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A CHARACTERIZATION OF MANIFOLD BOUNDA-
RIES IN E, DEPENDENT ONLY ON LOWER
DIMENSIONAL CONNECTIVITIES OF
THE COMPLEMENT*

BY R. L. WILDER

In my recent paper Generalized closed manifolds in n-spacet
it was shown] that a compact point set B in E,, common bound-
ary of (at least) two domains D and D; which are respec-
tively u.li-c.§ for 0=¢=<j and 0=i=n—j—3 (where
n—2>j=(n—3)/2), and such that the Betti numbers pi+t1(D),
pit2(D), - - -, p»~2(D) are finite, is a g.c.(r—1)-m. This con-
stituted a generalization of a former result|| to the effect that
when =3, D and D; are u.l.0-c., and p'(D) is finite, B is
a closed 2-manifold. In the present note I propose to show,
as principal result, that the above conditions on the numbers
piti(D), - - -, p»2(D) are irrelevant, and furthermore that it
is immaterial whether we place the restriction as to finiteness
on pi*1(D) or on p*~=2(D,). It turns out that the only essential
requirements are that the upper limits on the dimensions for
which D and D, are u.l.i-c. must total at least #—3, and that
one of the domains have a finite Betti number as just stated.

For the sake of brevity we make the following definitions. We
shall understand without explicit statement hereafter that the
imbedding space is E,(#=3) (euclidean space of # dimensions).

DEFINITION. A metric space will be said to be completely
1-avoidabley at a point P if for every e>0 there exist 6 and 7,
€>0§>n>0, such that if ¥? is a cycle on F(P, §8), then yi~0
on S(P, €) —S(P, 7).

* Presented to the Society, December 29, 1934.

1 Annals of Mathematics, vol. 35 (1934), pp. 876-903; to be referred to
hereafter as G.C.M.

1 Principal Theorem E of G.C.M.

§ u.l.i-c. =uniformly locally i-connected; see G.C.M. for definition.

|| R. L. Wilder, On the properties of domains and their boundaries in E,,
Mathematische Annalen, vol. 109 (1933), pp. 273-306, Theorem 20; to be re-
ferred to hereafter as D.B.

q See condition (3), definition M*, of G.C.M.
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THEOREM 1. Let M be the boundary of a u.l.i-c. domain D,
(0=5i=n—j—2), and P a point of M at which M is completely
(n—j—2)-avoidable. Then there exists for every ¢>0 an 7>0
such that if v1 ¢ S(P, ) links M, then 7 is linked with a cycle
[~i~1of D-S(P, €), and with a cycle T'y»~i~L of M-S(P, €).*

PRrOOF. Let €’ be an arbitrary positive number <e, and let §
and 75 be such that a y»=—2 of M- F(P, 6) is homologous to zero
on M-[S(P, ¢)—S(P, n)]. Suppose ¥/ € S(P, 5) links M. Let
H=M-S(P,s) and K= M S(P, ¢). Then v links K. For sup-
pose not. Then there exists a chain Ciy*'—vy? in E,—K, and
hence in E,—H. A chain Cy*'—vy? in S(P, ) lies also in
E,—(M—H). Then the cycle C,"+'— C/+! must link H- M— H,
else by the Alexander Addition Theorem %7 does not link
H+M—-H=M. But then Cy+t1—Cy*! is linked with an
(n—j—2)-cycle of M-F(P, 6), since H- M—Hc M- F(P, §).
But such a cycle bounds on M:[S(P, ¢)—S(P, )] <cE,
—| Cy+1—Cyi*t| ,f and we have a contradiction. Thus v links
K.

As v7 links K, it is linked with a cycle I')»~#~1 of K. Since D is
u.l.i-c. for 0=¢=n—j—2, there lies in D-S(P, €)f a cycle
I'»—i—1 approximating I';»~~! and linked with 7.

THEOREM 2. Let the compact point set M be the common bound-
ary of (at least) two domains Dy and D, such that Dy, (k=1,2),
is uli-c. for 0=i=n,, where ni+n.=n—3. Also, let (n,+1)-
cycles of D, of diameter less than some fixed positive number 0
bound in D1. Then M is a g.c. (n—1)-m.§

Proor. CAsE 1. Suppose 7, =#n,. By Theorem 3 of G.C.M., M
is completely z-avoidable at all points, for 0 <7=<n,. We first
prove that D, is u.l.(m+1)-c. If D; is not u.l.(m;+1)-c., there
exist Pc M and €>0 such that for each >0 there exists a

* Theorem 1 is a generalization of Theorem 4 of my paper Concerning a
problem of K. Borsuk, Fundamenta Mathematica, vol. 21 (1933), pp. 156-167.
It should be noted that the neighborhoods S(P, ¢) are relative to E,, not merely
to M.

t If L is a chain, by | L| we denote the set of points on L.

1 See Lemma 2a of G.C.M. (A typographical error occurs in the statement
of the lemma; the last “j” should be “1”.)

§ Theorem 2 is an exact generalization of Theorem 8 of the paper in Funda-
menta Mathematica, vol. 21, cited above.
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cycle mym+l in D,-S(P, n) that does not bound in D;-S(P, ¢).
However, let us choose 6 and 7 to satisfy the complete ¢-avoid-
ability requirement with 5n<6. By hypothesis, there exists
Kym*t2—mym+l in D, and hence (for i=mn,) in E,—H (H as de-
fined in proof of Theorem 1). Any Kynt2—mymtl in S(P, ) also
lies in E,—[F(P, ¢ +M—H]|. Then K;m*+?—K,m+? must link
a cycle of M- F(P, 8), else my™* bounds in D;- S(P, €). But then
it is linked with a I' of M- F(P, 8), where M =n—(n;+2)—1
=mn,; such a cycle, however, bounds on M- [S(P, ) —S(P, 1)],
hence in E,—(K;"+*?—K,*?), Thus the supposition that
mymtl does not bound in D;-S(P, €) leads to a contradiction.

We may now show that D; is u.l.i-c. for n;+2=<i=<n—2. Let
j be such a fixed value of 7; we note that ne=n—j3—1=1. Sup-
pose D; not u.l.j-c. Then we may determine a point P of M
and an e€>0 such that for each 7>0 there is a cycle ™/ of
Dy-S(P, 5) that fails to bound in D;- S(P, €). Let 6 and 7 be such
that (1) e>6>7>0, (2) any (m—j—2)-cycle of M-S(P, d)
bounds in M- [S(P, € —S(P, 3)], (3) any (n—j—1)-cycle of
D,-S(P, 6) bounds in D,-S(P, €) and hence in D,, and (4) if
an "y? links M, then (Theorem 1) it is linked with an (n—j7—1)-
cycle of D,-S(P, 8). Now if an ™y of D, were linked with M,
we could by condition (4) determine an (#—j—1)-cycle of
D,-S(P, 8) with which "y7 is linked. As this would not be
possible by condition (3), we can suppose that "y’ does not
link M. Then there exists a chain K;"t'—"»yi in E,— M, hence
in E,— M- S(P, §). Let Ko7' be an arbitrary chain of S(P, )
bounded by v/, and we have K,*'—mwi in E,—[F(P, )
+M—M-S(P, 8)]. As before, we see by applying condition (2)
that "y? bounds in D;- S(P, €).

Thus D; is u.l.z-c. for 0<7s<n—2, and for this case the
theorem follows from Principal Theorem C of G.C.M.*

CAsE 2. Suppose #;<ms. In this case we show that D, is
ul.i-c. for n,4+1=i=<n—2. We note that M is completely
(n—j—2)-avoidable for 0=n—j—2=<mn, at all points. The proof
then follows the general method of Case 1.

The following corollary is obvious.

* That D; is simply (n —1)-connected follows from the fact that M, being a
common boundary of two domains, is a continuum.
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COROLLARY. 4 compact set that is the common boundary of (at
least) two domains Dy and D, such that Dy, (k=1, 2), is u.l.i-c.
for 0= 1= ny, where ni+ny=n—2, is a g.c.(n—1)-m.

THEOREM 3. Let M be a common boundary of (at least) two do-
mains Dy and D, such that Dy, (k=1,2), is u.l.i-c. for 0Li< ny,
where my~+ny,=n—3. Then if p+(Dy) is finite for either k=1
or 2, there exists a >0 such that (ny+1)-cycles of Dy of diameter
<0 bound in D;.*

Proor. Take, for instance, p1+1(D,) finite. Let #,+1=Fk. De-
note the cycles of a k-basis of D, by I'*,(s=1, 2, .., m). By
the method of proof of Theorem 5 of G.C.M. we can prove the
following lemma.

LEMMA. Let D be a wu.li-c. domain, (0=1¢=Zj), and let

Tk (i=1,2,- c,my 0=n—k—1=j+41), be a set of independent
cycles linking D. Then in D there exist independent cycles
vy (2=1, 2, - - -, m), such that every linear combination of

the I''s is linked with at least oney.

Applying the lemma, we see that there exists in D, a set of
(n—k—1)-cycles y»*1, (¢=1, 2, - - -, m), such that every
linear combination of the I's is linked with at least one of
the v/ %1 The remainder of the proof is similar to that for
Theorem 14 of D.B. From Theorems 2 and 3 we have our prin-
cipal result.

PrINCIPAL THEOREM. Let a compact point set M be a common
boundary of (at least) two domains Dy, and Dy such that Dy,
(=1, 2), is u.li-c. for 021 ny, where ni+ny=n—3. Then, if
one of the numbers p*++t1(Dy) is finite, M is a g.c.(n—1)-m.

For the case # =3, where necessarily the numbers #; and 7,
as defined above must equal 0, I have shown in D.B. that with-
out the single condition as to the finiteness of one of the num-
bers p"**+1(D;), not only may the boundary fail to be a mani-
fold, but it may be the common boundary of three or more do-
mains. However, if M has a single point P such that all 1-cycles
of D;-S(P, €) bound in D;, then M is the common boundary

* Compare Theorem 14 of D.B.
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of only two domains. (Theorem 11 of D.B.) We now extend the
latter result to higher dimensions.*

THEOREM 4. Let M be a common boundary of two domains D,
and D, such that Dy, (k=1, 2), is u.l.i-c. for 0=1=ny, where
m+ne=n—3. Then, if for (at least) one of the values of k, there
exists a point P of M and an €>0 such that all (ny+1)-cycles of
Dy S(P, €) bound in Dy, it follows that M is the common boundary
of only two domains. Indeed, at P, M is locally a g.c.(n—1)-m.7

PROOF. Let #,=#n,. As both D, and D; are u.l.0-c., M is a
Jordan (or Peano) continuum, and the component C of M- S(P,e)
determined by P is an open subset of M. By the method of
argument used for Theorem 9 of D.B., C is the common bound-
ary of two u.li-c.,, (0=:=u;), domains D{, (k=1, 2), in
S(P, €), where all points of Dy in a certain neighborhood
U (rel. E,) of Cbelong to D; and conversely. As in Theorem 3
of G.C.M. we show that C is completely ¢-avoidable at all
points for 0 <7 < n,.

We may now proceed, as in Theorem 2 above, to show that
one of the domains Dy is u.l.i-c. for 0 2<% —2 at all points of
C. Following this, we may show by methods such as those used
to prove Theorem 12 of G.C.M. that in U there exist only points
of C+ D+ D..

In conclusion we note that in higher dimensions there exist,
a priori, further possibilities concerning common boundaries of
several domains. For instance, does there exist for some E, a
common boundary of three domains Dy, (k=1, 2, 3), such that
Dy, is u.lii-c. for 0=7¢=mn;, where n;>ny;>n3? The answer, in
case n,+n3 = n—3, is clearly negative by virtue of the corollary
to Theorem 2 above; and indeed we must have #n;+#,<n—3 in
such a case. For the case n;+#n,=n— 3, let us consider the Betti
numbers putm(E,— M), where n,+m<n—2and n— (m+m) —1
=mnj3 (if any such exist). By the proof of Theorem 4 of G.C.M.
we may show pi(B) finite for 0 <4 =<n;. Consequently the num-

* It will be noted that we show now that the “e-condition” is needed only
for one domain.

t That is, conditions (2), (3) of definition M1 of G.C.M. are satisfied for
some connected open neighborhood U of P, and so on.
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bers pmtm(E,— M) are all finite. Thus we have the following
theorem.

THEOREM 5. Let M be a common boundary of three distinct
domains Dy, (k=1, 2, 3), such that Dy is u.l.i-c. for 0=i=ny,
and ny=ny=n3. Then ni+n.<n—3, and if there exists m >0 such
that mi+m=n—2 and n— (n+m)—1=n;, the Betti numbers
pmtm(E,—B) and pi(B), (0<i<n3), are all finite.*

THE UNIVERSITY OF MICHIGAN

ON THE NORMAL RATIONAL #%-IC
BY HELEN SCHLAUCH ADAMS

1. Notation. A point a of n-space may be represented by the
binary form (at)”= (cut1+ast:)™ with non-symbolic coefficients
o, v+, 0. If (af)™ is a perfect nth power (#12)", a will be the
point on C™ of S, whose parameter is t;, or briefly the point ;.
Also if (at)" is a binary form, all points which satisfy the linear
apolarity condition (aa)”=0 lie on the S,_1a with coordinates
@o, * + , @n. The S,—p (418)?(Bt)»~?, with parameters Bo, - - -, Ba_p,
is the osculating (#—p)-space O,—p,,, to C™ at #.T This notat on
is helpful in the development of some of the properties of the
normal rational #-ic curve. Many of the analogous properties for
the case #=35 have been found by other methods by A. L.
Hjelmann.}

2. The Axes of C*. An axis of C* is a line which lies in
(n—1) O,_y’s to C™ The axes of C" are given by

(at)™ = (1) (tat) - - - (tnat)(s),

parameters o, s, the ¢; being parameters of points of C*.

* Thus, although we have no actual example, it is conceivable that there
exists, in Ej, a common boundary M of three domains D each of which is
u.li-c. for =0, 1. If so, p2(Ds) is infinite for k=1, 2, 3; and p*(Es— M) is
finite.

t Grace and Young, The Algebra of Invariants, 1903, Chapter 11.

1t A. L. Hjelmann, Sur les courbes gauches rationelles du cinguiéme ordre,
Annales Academiae Scientiarum Fennicae, (A), vol. 3 (1912-13), No. 11.



