A CHARACTERIZATION OF MANIFOLD BOUNDARIES IN E_n DEPENDENT ONLY ON LOWER DIMENSIONAL CONNECTIVITIES OF THE COMPLEMENT*

BY R. L. WILDER

In my recent paper Generalized closed manifolds in n-spacet it was shown that a compact point set B in E_n , common boundary of (at least) two domains D and D_1 which are respectively u.l.i-c.\(\) for $0 \le i \le j$ and $0 \le i \le n-j-3$ (where $n-2>j \ge (n-3)/2$), and such that the Betti numbers $p^{i+1}(D)$, $p^{i+2}(D), \dots, p^{n-2}(D)$ are finite, is a g.c.(n-1)-m. This constituted a generalization of a former result | to the effect that when n=3, D and D_1 are u.l.0-c., and $p^1(D)$ is finite, B is a closed 2-manifold. In the present note I propose to show, as principal result, that the above conditions on the numbers $p^{i+2}(D), \cdots, p^{n-2}(D)$ are irrelevant, and furthermore that it is immaterial whether we place the restriction as to finiteness on $p^{i+1}(D)$ or on $p^{n-i-2}(D_1)$. It turns out that the only essential requirements are that the upper limits on the dimensions for which D and D_1 are u.l.i-c. must total at least n-3, and that one of the domains have a finite Betti number as just stated.

For the sake of brevity we make the following definitions. We shall understand without explicit statement hereafter that the imbedding space is $E_n(n \ge 3)$ (euclidean space of n dimensions).

DEFINITION. A metric space will be said to be *completely i-avoidable*¶ at a point P if for every $\epsilon > 0$ there exist δ and η , $\epsilon > \delta > \eta > 0$, such that if γ^i is a cycle on $F(P, \delta)$, then $\gamma^i \sim 0$ on $S(P, \epsilon) - S(P, \eta)$.

^{*} Presented to the Society, December 29, 1934.

[†] Annals of Mathematics, vol. 35 (1934), pp. 876-903; to be referred to hereafter as G.C.M.

[‡] Principal Theorem E of G.C.M.

[§] u.l.i-c. = uniformly locally i-connected; see G.C.M. for definition.

 $[\]parallel$ R. L. Wilder, On the properties of domains and their boundaries in E_n , Mathematische Annalen, vol. 109 (1933), pp. 273–306, Theorem 20; to be referred to hereafter as D.B.

[¶] See condition (3), definition M^n , of G.C.M.

THEOREM 1. Let M be the boundary of a u.l.i-c. domain D, $(0 \le i \le n-j-2)$, and P a point of M at which M is completely (n-j-2)-avoidable. Then there exists for every $\epsilon > 0$ an $\eta > 0$ such that if $\gamma^j \in S(P, \eta)$ links M, then γ^j is linked with a cycle Γ^{n-j-1} of $D \cdot S(P, \epsilon)$, and with a cycle Γ^{1} of $M \cdot S(P, \epsilon)$.*

PROOF. Let ϵ' be an arbitrary positive number $<\epsilon$, and let δ and η be such that a γ^{n-j-2} of $M\cdot F(P,\delta)$ is homologous to zero on $M\cdot \left[S(P,\epsilon')-S(P,\eta)\right]$. Suppose $\gamma^i\subset S(P,\eta)$ links M. Let $H=M\cdot \overline{S(P,\delta)}$ and $K=M\cdot \overline{S(P,\epsilon')}$. Then γ^i links K. For suppose not. Then there exists a chain $C_1^{j+1} \rightarrow \gamma^j$ in E_n-K , and hence in E_n-H . A chain $C_2^{j+1} \rightarrow \gamma^j$ in $S(P,\eta)$ lies also in $E_n-\overline{(M-H)}$. Then the cycle $C_1^{j+1}-C_2^{j+1}$ must link $H\cdot \overline{M-H}$, else by the Alexander Addition Theorem γ^i does not link $H+\overline{M-H}=M$. But then $C_1^{j+1}-C_2^{j+1}$ is linked with an (n-j-2)-cycle of $M\cdot F(P,\delta)$, since $H\cdot \overline{M-H}\subset M\cdot F(P,\delta)$. But such a cycle bounds on $M\cdot \left[S(P,\epsilon')-S(P,\eta)\right]\subset E_n-\left|C_1^{j+1}-C_2^{j+1}\right|$, \dagger and we have a contradiction. Thus γ^j links K.

As γ^{j} links K, it is linked with a cycle Γ_{1}^{n-j-1} of K. Since D is u.l.i-c. for $0 \le i \le n-j-2$, there lies in $D \cdot S(P, \epsilon)$; a cycle Γ^{n-j-1} approximating Γ_{1}^{n-j-1} and linked with γ^{j} .

THEOREM 2. Let the compact point set M be the common boundary of (at least) two domains D_1 and D_2 such that D_k , (k=1,2), is u.l.i-c. for $0 \le i \le n_k$, where $n_1+n_2=n-3$. Also, let (n_1+1) -cycles of D_1 of diameter less than some fixed positive number θ bound in D_1 . Then M is a g.c. (n-1)-m.§

PROOF. CASE 1. Suppose $n_1 \ge n_2$. By Theorem 3 of G.C.M., M is completely i-avoidable at all points, for $0 \le i \le n_2$. We first prove that D_1 is u.l. (n_1+1) -c. If D_1 is not u.l. (n_1+1) -c., there exist $P \subset M$ and $\epsilon > 0$ such that for each $\eta > 0$ there exists a

^{*} Theorem 1 is a generalization of Theorem 4 of my paper Concerning a problem of K. Borsuk, Fundamenta Mathematica, vol. 21 (1933), pp. 156-167. It should be noted that the neighborhoods $S(P, \epsilon)$ are relative to E_n , not merely to M.

 $[\]dagger$ If L is a chain, by |L| we denote the set of points on L.

[‡] See Lemma 2a of G.C.M. (A typographical error occurs in the statement of the lemma; the last "j" should be "1".)

[§] Theorem 2 is an exact generalization of Theorem 8 of the paper in Fundamenta Mathematica, vol. 21, cited above.

cycle ${}^{\eta}\gamma^{n_1+1}$ in $D_1 \cdot S(P, \eta)$ that does not bound in $D_1 \cdot S(P, \epsilon)$. However, let us choose δ and η to satisfy the complete i-avoidability requirement with $\eta < \theta$. By hypothesis, there exists $K_1^{n_1+2} \rightarrow {}^{\eta}\gamma^{n_1+1}$, in D_1 and hence (for $i=n_2$) in E_n-H (H as defined in proof of Theorem 1). Any $K_2^{n_1+2} \rightarrow {}^{\eta}\gamma^{n_1+1}$ in $S(P, \eta)$ also lies in $E_n - [F(P, \epsilon) + \overline{M-H}]$. Then $K_1^{n_1+2} - K_2^{n_1+2}$ must link a cycle of $M \cdot F(P, \delta)$, else ${}^{\eta}\gamma^{n_1+1}$ bounds in $D_1 \cdot S(P, \epsilon)$. But then it is linked with a Γ^m of $M \cdot F(P, \delta)$, where $M = n - (n_1 + 2) - 1 = n_2$; such a cycle, however, bounds on $M \cdot [S(P, \epsilon) - S(P, \eta)]$, hence in $E_n - (K_1^{n_1+2} - K_2^{n_1+2})$. Thus the supposition that ${}^{\eta}\gamma^{n_1+1}$ does not bound in $D_1 \cdot S(P, \epsilon)$ leads to a contradiction.

We may now show that D_1 is u.1.i-c. for $n_1+2 \le i \le n-2$. Let j be such a fixed value of i; we note that $n_2 \ge n - j - 1 \ge 1$. Suppose D_1 not u.l.j-c. Then we may determine a point P of M and an $\epsilon > 0$ such that for each $\eta > 0$ there is a cycle $\eta \gamma^i$ of $D_1 \cdot S(P, \eta)$ that fails to bound in $D_1 \cdot S(P, \epsilon)$. Let δ and η be such that (1) $\epsilon > \delta > \eta > 0$, (2) any (n-j-2)-cycle of $M \cdot S(P, \delta)$ bounds in $M \cdot [S(P, \epsilon) - S(P, \eta)]$, (3) any (n-j-1)-cycle of $D_2 \cdot S(P, \delta)$ bounds in $D_2 \cdot S(P, \epsilon)$ and hence in D_2 , and (4) if an $^{\eta}\gamma^{j}$ links M, then (Theorem 1) it is linked with an (n-j-1)cycle of $D_2 \cdot S(P, \delta)$. Now if an γ^i of D_1 were linked with M, we could by condition (4) determine an (n-j-1)-cycle of $D_2 \cdot S(P, \delta)$ with which ${}^{\eta}\gamma^{j}$ is linked. As this would not be possible by condition (3), we can suppose that $^{\eta}\gamma^{i}$ does not link M. Then there exists a chain $K_1^{i+1} \rightarrow {}^{\eta} \gamma^i$ in $E_n - M$, hence in $E_n - M \cdot \overline{S(P, \delta)}$. Let K_2^{j+1} be an arbitrary chain of $S(P, \eta)$ bounded by ${}^{\eta}\gamma^{j}$, and we have $K_{2}^{j+1} \rightarrow {}^{\eta}\gamma^{j}$ in $E_{n} - [F(P, \epsilon)]$ $+M-M\cdot S(P,\delta)$]. As before, we see by applying condition (2) that $^{\eta}\gamma^{i}$ bounds in $D_{1}\cdot S(P, \epsilon)$.

Thus D_1 is u.l.i-c. for $0 \le i \le n-2$, and for this case the theorem follows from Principal Theorem C of G.C.M.*

CASE 2. Suppose $n_1 < n_2$. In this case we show that D_2 is u.l.i-c. for $n_2 + 1 \le i \le n - 2$. We note that M is completely (n-j-2)-avoidable for $0 \le n-j-2 \le n_1$ at all points. The proof then follows the general method of Case 1.

The following corollary is obvious.

^{*} That D_1 is simply (n-1)-connected follows from the fact that M, being a common boundary of two domains, is a continuum.

COROLLARY. A compact set that is the common boundary of (at least) two domains D_1 and D_2 such that D_k , (k=1, 2), is u.l.i-c. for $0 \le i \le n_k$, where $n_1 + n_2 = n - 2$, is a g.c.(n-1)-m.

THEOREM 3. Let M be a common boundary of (at least) two domains D_1 and D_2 such that D_k , (k=1,2), is u.l.i-c. for $0 \le i \le n_k$, where $n_1+n_2=n-3$. Then if $p^{n_k+1}(D_k)$ is finite for either k=1 or 2, there exists a $\theta>0$ such that (n_k+1) -cycles of D_k of diameter $<\theta$ bound in D_k .*

PROOF. Take, for instance, $p^{n_1+1}(D_1)$ finite. Let $n_1+1=k$. Denote the cycles of a k-basis of D_1 by $\Gamma_i^k, (i=1, 2, \dots, m)$. By the method of proof of Theorem 5 of G.C.M. we can prove the following lemma.

LEMMA. Let D be a u.l.i-c. domain, $(0 \le i \le j)$, and let Γ_{i}^{k} , $(i = 1, 2, \cdots, m; 0 \le n - k - 1 \le j + 1)$, be a set of independent cycles linking \overline{D} . Then in D there exist independent cycles γ_{i}^{n-k-1} , $(i = 1, 2, \cdots, m)$, such that every linear combination of the Γ 's is linked with at least one γ .

Applying the lemma, we see that there exists in D_2 a set of (n-k-1)-cycles γ_i^{n-k-1} , $(i=1, 2, \cdots, m)$, such that every linear combination of the Γ 's is linked with at least one of the γ_i^{n-k-1} . The remainder of the proof is similar to that for Theorem 14 of D.B. From Theorems 2 and 3 we have our principal result.

PRINCIPAL THEOREM. Let a compact point set M be a common boundary of (at least) two domains D_1 and D_2 such that D_k , (k=1, 2), is u.l.i-c. for $0 \le i \le n_k$, where $n_1 + n_2 = n - 3$. Then, if one of the numbers $p^{n_k+1}(D_k)$ is finite, M is a g.c.(n-1)-m.

For the case n=3, where necessarily the numbers n_1 and n_2 as defined above must equal 0, I have shown in D.B. that without the single condition as to the finiteness of one of the numbers $p^{n_k+1}(D_k)$, not only may the boundary fail to be a manifold, but it may be the common boundary of three or more domains. However, if M has a single point P such that all 1-cycles of $D_k \cdot S(P, \epsilon)$ bound in D_k , then M is the common boundary

^{*} Compare Theorem 14 of D.B.

of only two domains. (Theorem 11 of D.B.) We now extend the latter result to higher dimensions.*

THEOREM 4. Let M be a common boundary of two domains D_1 and D_2 such that D_k , (k=1, 2), is u.l.i-c. for $0 \le i \le n_k$, where $n_1+n_2=n-3$. Then, if for (at least) one of the values of k, there exists a point P of M and an $\epsilon > 0$ such that all (n_k+1) -cycles of $D_k \cdot S(P, \epsilon)$ bound in D_k , it follows that M is the common boundary of only two domains. Indeed, at P, M is locally a g.c.(n-1)-m. \dagger

PROOF. Let $n_1 \ge n_2$. As both D_1 and D_2 are u.l.0-c., M is a Jordan (or Peano) continuum, and the component C of $M \cdot S(P, \epsilon)$ determined by P is an open subset of M. By the method of argument used for Theorem 9 of D.B., C is the common boundary of two u.l.i-c., $(0 \le i \le n_k)$, domains D_k' , (k=1, 2), in $S(P, \epsilon)$, where all points of D_k' in a certain neighborhood U (rel. E_n) of C belong to D_k and conversely. As in Theorem 3 of G.C.M. we show that C is completely i-avoidable at all points for $0 \le i \le n_2$.

We may now proceed, as in Theorem 2 above, to show that one of the domains D_k' is u.l.i-c. for $0 \le i \le n-2$ at all points of C. Following this, we may show by methods such as those used to prove Theorem 12 of G.C.M. that in U there exist only points of $C+D_1+D_2$.

In conclusion we note that in higher dimensions there exist, a priori, further possibilities concerning common boundaries of several domains. For instance, does there exist for some E_n a common boundary of three domains D_k , (k=1, 2, 3), such that D_k is u.l.i-c. for $0 \le i \le n_k$, where $n_1 > n_2 > n_3$? The answer, in case $n_1 + n_3 \ge n - 3$, is clearly negative by virtue of the corollary to Theorem 2 above; and indeed we must have $n_1 + n_2 \le n - 3$ in such a case. For the case $n_1 + n_2 = n - 3$, let us consider the Betti numbers $p^{n_1+m}(E_n-M)$, where $n_1+m \le n-2$ and $n-(n_1+m)-1 \le n_3$ (if any such exist). By the proof of Theorem 4 of G.C.M. we may show $p^i(B)$ finite for $0 \le i \le n_3$. Consequently the num-

^{*} It will be noted that we show now that the " ϵ -condition" is needed only for one domain.

[†] That is, conditions (2), (3) of definition M^{n-1} of G.C.M. are satisfied for some connected open neighborhood U of P, and so on.

bers $p^{n_1+m}(E_n-M)$ are all finite. Thus we have the following theorem.

THEOREM 5. Let M be a common boundary of three distinct domains D_k , (k=1, 2, 3), such that D_k is u.l.i-c. for $0 \le i \le n_k$, and $n_1 \ge n_2 \ge n_3$. Then $n_1 + n_2 \le n - 3$, and if there exists m > 0 such that $n_1 + m \le n - 2$ and $n - (n_1 + m) - 1 \le n_3$, the Betti numbers $p^{n_1+m}(E_n-B)$ and $p^i(B)$, $(0 \le i \le n_3)$, are all finite.*

THE UNIVERSITY OF MICHIGAN

ON THE NORMAL RATIONAL n-IC

BY HELEN SCHLAUCH ADAMS

- 1. Notation. A point α of n-space may be represented by the binary form $(\alpha t)^n = (\alpha_1 t_1 + \alpha_2 t_2)^n$ with non-symbolic coefficients $\alpha_0, \dots, \alpha_n$. If $(\alpha t)^n$ is a perfect nth power $(t_1 t)^n$, α will be the point on C^n of S_n whose parameter is t_1 , or briefly the point t_1 . Also if $(at)^n$ is a binary form, all points which satisfy the linear apolarity condition $(\alpha a)^n = 0$ lie on the $S_{n-1}a$ with coordinates a_0, \dots, a_n . The $S_{n-p}(t_1 t)^p (\beta t)^{n-p}$, with parameters $\beta_0, \dots, \beta_{n-p}$, is the osculating (n-p)-space O_{n-p,t_1} to C^n at t_1 .† This notat on is helpful in the development of some of the properties of the normal rational n-ic curve. Many of the analogous properties for the case n=5 have been found by other methods by A. L. Hjelmann.‡
- 2. The Axes of C^n . An axis of C^n is a line which lies in (n-1) O_{n-1} 's to C^n . The axes of C^n are given by

$$(\alpha t)^n = (t_1 t)(t_2 t) \cdot \cdot \cdot (t_{n-1} t)(s t),$$

parameters s_0 , s_1 , the t_i being parameters of points of C^n .

^{*} Thus, although we have no actual example, it is conceivable that there exists, in E_{δ} , a common boundary M of three domains D_k each of which is u.l.i-c. for i=0, 1. If so, $p^2(D_k)$ is infinite for k=1, 2, 3; and $p^3(E_{\delta}-M)$ is finite.

[†] Grace and Young, The Algebra of Invariants, 1903, Chapter 11.

[‡] A. L. Hjelmann, Sur les courbes gauches rationelles du cinquième ordre, Annales Academiae Scientiarum Fennicae, (A), vol. 3 (1912-13), No. 11.