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ON CONVERGENCE IN VARIATION* 

BY C. R. ADAMS AND J. A. CLARKSON 

1. Introduction. Certain questions concerning functions ƒ (x, y) 
of bounded variation naturally lead one to consider a se­
quence of functions/n(x), (w = l, 2, 3, • • •), defined on an in­
terval f (a, b) and satisfying the following conditions: fn(x) 
tends to a limit function ƒ o (x) of bounded variation; the total 
variation Ta

b(fn) of fn(x) on (a, b) tends to the total variation 
Ta

b(fo) of ƒ o (a) on (a, &).$ The notation fn(x)—v-*fo(x) will fre­
quently be employed to describe this situation, which has al­
ready received attention from Buchanan and Hildebrandt.§ All 
of the theorems which we are about to establish are valid when 
a set of functions /(x, X) corresponding to a set of values X 
having Xo as a limit is considered, with ƒ(#, X)—>/o(x) as X—>Xo 
over the set. 

2. Preliminary Theorems, Let Pn[Nn] denote the total posi­
tive [negative] variation of fn(x) on (a, 6), (« = 0, 1, 2, • • • ) ; 
then we have the following theorem. 

THEOREM 1. The relations fn{a)—»/o(a), fn(b)—>fo(b), and 
Ta*(fn)->Ta*(fo) imply Pn->P0 and Nn-*N0. 

This follows at once by writing 

fn(b)=fn(a)+Pn-Nn, (n = 0, 1, 2, • • • ). 

THEOREM 2. The relation j'n(x)—>/o(x) ow (a, b) implies 

liminf 7V(/n) ^ Ta\f). 

This may easily be proved directly or by aid of the well 

* Presented to the Society, December 27, 1933. 
t The closed interval is always to be understood. 
% I t may be of interest to note that Ta

b(J(x)) is a semi-linear operation in the 
sense that we have Ta

b(f(x)+g(x)) STa
b(f(x)) + Ta

b(g(x)) and Ta
b(cf(x)) 

= | c\ Ta
b(f(x)) for c constant. 

§ Buchanan and Hildebrandt, Note on the convergence of a sequence of func­
tions of a certain type. Annals of Mathematics, (2), vol. 9 (1908), pp. 123-126. 
This paper will be referred to as BH. The symbol —v-> may be read "converges 
in variation" 
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known fact that if fn tends to f0 on (a, b) and Ta
b(fn) is S M, 

W o ) is £M. 

COROLLARY. The relation f n{x)—v—*fo(x) on (a, b) implies that 
relation for every subinterval. 

THEOREM 3. If we have ƒ»(#)—•>ƒ o (#) on a set of points every­
where dense in (a, &), with Ta

b(fn)-^Ta
h(fo) and fo(x) continuous 

on (a, b),fn(x) tends tofo(x) everywhere on (a,b). 

This is sufficiently clear. 

3. Uniform Convergence. We have the following theorems. 

THEOREM 4. The relations ƒ»(#)—v—>fo(x) on (a, b) and fo(xf) 
=fo(x' — 0) [fo(x') = /o(V+0) ] imply that xr is a point of uniform 
convergence on the left [right] for bothfn(x) and Tg (/w).* 

PROOF. Tg (/O) is continuous on the left at x''; any e > 0 being 
given, choose ô(>0) so that T^^(fo) is < e and then m so 
that we have for n>m 

I ƒ„(*') - ƒ.(*') | < 6, r | r : ' " ' ( / - ) - TX
a'~\f0) I < 6, 

Then we have \fn(x)-fo(x)\ <4e and | Tg (ƒ») -Tg (f0)\ <4e 
for O^x' — x ^ ô , n>m. 

COROLLARY, rfee hypotheses of Theorem 3 imply that the con-
vergence of both fn (x) to fo(x) and Tg (fn) to Tg (/0) is uniform over 
(a,b)4 

THEOREM 5. The relations ƒ»(#)—v—*f0(x) on (a, b) and fo(x') 
K/o(V — 0) [fo(x') P^/OOE'+O) ] imply that x' is a point of uniform 
convergence on the left [right] for both fn(x) and Tg (Jn) or for 
neitherj according as /nCff' — O) [ƒ„(#'+())] tends to fo(x' — Q) 
lfo(x'+0)]ornot. 

PROOF. Let fn(x) =ƒ»(*) îora^x<xf,fn(xf) =ƒ»(#' — ()), O = 0, 
1, 2, • • • ) ; then we have Tg (fn) = Tg (fn) + \fn(x) -fn(x)\ for 
each n and a^x^x'. If x' is a point of uniform convergence on 
the left for either fn(x) or Tg(fn), we have fn(x')—*fo(x'). By 
Theorem 4, #' is then a point of uniform convergence on the 

* The part of this theorem concerning convergence of fn is not essentially 
different from the Lemma of BH ; the same is true of the proofs. 

t This result includes Theorem B of BH on uniform convergence of ƒ„. 
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left for both fn(x) and Tg(fn), and hence for both fn(x) and 
TS(fn). 

COROLLARY. If we have f nix)—v->f0(x) on (a, b), a necessary 
and sufficient condition that T% ifn)—*T5 (/0) uniformly on (a, 6) is 
that fn(x)—>fo(x) uniformly on (a, b). 

I t may be observed that when T$ (fn) converges uniformly, 
the same is true of the total positive and negative variations, 
Pjtf») and #ƒ(ƒ»). 

4. Reciprocal Sequences. Let 5 be any set of points x», (i = 0, 
1, • • • , ƒ>), with a = x0<Xi< • • • <xp = b, and let X)Cf, $) 
=]Cf=i \f(xi) —f(xi-i) | • For the proof of our next theorem the 
following rather obvious lemma is convenient. 

LEMMA. Let fix) be finite and > a > 0 {or <—a<0) on (a, b), 
and let S' be the set obtained by adding a new point X to 5 ; then 
we have 

0 ^ £ ( ! / / , S') - £ ( 1 / / , S) g [£ (ƒ , S') - £ (ƒ , S)]/a'. 

THEOREM 6. The relation j'„(#)—v-*f0(x) on (a, b), when \f{x) \ is 
> 2 a > 0 and fix) does not change sign in the interval, implies 
l/fnix)—V-^l/foix). 

PROOF. I t may readily be shown that for n sufficiently large 
the functions fn are uniformly > a (or <— a). Thus no loss 
of generality results from assuming, as we now do, that the 
sequence fn is uniformly >a and is of uniformly bounded varia­
tion. Then there exists a double sequence of sets 5n

( p ) , (p, n = 0, 
1,2, • • • ), such that for each p we have 

(p) (P) o ( p + 1 ) > r(p)
 f„ A 1 0 \ 

E(/« ^') - TO, E(i//„ ^') - r(V/p) 
as n-*co. Let 5 n = *Sn

(n) and consider the double sequences 
#mn=]CC/™> »S»)> ^mn :=^(l//m, Sn). Because of our choice of sets 
and the relation fn—v—>f0, amn is non-decreasing in n for each m 
and the iterated limits as m, w—>oo both exist and are equal. By 
a Lemma of Hildebrandt,* limn amn then exists uniformly in m. 
From the above Lemma we infer that limn bmn exists uniformly 

* Hildebrandt, On a generalization of a theorem of Dini on sequences of con­
tinuous functions, this Bulletin, vol. 21 (1914), pp. 113-115. 
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in ra, and by our choice of sets we have limm bmn=^(l/fy Sn) ; 
hence by a classical theorem we have 

limn Hmm bmn = T(l/f) = limm limn bmn = Hmm T(l/fm). 

That Theorem 5 is not true when the hypothesis that f(x) be of 
fixed sign in (a, b) is deleted may readily be seen. I t should be 
remarked first that if ƒ changes sign in (a, b), the fact that | / | 
is bounded away from zero does not imply that /n(#), for n 
sufficiently large, is uniformly bounded away from zero; hence 
it would be natural to make the latter condition a part of the 
hypotheses in considering this case. But even then the theorem 
would be untrue, as is seen from such a simple example as the 
following:/o(x) = l for O g x < l , /0(1) = - 1 ; fn(x), (» = 1, 2, 3, 
• • • ), a monotone function decreasing from 1 to —1 and con­

tinuous except for a jump from 1/2 to —1/2 somewhere in the 
interval, with fn—->/o. 

The following application to functions of two variables may 
be noted. Let f(x, y) be defined over a rectangle R(a^x^b} 

clkyûd), and let <j>(x) stand for the total variation of ƒ(#, y) in 
y over the interval cSy ûd\ then we have the following fact. 

COROLLARY. If fix, y) is >a>0 (or < — a <0) in R and is con-
tinuous in x, <j>(x) for l/f(x, y) is continuous wherever <j>(x) for 
f(x, y) is continuous. 

5. Sums and Products of Sequences. One may readily show 
that the relations fn(x)—v-*fo(x) and gn{x)—v—>go(x) on (a, è), 
even when f0(x) and g0(x) are both continuous on (a, b) (which 
by the corollary to Theorem 4 provides all the uniformity of 
convergence that could be desired), imply neither fn+gn—z>—» 
/o+go nor fngn—v—*fogo. In fact we can make the stronger as­
sertion that fn—s>—>/o, with g0 of bounded variation, implies 
neither fn+go—v->f0+g0 nor fngo—v->fog0. The following ex­
ample exhibits a sequence of absolutely continuous* functions 
fn converging in variation to an absolutely continuous* limit 
function /0 , and an absolutely continuous* function go, for which 
fn+go does not converge in variation to fo+go' for O ^ x ^ 1, let 
go(x) = — x and 

im/2n for m = 0 mod 2, 

fn(m/2n) = \m/2n + l / 2 n + 1 for m = 1 mod 4 

[m/2n - 1/2W+1 for m = 3 mod 4, (n = 1, 2, 3, • • • ), 

* The functions/o, go, and fn, ( » B 1 , 2, 3, • • • ), are all monotone. 
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and between the points m/2n, let fn be defined linearly. 

6. A Set of Conditions Sufficient to Insure Convergence in Vari­
ation. 

THEOREM 7. Let fn(x) be a sequence of absolutely continuous 
functions converging to a limit function fo(x) on (a, b) ; let fn (x) 
converge asymptotically to a limit function, and letfn(x), (# = 1, 
2, 3, • • • ), be dominated by a summable function; then we have 
fn{x)—v->fo(x) on (a, 6). 

I t is easily seen that the hypotheses imply (i) that fo(x) is 
absolutely continuous, so that we may write 

TaKfn) = f \fi(x)\dx, (w = 0 , l , 2 , • • • ) , 
J a 

and (ii) that we may pass to the limit under the integral sign. 

COROLLARY. Let the series ^fLo aix\ with real coefficients, have 
the radius of convergence i ? (>0) ; let the sum of the series be 
denoted by S(x), and let Sn(x) = X ^ o eux1', then we have Sn(x) 
—v—*S(x) on each interval (a,b), ( — R<a<b<R). 

BROWN UNIVERSITY 

TYPES OF INVOLUTORIAL SPACE TRANSFORMA­
TIONS ASSOCIATED W I T H CERTAIN RATIONAL 

CURVES—COMPOSITE BASIS CURVES* 

BY AMOS BLACK 

1. Introduction. In a preceding paperf the author found and 
discussed the involutorial transformations belonging to the 
special complex of lines which meet a rational curve r of order 
m, (m = 2, 3, 4, 5), and having a pencil of invariant cubic sur­
faces which contain the curve f as a simple basis element, with 
the restriction that the residual basis curve, 79-m, of the pencil 
should not be composite. In this paper we shall discuss the 
cases where 79_m is composite. 

2. Equations of the Transformation. The equations of the 

* Presented to the Society, April 14, 1933. 
f Types of involutorial space transformations associated with certain rational 

curves, Transactions of this Society, vol. 34 (1932), pp. 795-810. 


