ON CONVERGENCE IN VARIATION*

BY C. R. ADAMS AND J. A. CLARKSON

- 1. Introduction. Certain questions concerning functions f(x, y) of bounded variation naturally lead one to consider a sequence of functions $f_n(x)$, $(n=1, 2, 3, \cdots)$, defined on an interval \dagger (a, b) and satisfying the following conditions: $f_n(x)$ tends to a limit function $f_0(x)$ of bounded variation; the total variation $T_a{}^b(f_n)$ of $f_n(x)$ on (a, b) tends to the total variation $T_a{}^b(f_0)$ of $f_0(x)$ on (a, b). The notation $f_n(x) v \rightarrow f_0(x)$ will frequently be employed to describe this situation, which has already received attention from Buchanan and Hildebrandt. All of the theorems which we are about to establish are valid when a set of functions $f(x, \lambda)$ corresponding to a set of values λ having λ_0 as a limit is considered, with $f(x, \lambda) \rightarrow f_0(x)$ as $\lambda \rightarrow \lambda_0$ over the set.
- 2. Preliminary Theorems. Let $P_n[N_n]$ denote the total positive [negative] variation of $f_n(x)$ on (a, b), $(n = 0, 1, 2, \cdots)$; then we have the following theorem.

THEOREM 1. The relations $f_n(a) \rightarrow f_0(a)$, $f_n(b) \rightarrow f_0(b)$, and $T_a{}^b(f_n) \rightarrow T_a{}^b(f_0)$ imply $P_n \rightarrow P_0$ and $N_n \rightarrow N_0$.

This follows at once by writing

$$f_n(b) = f_n(a) + P_n - N_n, \qquad (n = 0, 1, 2, \cdots).$$

THEOREM 2. The relation $f_n(x) \rightarrow f_0(x)$ on (a, b) implies

$$\lim_{n\to\infty}\inf T_a{}^b(f_n)\geq T_a{}^b(f).$$

This may easily be proved directly or by aid of the well

^{*} Presented to the Society, December 27, 1933.

[†] The closed interval is always to be understood.

[‡] It may be of interest to note that $T_a{}^b(f(x))$ is a semi-linear operation in the sense that we have $T_a{}^b(f(x)+g(x)) \le T_a{}^b(f(x))+T_a{}^b(g(x))$ and $T_a{}^b(cf(x)) = |c|T_a{}^b(f(x))$ for c constant.

[§] Buchanan and Hildebrandt, Note on the convergence of a sequence of functions of a certain type, Annals of Mathematics, (2), vol. 9 (1908), pp. 123-126. This paper will be referred to as BH. The symbol —v → may be read "converges in variation."

known fact that if f_n tends to f_0 on (a, b) and $T_a{}^b(f_n)$ is $\leq M$, $T_a{}^b(f_0)$ is $\leq M$.

COROLLARY. The relation $f_n(x)$ — $v \rightarrow f_0(x)$ on (a, b) implies that relation for every subinterval.

THEOREM 3. If we have $f_n(x) \rightarrow f_0(x)$ on a set of points everywhere dense in (a, b), with $T_a{}^b(f_n) \rightarrow T_a{}^b(f_0)$ and $f_0(x)$ continuous on (a, b), $f_n(x)$ tends to $f_0(x)$ everywhere on (a, b).

This is sufficiently clear.

3. Uniform Convergence. We have the following theorems.

THEOREM 4. The relations $f_n(x) - v \rightarrow f_0(x)$ on (a, b) and $f_0(x') = f_0(x'-0) [f_0(x') = f_0(x'+0)]$ imply that x' is a point of uniform convergence on the left [right] for both $f_n(x)$ and $T_a^x(f_n)$.*

PROOF. $T_a^x(f_0)$ is continuous on the left at x'; any $\epsilon > 0$ being given, choose $\delta(>0)$ so that $T_{x'-\delta}^{x'}(f_0)$ is $<\epsilon$ and then m so that we have for n > m

$$\left| f_n(x') - f_0(x') \right| < \epsilon, \qquad \left| T_a^{x'-\delta}(f_n) - T_a^{x'-\delta}(f_0) \right| < \epsilon,$$

$$T_{x'-\delta}^{x'}(f_n) < 2\epsilon.$$

Then we have $|f_n(x)-f_0(x)|<4\epsilon$ and $|T_a^x(f_n)-T_a^x(f_0)|<4\epsilon$ for $0 \le x'-x \le \delta$, n>m.

COROLLARY. The hypotheses of Theorem 3 imply that the convergence of both $f_n(x)$ to $f_0(x)$ and $T_a^x(f_n)$ to $T_a^x(f_0)$ is uniform over (a, b).

THEOREM 5. The relations $f_n(x) - v \rightarrow f_0(x)$ on (a, b) and $f_0(x') \neq f_0(x'-0) [f_0(x') \neq f_0(x'+0)]$ imply that x' is a point of uniform convergence on the left [right] for both $f_n(x)$ and $T_a^x(f_n)$ or for neither, according as $f_n(x'-0) [f_n(x'+0)]$ tends to $f_0(x'-0) [f_0(x'+0)]$ or not.

PROOF. Let $\overline{f}_n(x) = f_n(x)$ for $a \le x < x'$, $\overline{f}_n(x') = f_n(x'-0)$, $(n=0, 1, 2, \cdots)$; then we have $T_a^x(f_n) = T_a^x(\overline{f}_n) + |f_n(x) - \overline{f}_n(x)|$ for each n and $a \le x \le x'$. If x' is a point of uniform convergence on the left for either $f_n(x)$ or $T_a^x(f_n)$, we have $\overline{f}_n(x') \to \overline{f}_0(x')$. By Theorem 4, x' is then a point of uniform convergence on the

^{*} The part of this theorem concerning convergence of f_n is not essentially different from the Lemma of BH; the same is true of the proofs.

[†] This result includes Theorem B of BH on uniform convergence of f_n .

left for both $\bar{f}_n(x)$ and $T_a^x(\bar{f}_n)$, and hence for both $f_n(x)$ and $T_a^x(f_n)$.

COROLLARY. If we have $f_n(x) - v \rightarrow f_0(x)$ on (a, b), a necessary and sufficient condition that $T_a^x(f_n) \rightarrow T_a^x(f_0)$ uniformly on (a, b) is that $f_n(x) \rightarrow f_0(x)$ uniformly on (a, b).

It may be observed that when $T_a^x(f_n)$ converges uniformly, the same is true of the total positive and negative variations, $P_a^x(f_n)$ and $N_a^x(f_n)$.

4. Reciprocal Sequences. Let S be any set of points x_i , $(i = 0, 1, \dots, p)$, with $a = x_0 < x_1 < \dots < x_p = b$, and let $\sum (f, S) = \sum_{i=1}^{p} |f(x_i) - f(x_{i-1})|$. For the proof of our next theorem the following rather obvious lemma is convenient.

LEMMA. Let f(x) be finite and $> \alpha > 0$ (or $< -\alpha < 0$) on (a, b), and let S' be the set obtained by adding a new point X to S; then we have

$$0 \le \sum (1/f, S') - \sum (1/f, S) \le [\sum (f, S') - \sum (f, S)]/\alpha^2.$$

THEOREM 6. The relation $f_n(x)$ — $v \rightarrow f_0(x)$ on (a, b), when |f(x)| is $> 2\alpha > 0$ and f(x) does not change sign in the interval, implies $1/f_n(x)$ — $v \rightarrow 1/f_0(x)$.

PROOF. It may readily be shown that for n sufficiently large the functions f_n are uniformly $>\alpha$ (or $<-\alpha$). Thus no loss of generality results from assuming, as we now do, that the sequence f_n is uniformly $>\alpha$ and is of uniformly bounded variation. Then there exists a double sequence of sets $S_n^{(p)}$, $(p, n=0, 1, 2, \cdots)$, such that for each p we have

$$S_{n+1}^{(p)} \ge S_n^{(p)}, \qquad S_n^{(p+1)} \ge S_n^{(p)}, \quad (n = 0, 1, 2, \dots);$$

$$\sum (f_p, S_n^{(p)}) \to T(f_p), \qquad \sum (1/f_p, S_n^{(p)}) \to T(1/f_p)$$

as $n\to\infty$. Let $S_n=S_n^{(n)}$ and consider the double sequences $a_{mn}=\sum (f_m,S_n),\ b_{mn}=\sum (1/f_m,S_n).$ Because of our choice of sets and the relation $f_n-v\to f_0,\ a_{mn}$ is non-decreasing in n for each m and the iterated limits as $m,\ n\to\infty$ both exist and are equal. By a Lemma of Hildebrandt,* $\lim_n a_{mn}$ then exists uniformly in m. From the above Lemma we infer that $\lim_n b_{mn}$ exists uniformly

^{*} Hildebrandt, On a generalization of a theorem of Dini on sequences of continuous functions, this Bulletin, vol. 21 (1914), pp. 113-115.

in m, and by our choice of sets we have $\lim_{m} b_{mn} = \sum_{n} (1/f, S_n)$; hence by a classical theorem we have

$$\lim_{n} \lim_{m} b_{mn} = T(1/f) = \lim_{m} \lim_{n} b_{mn} = \lim_{m} T(1/f_{m}).$$

That Theorem 5 is not true when the hypothesis that f(x) be of fixed sign in (a, b) is deleted may readily be seen. It should be remarked first that if f changes sign in (a, b), the fact that |f| is bounded away from zero does not imply that $f_n(x)$, for n sufficiently large, is uniformly bounded away from zero; hence it would be natural to make the latter condition a part of the hypotheses in considering this case. But even then the theorem would be untrue, as is seen from such a simple example as the following: $f_0(x) = 1$ for $0 \le x < 1$, $f_0(1) = -1$; $f_n(x)$, $(n = 1, 2, 3, \dots)$, a monotone function decreasing from 1 to -1 and continuous except for a jump from 1/2 to -1/2 somewhere in the interval, with $f_n \rightarrow f_0$.

The following application to functions of two variables may be noted. Let f(x, y) be defined over a rectangle $R(a \le x \le b, c \le y \le d)$, and let $\phi(\bar{x})$ stand for the total variation of $f(\bar{x}, y)$ in y over the interval $c \le y \le d$; then we have the following fact.

COROLLARY. If f(x, y) is $> \alpha > 0$ (or $< -\alpha < 0$) in R and is continuous in x, $\phi(x)$ for 1/f(x, y) is continuous wherever $\phi(x)$ for f(x, y) is continuous.

5. Sums and Products of Sequences. One may readily show that the relations $f_n(x) - v \rightarrow f_0(x)$ and $g_n(x) - v \rightarrow g_0(x)$ on (a, b), even when $f_0(x)$ and $g_0(x)$ are both continuous on (a, b) (which by the corollary to Theorem 4 provides all the uniformity of convergence that could be desired), imply neither $f_n + g_n - v \rightarrow f_0 + g_0$ nor $f_n g_n - v \rightarrow f_0 g_0$. In fact we can make the stronger assertion that $f_n - v \rightarrow f_0$, with g_0 of bounded variation, implies neither $f_n + g_0 - v \rightarrow f_0 + g_0$ nor $f_n g_0 - v \rightarrow f_0 g_0$. The following example exhibits a sequence of absolutely continuous* functions f_n converging in variation to an absolutely continuous* limit function f_0 , and an absolutely continuous* function g_0 , for which $f_n + g_0$ does not converge in variation to $f_0 + g_0$: for $0 \le x \le 1$, let $g_0(x) = -x$ and

$$f_n(m/2^n) = \begin{cases} m/2^n & \text{for } m \equiv 0 \bmod 2, \\ m/2^n + 1/2^{n+1} & \text{for } m \equiv 1 \bmod 4 \\ m/2^n - 1/2^{n+1} & \text{for } m \equiv 3 \bmod 4, (n = 1, 2, 3, \dots), \end{cases}$$

^{*} The functions f_0 , g_0 , and f_n , $(n=1, 2, 3, \cdots)$, are all monotone.

and between the points $m/2^n$, let f_n be defined linearly.

6. A Set of Conditions Sufficient to Insure Convergence in Variation.

THEOREM 7. Let $f_n(x)$ be a sequence of absolutely continuous functions converging to a limit function $f_0(x)$ on (a, b); let $f'_n(x)$ converge asymptotically to a limit function, and let $f'_n(x)$, $(n = 1, 2, 3, \cdots)$, be dominated by a summable function; then we have $f_n(x) - v \rightarrow f_0(x)$ on (a, b).

It is easily seen that the hypotheses imply (i) that $f_0(x)$ is absolutely continuous, so that we may write

$$T_a{}^b(f_n) = \int_a^b |f_n'(x)| dx, (n = 0, 1, 2, \cdots),$$

and (ii) that we may pass to the limit under the integral sign.

COROLLARY. Let the series $\sum_{i=0}^{\infty} a_i x^i$, with real coefficients, have the radius of convergence R(>0); let the sum of the series be denoted by S(x), and let $S_n(x) = \sum_{i=0}^n a_i x^i$; then we have $S_n(x) = v \rightarrow S(x)$ on each interval (a, b), (-R < a < b < R).

Brown University

TYPES OF INVOLUTORIAL SPACE TRANSFORMA-TIONS ASSOCIATED WITH CERTAIN RATIONAL CURVES—COMPOSITE BASIS CURVES*

BY AMOS BLACK

- 1. Introduction. In a preceding paper† the author found and discussed the involutorial transformations belonging to the special complex of lines which meet a rational curve r of order m, (m=2,3,4,5), and having a pencil of invariant cubic surfaces which contain the curve r as a simple basis element, with the restriction that the residual basis curve, γ_{9-m} , of the pencil should not be composite. In this paper we shall discuss the cases where γ_{9-m} is composite.
 - 2. Equations of the Transformation. The equations of the

^{*} Presented to the Society, April 14, 1933.

[†] Types of involutorial space transformations associated with certain rational curves, Transactions of this Society, vol. 34 (1932), pp. 795-810.