
CERTAIN PROBLEMS OF CLOSEST 
APPROXIMATION* 

BY DUNHAM JACKSON 

1. Introduction. In connection with the theory of systems of 
polynomials which are orthogonal and normalized with respect 
to a given weight function an important question is that of the 
order of magnitude of the nth polynomial of the sequence as n 
becomes infinite. In the fundamentally important case of 
Jacobi polynomials! as well as for the systems of polynomials 
corresponding to much more general weight functions % asymp­
totic formulas show that the polynomials of the normalized 
sequence remain bounded, at least in the interior of the interval 
for which they are constructed. This paper is in part devoted 
to a much less profound but considerably broader study of upper 
bounds for the order of magnitude of the polynomials under still 
more general hypotheses as to the character of the weight 
function. It is believed to be of interest by reason of the sim­
plicity of the methods employed, and their ready applicability 
to the obtaining of results with regard to the behavior of the 
polynomials even at points where the weight function vanishes. 

Attention is given also to similar problems in the case of trig­
onometric sums, which are in some respects more readily ac­
cessible to treatment than polynomials. 

The rest of the paper is concerned with the convergence of the 
development of a given function in series of the orthogonal poly­
nomials or trigonometric sums, or more directly, as the terms 
of the series do not enter explicitly into the calculation, with 

* Presented before the Society and Section A of the American Association 
for the Advancement of Science, by invitation, June 21, 1933, on the occasion 
of the address by Professor L. Fejér. 

t See G. Darboux, Mémoire sur Vapproximation des fonctions de trèsgrands 
nombres, et sur une classe étendue de développements en série, Journal de Mathé­
matiques, (3), vol. 4 (1878), pp. 5-56. 

t See G. Szegö, Über den asymptotischen Ausdruck von Polynomen, die durch 
eine Orthogonalitdtseigenschaft definiert sind, Mathematische Annalen, vol. 86 
(1922), pp. 114-139; S. Bernstein, Sur les polynômes orthogonaux relatifs à un 
segment fini, Journal de Mathématiques, (9), vol. 9 (1930), pp. 127-177, and 
vol. 10 (1931), pp. 219-286. 
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the convergence of the corresponding processes of least-square 
approximation. More generally, an arbitrary positive power of 
the error is admitted in place of the square in the criterion of 
closest approximation. The author has pointed out on various 
occasions the usefulness of Bernstein's theorem in connection 
with the study of problems of this sort.* Other writers have 
made effective use of Holder's inequality in similar situations.f 
The present treatment is characterized as to method by the use 
of Bernstein's theorem, or MarkofFs theorem, and Holder's 
inequality in succession, and as to results by the comparative 
liberality of the hypotheses with regard to vanishing of the 
weight function. 

2. Normalized Trigonometric Sums. Detailed consideration 
will be given first, for the sake of simplicity, not to polynomials 
but to trigonometric sums. 

Let Tn(x) be an arbitrary trigonometric sum of the nth 
order,$ and s an arbitrary positive number, and let 

Hns = I | Tn(x) | dx. 

Let jJLn be the maximum of | Tn(x) | , and let Xo be a value of x 
for which | Tn(x0)\ =JUW. By Bernstein's theorem, 

| Tn (x) | ^ n\xn 

everywhere. For X XQ ^ 1/(2^), by the law of the mean, 

| Tn(x) — Tn(xo) | ^ /in/2, 

and 
| Tn(x) | ^ /xw/2. 

* See, for example, D. Jackson, The Theory of Approximation, American 
Mathematical Society Colloquium Publications, vol. X I (hereafter referred to 
as Colloquium), 1930, Chapter I I I . 

t See, for example, J. Shohat, On the polynomial and trigonometric approxi­
mation of measurable bounded functions on a finite interval, Mathematische 
Annalen, vol. 102 (1930), pp. 157-175; J. L. Walsh, On the over convergence of 
sequences of polynomials of best approximation, Transactions of this Society, 
vol. 32 (1930), pp. 794-816; W. H. McEwen, Problems of closest approximation 
connected with the solution of linear differential equations, Transactions of this 
Society, vol. 33 (1931), pp. 979-997. 

t The words "of the nth order" or "of the nth degree" will be understood 
throughout to mean of the nth order or of the nth degree at most. 
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As the last relation holds throughout an interval of length 
1/n at least, it is certain that 

Hn8 ^ (l/»)G*»/2)', 

whence 
/i» ^ 2(nHnsyi*. 

The conclusion is as follows. 

LEMMA 1. If Tn(x) is a trigonometric sum of the nth order, if 

Hns = 

and if [in is the maximum of | Tn(x) | , then 

fin ^ 2{nHnsyi\ 

This statement may be supplemented by an immediate 
corollary. 

COROLLARY. If sums Tn{x), each of order indicated by its sub­
script, are defined for an infinite succession of values of n so that 
Hns is bounded, for a fixed value of s, then | Tn(x) \ has an upper 
bound of the order of nlls. 

Suppose now that p(x) is a summable function of period 2w 
having a positive lower bound: 

pO) à v > 0 

for all values of x. Let Tn{x) be a trigonometric sum of the nth. 
order such that 

(1) ƒ \{x)[Tn{x)]Hx = 1. 

Inasmuch as [p(#)]~ ^1/fl, 

Hn2 = ƒ [Tn(x)\HxS 1/v, 

and application of the Lemma, through its Corollary, with 
s ==2, yields the following result.* 

* See also D. Jackson, Orthogonal trigonometric sums, presently to be pub­
lished in the Annals of Mathematics. I t is to be noted that the proof does not 
require that the sums Tn(x) form an orthogonal system. 



892 DUNHAM JACKSON [December, 

THEOREM 1. If p(x) is a summable f unction having a positive 
lower bound, and if trigonometric sums Tn(x) of the nth order are 
constructed f or successive values of n so that (1) is satisfied, then 
| Tn(x) | has an upper bound of the order of n1/2. 

Let the hypothesis with regard to a positive lower bound of 
p(x) be replaced by the less restrictive assumption that p(x) 
is nowhere negative and that [p(x)]~r is summable over a 
period, for some positive (not necessarily integral) value of r. 
Let Tn(x) again be a trigonometric sum of the nt\i order 
satisfying (1). Let 

s = 2r/(f + 1 ) , p = 2/s = 1 + (1/f) > 1. 

In the integral 

| Tn(x) \'dx, 

let the integrand be regarded as the product of the factors 
[p(x)]~1!p and [p(x)]1/2,| Tn(x)\s. Then, by Holder's inequality, 

I(P-D/P 

^ r r iix*)]-i/î,}|,/(j^i)d*i 

T ƒ {K*)]1/Pl Tn(x)\ '}*dx\ 

r f TT - | l / (r+l) r /» 7T -11 

= J [ P W ] - ^ X J I J p(*)[rw(*)]2^J 

The first integral in brackets on the right, which exists by hy­
pothesis, is independent of n, and the value of the other integral 
is 1, by the hypothesis on Tn(x). So Hns is bounded, with 
s = 2r/(r + l), and the Corollary of the Lemma goes over into 
the following form.* 

THEOREM 2. If p(x) is a non-negative summable f unction such 
that [p(x)\~r is summable, r > 0 , and if trigonometric sums Tn(x) 
of the nth order are constructed for successive values of n so that ( 1 ) 
is satisfied, then \Tn(x)\ has an upper bound of the order of 
w(r+l)/(2r)# 

* See also D. Jackson, Annals of Mathematics, loc. cit., for the particular 
case r = 1. 
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3. Normalized Polynomials, Upper Bounds for Entire Interval. 
Let Pn(x) be a polynomial of the ^th degree, and fxn the maxi­
mum of | Pn(x) | for — 1 Sx^ 1. According to MarkofFs theorem 

for — 1 ^ x ^ 1. Let x0 be a point of the interval ( — 1, 1) at which 
|Pn(ff)| =Mn- If x is a point of ( — 1, 1) distant from XQ by not 
more than l/(2w2), 

| i \ ( * o ) - Pn(x) | g Mn/2 , | Pn(x) | ^ M n / 2 . 

At least one of the intervals 

XQ — l/(2n2) g x ^ #o, #o ^ # ^ #o + l / (2^2) , 

is wholly contained in ( — 1, 1), and | Pn(x) | è/xn/2 consequently 
throughout an interval of length at least l/(2n2). Hence, if 
s > 0 and 

Hns = I | Pn{x) (dx, 

it is certain that 

Hn8 ^^~(~)\ /^ ^ 2{2nWn8yt\ 
2n2 \ 2 / 

More generally, let 

Hns = I | Pn(x) \*dx 
J a 

for an arbitrary interval (a, &), and let jun be the maximum of 
|P n (x ) | for a^x^b. By virtue of the transformation 
y = (2x — a — b)/(b—a), Pn{x) is a polynomial of the nth degree 
in y} Qn(y), having fjLn as the maximum of its absolute value for 
— 1 ^ 3 * ^ 1 , and 

ƒ * . ,. 2 r b , „ 2H ns 
I e-(y) I dy = | P„0) I <fe = 

- l b — aJa b — a 

Application of the preceding paragraph to Qn(y) gives an upper 
bound for /xn. 

LEMMA 2. If Pn(x) is a polynomial of the nth degree, if 
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/
" h 

| Pn(x) (dx, 
a 

and if fxn is the maximum of | Pn(x) | for a^x^b, then 

VLnS 2[4n*Hns/(b- a)]v*. 

If Hns is bounded f or a succession of polynomials Pn(x), with a 
fixed value of s, \ Pn(x) \ has an upper bound of the order of n2ls 

for atkxtkb. 
An immediate consequence for 5 = 2, after the analogy of 

Theorem 1, a result which is well known on the basis of other 
lines of reasoning, is as follows. 

THEOREM 3. If p(x) is a summable function having a positive 
lower bound f or a^x^b, and if polynomials Pn(x) of the nth de­
gree are constructed for successive values of n so that 

(2) f p(x)[Pn{x)]Hx = 1, 
J a 

then | Pn(x) | has an upper bound of the order of n for a = x = b. 
An obvious generalization may be stated as follows. 
COROLLARY. If p(x) in Theorem 3, non-negative throughout 

(a, b), is assumed to have a positive lower bound merely for 
ctkxSd, where a^c<d^b, without being restricted as to its van­
ishing outside (c, d), then \ Pn(x) | has an upper bound of the order 
of nfor c^x^d. 

For 

r P(x)[pn(x)]*dx fg r 9{x)[pn{x)]Hx = i, 
J c J a 

and the proof of the theorem can be applied directly to the in­
terval (c, d). 

The reasoning with Holder's inequality by means of which 
Theorem 2 was proved leads now to the following theorem. 

THEOREM 4. If p(x) is a non-negative summable f unction such 
that [p(x)]~r is summable over (a, b), with r>0, and if poly­
nomials Pn(x) of the nth degree are constructed f or successive val­
ues of n so that (2) is satisfied, then | Pn(x) \ has an upper bound 
of the order of n{r+l)lr for a^x^b. 

The proof consists in showing, by adaptation of the formulas 
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that we have previously employed, that Hn8 again is bounded 
with j = 2 r / ( r + l ) . 

To the result just formulated we may add the following state­
ment. 

COROLLARY. If p(x) in Theorem 4 is non-negative and sum-
mable over (a, b), and if [p(x) ]~r is assumed merely to be summable 
over (c, d), where a^c<d^b, then \ Pn{oc) | has an upper bound of 
the order of n(r+l)lr for c^x^d. 

4. Normalized Polynomials, Upper Bounds for Entire Interval 
by Trigonometric Substitution. Let Pn(x) again be a polynomial 
of the nth degree, and /xw the maximum of its absolute value 
for - l ^ x ^ l . Let 

'••=£ Hns = J ( 1 ~ X 2 ) - 1 ' 2 I Pn(x) | dx, 

still with the understanding that s>0. By the substitution 
# = cos 6 the integral becomes 

ƒ» T 1 /* T 

| Pn(cos 6) \' d$ = - I I Pn(cos 0) fd0. 
o 2 J -.T 

As Pw(cos 0) is a trigonometric sum of the nth order in 0, Lemma 
1 is applicable, with the conclusion that fxn^2(2nHf

ns)
lls. 

For a general interval, let 

Hna = f [(b - x)(x - a)]"1 '21 Pn(x) \*dx. 

Uy = (2x-a-b)/(b-a) and P»(*)=Q»(y), 

( i -y 2 ) - i / 2 l e»(y)r^ = H'«. ƒ 
Application of the preceding paragraph to this integral gives the 
following lemma. 

LEMMA 3. If Pn(x) is a polynomial of the nth degree, if 

HL = f [(* - x)(x - a)]"1/21 Pn(x) \'dx, 
J a 

and if \xn is the maximum of \ Pn(x) | for a^x^b, then 

fxn ^ 2{2nHnsyi\ 
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If HJ is bounded f or a succession of polynomials Pn(x), with 
fixed s, | Pn(x) | has an upper bound of the order of nlh for a^x^b. 

For 5 = 2 this yields the following result. 
THEOREM 5. If p(x) is a summable function such that 

p(x) [(b — x) (x — a)]112 has a positive lower bound over (a, &), and 
if polynomials Pn(x) are constructed so that (2) is satisfied, then 
| Pn{x) | has an upper bound of the order of n112 for a^x^b. 

COROLLARY. If p(x) is non-negative and summable over (a, &), 
and if p{x) [(d — x) (x — c)]112 has a positive lower bound over (c, d), 
where a^c<d^b, then | Pn(x) \ has an upper bound of the order 
of n112 for cSx^d. 

Holder's inequality is to be applied this time to the integral 
of the product of the factors 

[p(*)]-1/p[(* - x)(x - a )h 1 / 2 , \p(x)]u*\Pn(x) \\ 

where s and p are related to r as before, to obtain the following 
theorem. 

THEOREM 6. If p(x) is a non-negative summable f unction such 
that 

[p(x)]-r[(b - x)(x- a)]-<'+i)/2 

is summable over (a, b), with r>0, and if polynomials Pn(x) are 
constructed so that (2) is satisfied, then | Pn{x) \ has an upper 
bound of the order of n{r+l)l{2r) for aSx^b. 

It is perhaps not necessary to state the corollary relating to 
an interval (c, d) contained in (a, b). 

5. Normalized Polynomials, Upper Bounds for Interior of In­
terval. The trigonometric substitution of §4 is useful also in con­
nection with the integral denoted by Hns in §3. Let 

Uns = J | Pn(x) I dx 

once more, and let x = cos 0. Then 

ƒ» ir 

sin0| Pn(cos0) \'dd. 
o 

Let N be the smallest integer satisfying the condition that 
N^l/s. This relation means that 1 = iVs, so that sin0 = (sin 6)Ns 

for O = 0 = TT, and 
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| sin^tf Pn(cos 6) \*dd = - I | sin*0 P„(cos 6)\ *d6. 
o 2 •/_T 

Let /in be the maximum of | sin^ 6 Pn(cos 6) | . As the expression 
in bars is a trigonometric sum of order n + N, it follows from 
Lemma 1 that 

ixl ^ 2[2(n + N)Hns]V\ 

Hence 

Pn(cos0) ^ r — 7 1 > 
I sm* 0 I 

or, in terms of the original variable x, 

2[2(n + N)Hns]u° 
Pn{x) | S 

(1 - x2)*'2 

for —\<x<\. With the aid of a further change of variable the 
conclusion may be expressed in the following form. 

LEMMA 4. If Pn(x) is a polynomial of the nth degree, if 

b 

Hn8 = I | Pn(x) \*dx, 

and if N is the smallest integer^ 1/s, then 

K[(n + N)Hn8]v* 
Pn(x) I ^ 

[(b - x){x - a)]N'2 

for a<x<b, where 

K = 2-21/*[(& - a)/2]N-w*. 

The significance of this result is that for a fixed x interior to 
(a, &), or for any closed interval interior to (a, b), the upper 
bound obtained is of the order of (nHns)

lls for fixed s, as com­
pared with (n2 Hns)

1/s in Lemma 2 or (nHna)
l,s in Lemma 3; the 

earlier lemmas, on the other hand, apply to the entire closed 
interval a^x^b. 

It may be noted, though perhaps as a point of minor interest, 
that the statement of Lemma 4 becomes somewhat simpler 
and more compact if 5 is the reciprocal of an integer, so that 
N=l/s. 
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Application of the Lemma is to be made through the following 
corollary. 

COROLLARY. If Hns is bounded for a succession of polynomials 
Pn(x), with a fixed value of s, then \ Pn(x) \ has an upper bound of 
the order of nlls throughout any closed interval interior to (a, b). 

For s = 2 there is obtained the following well known supple­
ment to Theorem 3. 

THEOREM 7. If p(x) is a summable function having a positive 
lower bound for a^x^b, and if polynomials Pn(x) are constructed 
so that (2) is satisfied, \ Pn(x) \ has an upper bound of the order of 
n*12 throughout any closed interval interior to (a, b). 

If p(x)i non-negative throughout {a, &), has a positive lower 
bound in an interval (c, d) contained in (a, &), | Pn{x) \ has an 
upper bound of the order of n112 throughout any closed interval in­
terior to (c, d). 

A similar continuation of Theorem 4 requires no new calcu­
lation; it is a question merely of combining Lemma 4, through 
its Corollary, with the observation already made as to the 
boundedness of Hns for s = 2r/(r + l). 

THEOREM 8. If p(x) is a non-negative summable f unction such 
that [p(x) ]~ris summable over {a, b), withr>0, and if polynomials 
Pn{x) are constructed so that (2) is satisfied, \ Pn(x) \ has an upper 
bound of the order of n(r+l)Kûr) throughout any closed interval in­
terior to (a, b). 

This also can be adapted to the hypothesis that [p(x)]~r is 
summable merely over an interval (c, d) contained in (a, b). 

6. Convergence of Trigonometric Approximation. A schedule of 
propositions corresponding to those listed above can be worked 
out with reference to the convergence of trigonometric or poly­
nomial approximations determined by the minimizing of an 
integral containing a power of the error. In the case of least 
squares, as is well known, the approximating functions can be 
regarded as partial sums of developments in series of polynomi­
als or trigonometric sums orthogonal with respect to the weight 
function in question. The terms of the series will not be ex­
plicitly in evidence, however; the treatment of convergence, for 
least squares as well as in the case of other powers, will be based 
directly on consideration of the magnitude of the integral which 
is minimized. 
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As in the earlier part of the paper, attention will first be given 
to trigonometric sums. 

Let fix) be a given continuous function of period 2ir, and let 
Tn(x) and tn(x) be arbitrary trigonometric sums of the nth order. 
For a given positive s, let 

ƒ. | f(x) — Tn(x) | dx. 

Let the difference ƒ(x) —tn{x) be denoted by rn(x), and let en 

be an upper bound for | rn(x) | : 

| ƒ 0 ) - tn(x) | ^ €„. 

Let rw(x) - /„ («) =Tn(x), so that ƒ(x) — Tn(x) = rn(x) —rn(x). Let 
jun be the maximum value of | rn(x) | , taken on for X — XQ. For 
\x — Xo\ ^ l/(2w), inasmuch as |rn

; (#) | ^njj,n, by Bernstein's 
theorem, |rw(x) | remains greater than or equal to /xn/2. If 
Mn = 4en, so that |r»(#)| = Mn/4, then 

| r»(a) - rn(x) | ^ /x»/4 

throughout the specified interval of length 1/w, and 

/

r i 1 / ^ A * 

r n ( » — rn(s) ^ è — ( — 1 , 
n \ 4 / 

from which it follows that 

Mn ^ 4(^Gns)
1^. 

If the condition /zn^4en is not satisfied, this fact of itself gives 
an upper bound for \xn. In any case fin has one or the other of the 
numbers 4en, 4(nGns)

lls for an upper bound, and can not exceed 
their sum : 

Mn ^4(?zGns)
1/* + 4€n. 

Since | rn(x)\ ^en, 

| ƒ ( * ) - Tn(x) | = | rn(x) - Tn(x) | ^ €n + /Xn ^ 4 (^G n 8 ) 1 / s + 5en. 

The conclusion may be expressed in the following form :* 

LEMMA 5. If f(x) is a continuous f unction of period lir, Tn(x) 
a trigonometric sum of the nth order, and 

* See Colloquium, pp. 84, 87-88. 
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Gns = I | ƒ 0 ) ~ Tn{x) frftf, 

and if there exists a trigonometric sum tn{x) of the nth order such 
that 

| ƒ 0 ) — tn{x) | S en 

everywhere, then 

| ƒ 0 ) - Tn{x)\ S 4(nGnsyt'+ 5en 

for all values of x. 

Let p(x) be a summable function of period 2ir having a posi­
tive lower bound, p(x)^v>0, and let Tn(x) be determined 
among all trigonometric sums of the nth. order as one for which 
the integral 

(3) f PO) I ƒ0) - Tn(x) \mdx 
J -IT 

has its minimum value, the exponent m being a given positive 
number. The question of the existence and uniqueness or non-
uniqueness of the minimizing sums, for both trigonometric and 
polynomial approximation, has been treated extensively else­
where,* and will not be discussed here. Let the minimum value 
of the integral be denoted by yn. In consequence of the hy­
pothesis on pO), 

:) - Tn(x) I dx ^ yn/v, 

and by application of Lemma 5 

| ƒ 0 ) - Tn(x) | ^ 4(nyn/vyt™ + 5en, 

if ƒ 0 ) can be approximated by a trigonometric sum tn(x) of the 
nth. order with a maximum error not exceeding en. 

* See, for example, D. Jackson, Note on an ambiguous case of approximation, 
Transactions of this Society, vol. 25 (1923), pp. 333-337; A generalized problem 
in weighted approximation, Transactions of this Society, vol. 26 (1924), pp. 
133-154; Note on the convergence of a sequence of approximating polynomials, 
this Bulletin, vol. 37 (1931), pp. 69-72; and other passages referred to in these 
papers. 
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Under the same assumption as to the existence of an approxi­
mating sum tn(x) an upper bound can be assigned for yn. If the 
integral of p(x) over a period is denoted by R, then by virtue 
of the minimizing property of Tn(x) 

Yn = J P O ) I ƒ(*) - Tn(x) | ™ dx 

^ f P O ) I /(*) - tn(x) \mdx S Ren
m. 

With the incidental observation that 5en^5n1 /w€n , it thus be­
comes apparent that 

\f(x) - r»(aO| ûCn^en, 

where C is independent of x and independent of n. 
The minimizing sums Tn{x) will converge uniformly toward 

the function ƒ(x) as w becomes infinite if sums tn(x) exist so that 
limn^oo nllmen = 0. A well known sufficient condition,* when 
m > l , is that ƒ (V) have a modulus of continuity co(5) such that 
lim^o co(S)/o1/m = 0. In this theorem and succeeding theorems, 
however, the formal statement will be in terms of the order of 
magnitude of en, and reference will be made to systematic pre­
sentations of the theory of approximation by polynomials and 
trigonometric sums f for relations between the values attainable 
for en and properties of continuity of f(x). 

THEOREM 9. If p(x) is a summdble function having a positive 
lower bound, if trigonometric sums Tn(x) of the nth order are con-
structedfor successive values of n to minimize the integral (3), and 
if there exist trigonometric sums tn(x), likewise of the nth order, so 
that 

I ƒ ( » — tn(x) I ^ €n, 

there is a constant C\ independent of x and n, such that 

\f(x) - Tn(x)\ £CnU»en. 

* See Colloquium, p. 89, where a more general form of convergence theorem 
is given, applying to other sums than those which minimize the error integral. 
The more general form of statement could be carried through the present paper, 
but the specific statements with regard to minimizing sums are preferred for 
the sake of simplicity. 

t For example, Colloquium, Chapter I. 
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The minimizing sums Tn(x) will converge uniformly toward f (x) 
if sums tn(x) exist for which l in ing nllm 6̂  = 0. 

A new theorem is obtained if it is assumed merely that p(x), 
in addition to being non-negative and summable, is such tha t 
[p(x) ]~r is summable over a period, for a positive value of r. Let 

s — mr/(r + 1 ) , p = m/s = 1 + (1/V) > 1, 

and let Holder's inequality be applied to the integral of the 
product of the factors 

[p(^)]-1 /P , |/>(*)] 1/P | /(*) - Tn{x)\\ 

to give a comparison between this integral and a product of in­
tegrals involving these factors with the exponents p/(p — l) and 
p, respectively. The resulting inequality is 

) - Tn(x) I dx 

1/(H-1) 

= Tl/C* 

è\f \p(x)]-'dx\ 

) I f(x) ~ Tn(x) I dx 

If yn and en are used with the same meanings as before, the last 
member does not exceed a constant multiple of 7 / / ( r + 1 ) or of 
emr/(r+i)=€w8j a n ( j Lemma 5 gives for \f(x) — Tn(x)\ an upper 
bound of the order of nlls en. 

THEOREM 10. If p{x) is a non-negative summable f unction such 
that \p{x)\~r is summable, r>0, if Tn(x) for each n is a trigono­
metric sum of the nth order minimizing (3), and if sums tn(x) exist 
so that 

| ƒ 0 ) — tn(x) | S €n, 

there is a constant C, independent of x and n, such that 

| ƒ(*) - Tn(x)\ S C » W ( " \ . 

The sums Tn{x) will converge uniformly toward f {x) if sums tn(x) 
exist for which 

Hm »(H-D/(mr)€ n _ 0 . 
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The last condition will be satisfied if s = mr/(r+l)>l and 
the function f(x) has a modulus of continuity co(ô) such that 
limô_o co(ô)/ô1/s = 0, or if m > l , r = l/(m — 1), and ƒ 0 ) has a con­
tinuous derivative. When s<l a corresponding statement 
would involve further hypotheses on f(x), or, on occasion, 
higher derivatives of ƒ0 ) -

It is to be noted that Theorem 10, like the other even-numbered 
theorems throughout the paper, applies even at points where 
p(x) vanishes. 

7. Convergence of Polynomial Approximation over Entire In-
terval. The theorems that are still to be enumerated can be 
proved by combination of devices that have been employed 
above, and may be dismissed with a brief summary. 

Throughout the remainder of the paper it will be understood 
that ƒ 0 ) is a given function continuous for at^x^b, and that 
p(x) is non-negative and summable over (a, b). Whenever the 
symbol en is used, it is with the implication that there exists a 
polynomial pn(x), of the nth degree, such that 

| ƒ 0 ) - Pn(x) | ^ €w 

for a^x^b. 
A proof related to that of Lemma 5 as the proof of Lemma 2 

is related to that of Lemma 1 gives the following result.* 

LEMMA 6. If Pn(x) is a polynomial of the nth degree, and 

| ƒ ( » — Pn(x) \*dx, 
a 

then 

| ƒ 0 ) - Pn(x) | ^A[4n*Gns/(b - a)Y!' + 5en 

for a^x^b. 

In deriving the following theorems, if the interval (c, d) is not 
the whole of (a, fc), the Lemma is to be restated with reference 
to the interval (c, d) for the purposes of the demonstration : 

THEOREM 11.f If Pn(x) is a polynomial of the nth degree mini­
mizing the integral 

* See Colloquium, p. 97. 
t See Colloquium, p. 98. 
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(4) f p(x) | f(x) - Pn(x) | mdx, (m > 0), 

and if p(x) has a positive lower bound for c^x^d, where 
a^c<d^b, there is a constant C, independent of x and n, such 
that 

| f(x) - Pn{x) | ^ Cn*>™en 

for c^x^d. 

THEOREM 12. If Pn(x) is a polynomial of the nth degree mini­
mizing the integral (4), and if [p(x)]~r is summable over (c, d), 
with r>0, where a^c<d^b, there is a constant C, independent of 
x and n, such that 

| ƒ ( » - Pn(x) | ^ Cn^r+vnmrhn 

for c^x^d. 

A sufficient condition for convergence, in terms of the order of 
magnitude of en, is obvious in each case. 

8. Convergence of Polynomial Approximation over Entire In­
terval by Trigonometric Substitution. The substitution x = cos 6 
can be employed as in the proof of Lemma 3 to express an in­
tegral over the interval ( — 1, 1) in terms of periodic functions; 
if f(x) can be approximately represented by a polynomial pn(x) 
for — 1 ^x^ 1 with an error not exceeding en, the even periodic 
function /(cos 6) is represented by the trigonometric sum 
pn(cos 6) so that 

| f (cos 6) - pn(cosd)\ ^ en 

for all values of 0. The further use of a linear substitution relates 
the interval ( — 1, 1) to an arbitrary interval (a, b). The resulting 
transformation of Lemma 5 reads as follows. 

LEMMA 7. If Pn(x) is a polynomial of the nth degree, and 

ƒ. b 

[(b - x){x - a)]-w | ƒ(*) - Pn(x) \*dx, 
a 

then 

| f(x) - Pn(x) | g 4(2nGf
nsy's + 5en 

for a^x^b. 



I933-J PROBLEMS OF CLOSEST APPROXIMATION 90S 

From this Lemma, restated for an interval (c, d), may be de­
duced theorems with regard to polynomials of closest approxi­
mation . 

THEOREM 13. If Pn{x) is a polynomial of the nth degree mini­
mizing the integral (4), and if p(x)[(d — x) (x — c)]112 has a positive 
lower bound over (c, d), where a^c<d^b, there is a constant C, 
independent of x and n, such that 

| ƒ(*) - Pn(x) | ^ C*1'"*» 

for c^x^d. 

THEOREM 14. If Pn(x) is a polynomial of the nth degree mini­
mizing the integral (4), and if 

[p(x)]-r[(d- x)(x- c ) j " ( r + 1 ) / 2 

is summable over (c, d), with r>0 where aSc<d^b> there is a 
constant C, independent of x and n, such that 

| ƒ ( » ~ Pn(x) | ^ C»<H-1>'<"ir>€» 

for c^x^d. 

9. Convergence of Polynomial Approximation over Interior of 
Interval. Adaptation of the reasoning by which Lemma 4 was 
established leads to the following lemma. 

LEMMA 8. If Pn(x) is a polynomial of the nth degree, if 

Gns = I | ƒ 0 ) - Pn(x) fdx, 
J a 

and if N is the smallest integer ^1/s, then 

I H N » , M ^Ki[(n + X)Gns\v° + K2en 

lJ ' [ ( 6 - x)(x- a)]*'* 

for a<x<b, where 

Kx = 4-21^[(6 - a)/2]N-W*\ K2 = S[(b - a)/2]N. 

It should perhaps be noted explicitly, as an item in the proof, 
that if there is a polynomial pn(x) of the nth degree such that 
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1/0*0 —pn(x)\ ^ en for — 1 ^x^ 1, then sin* 6 pn(cos 0) is a trigo­
nometric sum of order n + N approximating sin* 6 f (cos 0) so 
that 

| sin*0/(cos0) - sin*0 ^n(cos 0) | ^ en 

for all values of 0. 
The following theorem, obtained without the use of Holder's 

inequality, is a material improvement over a corresponding re­
sult previously published.* 

THEOREM 15. If Pn(x) is a polynomial of the nth degree mini­
mizing (4), and if p(x) has a positive lower bound for c^x^d, 
wherea^c<d^b, then \f(x) — Pn(x) \ has an upper bound of the 
order of n1,m en throughout any closed interval interior to (c, d). 

A sufficient condition for convergence in the interior of the 
interval (c, d), when w > l , is that ƒ(x) have a modulus of con­
tinuity co(ô) throughout (a, b) such that lim^0co(o)/S1/w = 0; 
when m = 1 it is sufficient that ƒ (x) have a continuous derivative 
throughout (a, b). 

Finally, an application of Holder's inequality already needed 
for the proof of Theorem 12 gives the following result. 

THEOREM 16. If Pn(x) is a polynomial of the nth degree mini­
mizing (4), and if [p(x)]~r is summable over (c, d)y with r > 0 , 
where a^c<d^b, then \f(x)—Pn(x)\ has an upper bound of the 
order of n{r+l)Kmr) en throughout any closed interval interior to 
(c,d). 

T H E UNIVERSITY OF MINNESOTA 

* See Colloquium, p. 101. 


