta Mathematicae, vol. 4 (1923). For the general case see A. E. Taylor, 
Comptes Rendus, vol. 203 (1936), pp. 1228-1230, and a forthcoming paper in the 
Annali délia Reale Scuola Normale di Pisa; also L. M. Graves, this Bulletin, vol. 41 
(1935), pp. 651-653. 
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PROOF. Let ƒ be the domain of T. Then r x / = r X o / - ( X - X o ) / . But 
since Txo-1 is linear, ||/|| ^ Afx.|| ^ x j | | , and hence if |\—Xo | <1/Afx., 
7 V = 0 implies ƒ = 0 , so that Trl exists. Also, since 

l |2y-xyl | i | | rx^| | - |x-x. | | | / | | îS (1 i - - |x-x. | )MI , 

we conclude that Tr1 is bounded, and hence linear. Its modulus does 
not exceed M X o / ( l - A f x J X - X o | ) . 

THEOREM 2. If T is closed, and if its resolvent set is not empty, the 
domain of T\~l is the whole space E when X is in the resolvent set. 

The proof of this offers no difficulties, and we omit it. The family 
of linear transformations Tjr1 is called the resolvent. We denote it 
byi? x . 

The next theorem is a direct carry over from Stone (Theorem 4.10, 
p. 137). The proof given by Stone is valid in the present case, and the 
reader is referred to it. 

THEOREM 3. If the resolvent R\ of a closed distributive transformation 
T exists, then Rx — R^^ (X —/*)l?x2£M throughout E for each pair of values 
X, ix in the resolvent set, and R\f=0 implies f = 0. 

Conversely, if X\ is a family of linear transformations with domain 
E, denned for each X in a set 2 , such that 

(1) Xx - X, s (X - M)XXX, 

for each X, JU in 2 ; and if X x / = 0 implies ƒ = 0 for at least one X in 2 , 
then there exists a unique closed, distributive transformation T 
whose resolvent exists and coincides with X\ for every X in 2 . 

The functional equation (1) is striking. It suggests at once a "law 
of the mean" for X\f, and in a sense is just that. We shall consider 
some further conclusions which may be drawn from (1) under suit­
able hypotheses. 

THEOREM 4. Let Xx be a linear transformation with domain E for 
each X in an open set 2 of the complex plane; further, let X\f be con­
tinuous in 2 for each f in E, and suppose that the functional equation 
(1) is satisfied when X, ix are in 2 . Then X\f is analytic* in 2 for each 

ƒ in E, and in the neighborhood of each point of 2 admits an expansion 
in the form 

* In the sense indicated by Wiener. See the references in an earlier footnote. 
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(2) xx/ = £ (x - \0)
nxZf, 

where Xo is in 2 and |X—Xo | is sufficiently small. 

PROOF. We first prove that X\f admits a derivative with respect 
to X at each point of S. The form of (1) suggests that this derivative 
is X£f; this surmise is verified by the inequality 

X Xf ~ fXo/ - Xx'A = | | X x 0 W - XxJ)\\ ^ M4\Xxf - Xxj\\, 
A — Ao II 

where M\0 is the modulus of XXo, since X\f is continuous with re­
spect to X (it is easily seen that X\XM = XMXx). It follows from the 
general theory of abstract-valued analytic functions that X\f is 
analytic in 2 . In particular, it admits derivatives of all orders in S, 
and is expansible in a Taylor series. In order to show that this ex­
pansion about a point X=Xo has the form (2), we shall prove that the 
derivatives of X\f are given by the formula 

(3) [*/T-£[*/J »!£"ƒ. 

This has already been established for n = 1. We proceed by induction, 
assuming the truth of (3) with n replaced by n — 1. Then 

[Xxf] (n-1) 
[x*J] 

(n-1) 

X - X o 

xSf 

mxlTf 

(n - 1)! 
X\J 

X - Xo 
nix;:1/ 

(n-\)\ *x~Xx,(xT1+*r ,*x.+ 
X - X + xl7)f- n\xlTf 

(n - l)\XXoXi(xl X + Xl 2Xx„ + + x;;)f nix;:1/ 

(n - l)!Mxc (-̂ x + X\ X\Q + + X\X\0 )ƒ — nX\0 

But the expression inside the last norm sign tends to zero as X—>Xo, 
by virtue of the continuity of Xx, and so the induction is completed. 
The continuity of the iterates of X\, and therefore of the expression 
inside the norm, is deduced from the fact that Xx / , being linear i n / , 
is continuous in X and ƒ together.* 

* This is a theorem of Kerner, Studia Mathematica, vol. 3 (1931), p. 159. Formula 
(3) could also be established by use of some theorems about Fréchet differentials. 
For the above direct proof I am indebted to the referee. 
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From (3) and the fact that 2 is an open set we can infer the 
validity of (2) for some region |X—Xo | < p . This completes the proof 
of Theorem 4. 

However, it is apparent that (2) converges and defines a linear 
transformation with domain E whenever |X— X01 <1/M\Q. If this 
range of values was not originally included in S, the domain of 
definition of X\ may be extended, and it is easy to see that (1) will 
continue to be satisfied. 

The foregoing considerations suggest at once the nature of the 
resolvent of T. 

THEOREM 5. Let T be a closed, distributive transformation whose re­
solvent exists. Then the resolvent set 2) is an open set, and the resolvent 
Rxf is an analytic function of X in 2 . If M\ is the modulus of Rx, 
2 is such that with Xo it contains all points X such that | X —Xo | < l/M\Q. 
R% is then given by the expansion 

(4) Rxf = Z (X - XofiCV 
n=0 

and its modulus satisfies the inequality 

Mx0 
(5) Mx g 

1 - X - Xo Mx0 

PROOF. Since 2 is non-empty, it contains a point Xo, and R\0 is a 
linear transformation with domain JE (Theorem 2). Let us define a 
family of transformations X\f by the series on the right in equation 
(4). I t is clear that X\f will be linear, with domain E, when 
| X -Xo | <l/MXo. Next we identify Xx with Tx~

l when | X -Xo | < l/MXo. 
The calculations are identical with those in Stone, pages 140-141, and 
will be omitted. By definition, then, the resolvent Rx of T exists and 
coincides with X\ when | X —X01 <1/Mx0. The resolvent set is accord­
ingly open. Equation (4) now gives Rxf as a power series with abstract 
coefficients; it is therefore analytic as a function of X. This result 
may be obtained without further resort to the theory of abstract 
power series by appealing to Theorem 4, since Rxf is now evidently 
continuous as a function of X, and satisfies the functional equation 
(1), by Theorem 3. The inequality (5) has already been noted in 
Theorem 1. Theorem 5 is thus proved. 

4. The resolvent of a linear transformation. We state now an­
other theorem: 
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THEOREM 6. If T is linear, with domain E and modulus C, the re­
solvent set contains all X such that | X | > C, and for these values 

(6) R,f = - E 1 r -y . 
n - l Xw 

Thus all the singularities of R\f lie in the finite part of the plane. In 
particular R\f has at least one singularity, that is, the spectrum of T 
is not empty. 

The proof of (6) is well known. The last assertion of the theorem 
follows from Liouville's theorem (for abstract analytic functions), 
since from (6) we have 

M^ÎTprr | x | > c-
If the spectrum of T were empty, R\f (ƒ fixed) would be analytic over 
the entire plane and finite at infinity. Then R\f would be a constant, 
with value 0, for a l l / , since lim|x|->oo | | i? \ / | |=0. This is impossible. 
(We exclude, of course, the trivial case where E consists of the zero 
element alone.) 

I t would be interesting to know other relationships between the 
nature of T and the singularities of its resolvent. 
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