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ON CONVERGENCE IN VARIATION*
BY C. R. ADAMS AND J. A. CLARKSON

1. Introduction. Certain questions concerning functions f(x, y)
of bounded variation naturally lead one to consider a se-
quence of functions f,(x), (=1, 2, 3, - - -), defined on an in-
tervalt (e, b) and satisfying the following conditions: f,(x)
tends to a limit function fo(x) of bounded variation; the total
variation T2(f,) of f.(x) on (@, b) tends to the total variation
Td(fo) of fo(x) on (e, b).I The notation f,(x)—v—fo(x) will fre-
quently be employed to describe this situation, which has al-
ready received attention from Buchanan and Hildebrandt.§ All
of the theorems which we are about to establish are valid when
a set of functions f(x, N\) corresponding to a set of values A
having A\¢ as a limit is considered, with f(x, N)—fo(x) as A=A
over the set.

2. Preliminary Theorems. Let P,[N,] denote the total posi-
tive [negative] variation of f.(x) on (a, b), (n=0,1, 2, - - - );
then we have the following theorem.

THEOREM 1. The relations fi.(a)—fo(a), fau(b)—fo(b), and
To(fo)—T(fo) smply P,—Py and N,— N,.

This follows at once by writing
fn(b>=fn<a)+Pn_Nny (n=01 1,21 e )-
THEOREM 2. The relation f.(x)—fo(x) on (a, b) implies

lim inf T.2(f.) = TX(f).

This may easily be proved directly or by aid of the well

* Presented to the Society, December 27, 1933.

t The closed interval is always to be understood.

1 It may be of interest to note that T,5(f(x)) is a sems-linear operation in the
sense that we have To(f(x)+g(x)) < Td(f(x))+Tab(g(x)) and To*(cf(x))
= lc| Tb(f(x)) for ¢ constant.

§ Buchanan and Hildebrandt, Note on the convergence of a sequence of func-
tions of a certain type, Annals of Mathematics, (2), vol. 9 (1908), pp. 123-126.
This paper will be referred to as BH. The symbol —v— may be read “converges
in variation.”
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known fact that if f, tends to fo on (a, b) and Tb(f») is = M,
Tab<fo) iS éM.

CoROLLARY. The relation fo(x)—v—fo(x) on (a, b) implies that
relation for every subinterval.

THEOREM 3. If we have f.(x)—fo(x) on a set of poinis every-
where dense in (a, b), with Tp(fn)—TL(fo) and fo(x) continuous
on (a, b), fu(x) tends to fo(x) everywhere on (a, b).

This is sufficiently clear.

3. Uniform Convergence. We have the following theorems.

THEOREM 4. The relations f.(x)—v—fo(x) on (a, b) and fo(x')
=fo(x’—0) [fo(x") =fo(x’+0)] imply that x' is a point of uniform
convergence on the left [right) for both f.(x) and TZ (f.).*

ProoF. T (fo) is continuous on the left at x’; any €>0 being
given, choose §(>0) so that T%_;(fo) is <e and then m so
that we have for n>m

[5u@) = fo@) | <6 [ TITE) = TG0 <
T:'—s(fn) < 2e.

Then we have |fa(x) —fo(x)| <4e and | T#(f.) — T2 (fo)| <4e
for 0=x'—x<6, n>m.

COROLLARY. The hypotheses of Theorem 3 imply that the con-
vergence of both f, (x) to fo(x) and T2 (f,.) to T2 (fo) is uniform over
(a, b).1

THEOREM 5. The relations f,(x)—v—fo(x) on (a, b) and fo(x')
#fo(x’ —0) [fo(x") #=fo(x’+0) | imply that x' is a point of uniform
convergence on the left [right] for both f.(x) and TZ (f.) or for
neither, according as fu(x'—0)[fa(x'+0)] tends to fo(x'—0)
[fo(x'4-0)] o7 not.

PROOF. Let fo(x) =fu(x) fora £x </, fu(x’) =falx’—0), (n =0,
1, 2, - - -); then we have T¢ (fu) =T (fu)+|fa(x) —fa(x)| for
each #n and e £x=<x'. If x’ is a point of uniform convergence on
the left for either f,(x) or TZ(f.), we have f.(x')—f.(x’). By
Theorem 4, &’ is then a point of uniform convergence on the

* The part of this theorem concerning convergence of f, is not essentially
different from the Lemma of BH; the same is true of the proofs.
t This result includes Theorem B of BH on uniform convergence of fn.
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left for both f.(x) and T#(F.), and hence for both f.(x) and
Tz (fa).

COROLLARY. If we have f,(x)—v—fo(x) on (a, b), a necessary
and sufficient condition that T# (f,)—T& (fo) uniformly on (a,b) is
that fa(x)—fo(x) uniformly on (a, b).

It may be observed that when TZ(f.) converges uniformly,
the same is true of the total positive and negative variations,
Pz (f.) and N& (f,).

4. Reciprocal Sequences. Let S be any set of points x;, (=0,
1, -+, p), with a=xo<wi< - - - <x,=b, and let D (f, S)
—Z,zl ‘f(x,) f(xt_l)[ For the proof of our next theorem the
following rather obvious lemma is convenient.

LEMMA. Let f(x) be finite and >a>0 (or < —a<0) on (a, b),
and let S’ be the set obtained by adding a new point X to S; then
we have

0= 2 (1/f,S) — /1,8 = [ 20, S) — 2(f, S)]/a.

TuEOREM 6. The relation f,.(x)—v—fo(x) on (a, b), when ] f(x) | 1s
>2a>0 and f(x) does not change sign in the interval, implies
1/fa(x)—v—1/fo(x).

Proor. It may readily be shown that for » sufficiently large
the functions f, are uniformly >a (or < —a). Thus no loss
of generality results from assuming, as we now do, that the
sequence f, is uniformly >« and is of uniformly bounded varia-
tion. Then there exists a double sequence of sets S,®, (p, n=0,
1,2, - - - ), such that for each p we have

(p) (p) (p+1) (»)

Sm-lgsny Sn >Sn, (n=0,1,2,'~-);

S ST = Ty U/ S — TA/S,)

as n—ow. Let S,, =S5,™ and consider the double sequences
Amn=2(fmy Su)s bmn=2_(1/fm, Sx). Because of our choice of sets
and the relation f,—v—fo, @m. is non-decreasing in n for each m
and the iterated limits as m, n— both exist and are equal. By
a Lemma of Hildebrandt,* lim, @m, then exists uniformly in m.
From the above Lemma we infer that lim, b, exists uniformly

* Hildebrandt, On a generalization of a theorem of Dini on sequences of con-
tinuous functions, this Bulletin, vol. 21 (1914), pp. 113-115.
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in m, and by our choice of sets we have limm bma=2,(1/f, S.);
hence by a classical theorem we have

lim, limy bma = T(1/f) = limy lim, by = lim, T(1/fn).

That Theorem 5 is not true when the hypothesis that f(x) be of
fixed sign in (a, b) is deleted may readily be seen. It should be
remarked first that if f changes sign in (a, ), the fact that | f |
is bounded away from zero does not imply that f.(x), for =
sufficiently large, is uniformly bounded away from zero; hence
it would be natural to make the latter condition a part of the
hypotheses in considering this case. But even then the theorem
would be untrue, as is seen from such a simple example as the
following: fo(x) =1 for 0=x <1, fo(1) = —1; fulx), (=1, 2, 3,

-+ - ), a monotone function decreasing from 1 to —1 and con-
tinuous except for a jump from 1/2 to —1/2 somewhere in the
interval, with f.—fo.

The following application to functions of two variables may
be noted. Let f(x, v) be defined over a rectangle R(a<x=<b,
c¢=y=d), and let ¢(x) stand for the total variation of f(&, y) in
y over the interval ¢ £y <d; then we have the following fact.

COROLLARY. If f(x, y) 2s >a>0 (or < —a<0) in R and is con-
tinuous in x, ¢ (x) for 1/f(x, y) is continuous wherever ¢ (x) for
f(x, ) is continuous.

5. Sums and Products of Sequences. One may readily show
that the relations f.(x)—v—fo(x) and g.(x)—v—ge(x) on (e, b),
even when fo(x) and go(x) are both continuous on (g, ) (which
by the corollary to Theorem 4 provides all the uniformity of
convergence that could be desired), imply neither f.4+g,—v—
fot+go nor faga—v—fogo. In fact we can make the stronger as-
sertion that f,—v—f,, with g, of bounded wvariation, implies
neither f,+goe—v—fo+go nor f.ge—v—fogo. The following ex-
ample exhibits a sequence of absolutely continuous* functions
f» converging in variation to an absolutely continuous* limit
function fo, and an absolutely continuous* function go, for which
f»~+go does not converge in variation to fo+go: for 0=Sx =1, let
go(x) = —x and

m/2" for m = Omod 2,

Ja(m/2%) = {m/2" + 1/27+1 for m = 1 mod 4
m/2n — 1/271 for m = 3mod 4, (n = 1,2,3,-- ),

* The functions fo, go, and fa, (=1, 2, 3, - + + ), are all monotone.
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and between the points m /2", let f, be defined linearly.

6. A Set of Conditions Sufficient to Insure Convergence in Vari-
ation.

THEOREM 7. Let f.(x) be a sequence of absolutely continuous
Sfunctions converging to a limit function fo(x) on (a, b); let f. (x)
converge asymptotically to a limit function, and let f. (x), (n=1,
2,3, ), be dominated by a summable function; then we have
Ju(x)—v—fo(x) on (a, D).

It is easily seen that the hypotheses imply (i) that fo(x) is
absolutely continuous, so that we may write

m@=f

and (ii) that we may pass to the limit under the integral sign.

fﬂl<x)|dxy (1’I«=0,1,2,"‘),

COROLLARY. Let the series Z,-“;o axt, with real coefficients, have
the radius of convergemce R(>0); let the sum of the series be
denoted by S(x), and let S.(x) =D r1—o aix’; then we have S,(x)
—uv—S(x) on each interval (a, b), (—R<a<b<R).

BrowN UNIVERSITY

TYPES OF INVOLUTORIAL SPACE TRANSFORMA-
TIONS ASSOCIATED WITH CERTAIN RATIONAL
CURVES—COMPOSITE BASIS CURVES*

BY AMOS BLACK

1. Introduction. In a preceding papert the author found and
discussed the involutorial transformations belonging to the
special complex of lines which meet a rational curve 7 of order
m, (m=2,3,4,5), and having a pencil of invariant cubic sur-
faces which contain the curve 7 as a simple basis element, with
the restriction that the residual basis curve, vys_n, of the pencil
should not be composite. In this paper we shall discuss the
cases where vy,y_,, is composite.

2. Equations of the Transformation. The equations of the

* Presented to the Society, April 14, 1933.
t Types of involutorial space transformations associated with certain rational
curves, Transactions of this Society, vol. 34 (1932), pp. 795-810.



