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DERIVATIVES, D I F F E R E N C E QUOTIENTS, AND 
TAYLOR'S FORMULA* 

BY HASSLER WHITNEYf 

1. Introduction. Let f{x) be defined in the closed interval / . 
If f(x) has a continuous mth derivative, it can be expanded in 
a Taylor's formula with m + 1 terms plus remainder; the mth 
difference quotient of f(x) approaches dmf(x)/dxm uniformly. If 
f(x) is a polynomial of degree at most ra — 1, then the mth differ­
ence quotient is identically zero. The object of the present note 
is to prove converses of these theorems. The results hold also 
in an open interval, as they hold in every closed subinterval. 

2. Difference Quotients. Given a function ƒ(x) defined in ƒ, the 
pth difference quotient is defined by the equations A?/(x) =ƒ(#), 
and 

*lf(*) = 7- Z ( - l)"-i (P)f(x+ ih) 

= 4^rx/(* + A) - Arvw] 
n 

for p>0. We say Af/(V) —>fP(x) uniformly in / if for every e > 0 
there is a ô > 0 such that |à&f{x) — fP(x) | < e for every x in I 
and every h, \h\ <d.% 

(a) Suppose ƒo(x),/i(x), • • • , fm(x) are defined in ƒ, and 

(2) f0(x + h) = fo(x) + —Mx)h + • • • + — ƒ*(*)*" + R(xf A), 
11 ml 

where R(x, h)/hm—>0 uniformly in I as h—->0. If we form the pth 
difference quotient, we find§ 

* Presented to the Society, June 23, 1933. 
f National Research Fellow. 
J We always suppose that the values of x under consideration (here, x-\-ih 

for i = 0, • • • , p) lie in I. 
§ If we solve the linear equations (setting 0° = 1) 

0%o + Vui+ • • • + piup = plôjp, (j = 0, • • • , p), 

wefind^ = ( - l ) ^ ( n ; h e n c e Z W - l ) ^ X D ^ ' = 0 , u < ^ ) , a n d = ^ ! , ( ; = ^ ) . 
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ï p /1>\ r m f-(x) ~i 
(3) Alfo(x) = - I ( - 1 ) H " ) Z - ~ (**)' + *(*>**) 

Ap t=o \ ^ / L y=o J ! J 

= Z -— ^ E ( - n*-'! ) *'' + — R»(x>h) 

j=p+l J l i=0 \ t / 

1 
+ — Rp(x, A), 

Ap 

where 

(4) *p(*, A) = £ ( - l W ^ W * , iA). 
*=o \ * / 

From (2) we see that /o(V) is continuous; hence Af/0(x) is 
continuous (A fixed, p = l, • • • ,m). Setting p = m in (3), we see 
that A^/o(#)—>ƒ,»(#) uniformly; hence fm(x) is continuous. Hav­
ing proved that àhfo(x)-*fq(x) uniformly and fq(x) is continu­
ous, (q = m, m — \, • • • , p + l), (3) shows thatAf/0(V) —>fp(x) uni­
formly, and hence/^(x) is continuous, (£ = 1, • • • , m). 

(b) Suppose ƒ (x) =fo(x) and dpf(x)/dxp exists and equals the 
continuous function fp(x), (p = l, • • • , m). Then (2) holds, by 
Taylor's theorem, and hence Alf(x)-*dpf(x)/dxp uniformly, 
(p = l, • • • , m). 

(c) Suppose ƒ(x) =ao+a\X+ • • • -\-amxm is a polynomial of 
degree at most m. Then a Taylor's formula (2) holds with 
/m(x)===m!am and !?(#, A)=0, and using (3) with p = rn,we have 
A/T/(x)=m!am, If f(x) is of degree at most m — 1 , A/T/(^)=0. 

3. Rollers Theorem for Difference Quotients. We shall prove 
first the following lemma. 

LEMMA 1. If ko<ki< • • • <km are integers, A is > 0 , and 

(5) ( - \)™-%x + *<A) ^ 0, (f = 0, • • • , w), 

tóew JAere w aw integer fe0
(m) (&oê= Wm) <&m) swcA £Aa/ 

(6) A, ƒ(* + à» A) è 0. 

As f(x+kmh)^0 and /(x+fem_i/0 = 0 , there is a k^-u 
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(km-i^k^Li <km), such that AlfÇx + k^-ih) ^ 0 . In this manner 
we find numbers k^, • • • , k^-i, (&i-i^&i-i <&*)> such that 

( _ l)m-i-iAlf(x + kfh) ^ 0, (i = 0, • . . , m - 1 ) . 

By the same method, using Alf(x) in place of ƒ(#), we find 
numbers k(o\ • • • , J fe2-2 , (*{- i^^ i<^ 1 } ) , such that 

( - l ) - - 2 ~ ^ / ( x + kfh) ^ 0, (i = 0, • • • , m - 2 ) . 

Continuing in this manner we find, finally, the required number 

4. THEOREM 1. Let fix) be measurable in the closed interval I. 
A necessary and sufficient condition that f(x) be a polynomial of 
degree at most m — \ is that Aff(x)—>0 uniformly.* 

The theorem is not true without the measurability condition. 
For the discontinuous functions defined by G. Hamel f are seen 
to have the property Ar

hf{x) = 0 . 
The necessity of the condition follows from §2 (c) ; we must 

prove the sufficiency. We shall prove first the following lemma. 

LEMMA 2. Let fix) satisfy the conditions of the theorem. Let 
?i, r2, • • - , rm be rational numbers. Take a fixed number a and 
a fixed t. Let P(x) be the polynomial of degree at most m — \ such 
thatf(a + rit)=P(a+rit)i(i = lJ • • • , m). Then if r is any rational 
number, f(a + rt) =P(a + rt). 

Suppose that the lemma is not true. Then for some rational 
ro,f(a+r0t)^P(a + r0t). Let 

Q(x) = co + cix + • • • + cmxm, (cm ^ 0), 

be the polynomial of degree m such that Q{a-\-r{t) =f(aJrrit)> 
(i = 0, • • • , m). Set (j>(x) =ƒ(#) — Q(x) ; then <£(a+r^) = 0 , 
(i = 0, • • • , w), and by §2 (c), 

A™ 0(a) = A™ƒ(» - m\cm-> - m\cm 

uniformly as ft—»0. Hence we can take a ô > 0 so that A™<f>(x) < 0 
or > 0 for all x in I and ft<S according as cm>0 or cm<0. As 

* The case tha t f(x) is continuous and A™f(x) = 0 has been considered by 
Anghelutza, Mathematica (Cluj), vol. 6 (1932), pp. 1-7. 

f Mathematische Annalen, vol. 60(1905), p. 461, equation (2). 



92 HASSLER WHITNEY [February, 

the Ti are rational, there is a number r such that rt<6 and the 
numbers a + krt (k an integer) include the numbers a + rrf. By 
Lemma 1, there are integers k ' and k ' ' such that A™ </> (a + k 'rt) ^ 0 
and A™ cj)(a-\-knrt) ^ 0 , a contradiction, proving the lemma. 

5. Proof of Theorem 1. If we define P(x) as in the lemma, 
a and / being rational, then/(x) = P(x) at all rational points of 
I. If f(x) is continuous, it follows that ƒ (x) =P(x) in I. To com­
plete the proof of the theorem, we must show that if f(x) ^ P ( x ) , 
then f(x) is not measurable. 

Suppose there is a number a in I such that f (a) 9^P(a). If 
Q(x) is the polynomial of degree at most m — 1 such that 
f{x) =Q(x) at points a ,a + f2, • • • , a + r™, (r2, • • • , rmrational), 
then ƒ(x) =Q(x) at all points a + r, (r rational), by the lemma. 
Set a=\Q(a)-P(a)\, and take 5 > 0 so that 

(7) | P{x) - P(a) | < ~ , I Q(x) - Q(a) | < -^ ' 
4 4 

( | * - a\ g ô ) . 

Take 77 > 0 so that if R(x) is any polynomial of degree at most 
w - 1 such that \R(i)\ Sy, (i = l, • • • , w), then |jR(0)| <<x/4.* 
By a change of variable, we see then that for any x, &, and yo, 
if I i?(x + ih) — yo1 è V) (̂  = I? • ' ' y m), then 

I R(x) - yo\ < r / 4 . 

If /(x) is measurable, there is a number 3̂0 such that the set 
of points E in (a —ô, a + b) (and in 7) for which |/(x)—;y0| grj 
is of positive measure. Let V be a closed subinterval of 
(a —S, a + d) such that if Em — E-If, then f 

(8) meas (£w) > meas (ƒ'). 
m2 + 1 

Either |;yo-P(âO| ^cr/2 or | y 0 - ö ( « ) | ^ A say the latter. Let 
b be a number in I' such that f(b) = Q(b), (take ô — a rational); 
then, using (7), \f(b)-yQ\ ><r/4. 

Let 5 be the set of numbers s such that b-\-ms is in Em , and 
Ei the set of numbers b+is, where s is in 5, (i = 1, • • • , m — 1). 

* That this can be done follows easily from the fact that Aiw R(0) =0; see 
§2 (c). 

f See Hobson, Functions of a Real Variable, vol. 1, 3d éd., 1923, p. 194. 
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Set Ei' =Ei-Em, and let 5» be the set of numbers s in S 
such that b-\-is i s i n E / , (i = 1, • • • , m). There is no number So in 
every Si. For if there were, we would have simultaneously 

(9) | f(b + wo) - yo | ^ 1?, (* = 1, • • • , *0, \f(b) - yo | > cr/4. 

Hence by our choice of rj, if i£(x) is the polynomial of degree at 
most m — \ such that R(b+is0) = ƒ(b+is0), (i = l, • • • , w), then 
R(b)jéf(b). But this contradicts Lemma 2. 

Consequently, every number 5 of S is in some set S — Si, and 
hence for some j , meas (S — Sj) ^ m e a s (S)/m. Therefore 

meas (E/) meas (Em) 
meas (£,- - £ / ) ^ — ^ — - • 

As Em and £,• — £ / have no common points, this with (8) gives 

(10) meas [Em + {Ej - E J)] è meas (Em) 1 + — 
L w2J 

> meas (ƒ'). 

But this contradicts the fact thatET O+E,- lies in V. Hence/(x) 
is not measurable, and the theorem is proved. 

THEOREM 2. Let f(x) be measurable in the closed interval 
I=(a, j8). A necessary and sufficient condition* that dmf(x)/dxm 

exist and equal fm(x) is that A™/(x)—>/m(x) uniformly in I. 

* A direct proof of this theorem may be given as follows, as suggested by 
Birkhoff. The function f(kh), (h = l/p, k and p integral), may be expressed 
in terms of A™f(x) by the formula 

m—1 

/m = £ atikhy 
(12) " 
v ' hm k-1 

+ 7 7T-X (k - I - l)(k - / - 2) • • • (k - I - m+ l)Atf(/A), 
{m - 1) ! j _ 0 

where the a* are determined so that f(sph) =f(s), (s=0, • • • , m — 1). We solve 
a set of linear equations with a Vandermonde determinant, and find 

m—1 i— 

i = E ?*• ƒ (*) 
(13) 

- 7 rrr E (*# - / - 1) • • • (sp ~ I - m+ l)A»/(tt) , 
(m — 1)1 ;_o J 
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The necessity of the condition was proved in §2 (b). To prove 
the sufficiency, we show first that fm(x) is continuous. Take ô 
so small that |A™/(x) — fm(x) | < e/2 for \h\ <d. Take any two 
points xi and x2 of / such that x2 — xi = mh, \h\ <ô. Then 
\Amoci)-U(x1)\<e/2f \AJ%f(x2)-fm(x2)\<e/2. But A-tf(x2) 
= A$f(xi); hence \fm(x2)—fm(xi)\ < e. 

Define the ra-fold integral 

I I fm(x1)dx1dx2 • - - dxm; 
a J a J a 

then dmg(x)/dxm = fm(x) in ƒ, and by §2 (b), A fc
mg (*)-»ƒ m(*) uni­

formly i n / . Set #(#) =f(x) — g(x). Then A^0(x)—>0 uniformly; 
hence </>(x) is a polynomial of degree at most m — 1 (Theorem 1), 
and therefore f(x) has a continuous mth derivative in / , and 

dm dm dm 

— ƒ ( » = </>0) + g(x) = fm(x) . 
dxm dxm dxm 

THEOREM 3. A necessary and sufficient condition that the func­
tion f(x) =/o(x) defined in I have a continuous mth derivative is 
that there exist j'unctions j\{x), • • • ,/W(V) such that (2) holds. In 
this case, dpf(x)/dxp=fp(x)1 (£ = 1, • • • , m). 

The necessity of the condition is a consequence of Taylor's 
formula. To prove the sufficiency, §2 (a) shows that A%f(x) 
-+fP(x) uniformly as h—->0; consequently)", by Theorem 2, 
dpf(x)/dxp exists and equals fp(x), (/> = 1, • • • , m). 

HARVARD UNIVERSITY 

where the THS are numerical coefficients. If in the above equations we replace 
P hy pj = 23'p, h by hj = h/2}', and k by kj = 2^'k, and set r = kjhj = kh, then as 
At!nf(x)—^fm(x) uniformly, passing to the limit j= <*> gives 

m—1 m—1 r- 1 C3 ~1 

(r) = E r* E w. ƒ(*) - 7 ,-TT (* - t)™~%m 
»=0 s=0 L (W — 1) ! J o J 

(m — 1)\J0 

for any rational r > 0 . If /(x) is continuous, this is true for all r>0 and, the 
theorem follows immediately on differentiating. (The restriction r>0 may of 
course be replaced by the restriction r> — c for any c.) 

f A direct proof of this theorem is given by the author in a paper entitled 
Differentiable functions defined in closed sets / , Theorem IV. 


