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LINEAR INTEGRAL EQUATIONS OF FUNCTIONS 
OF TWO VARIABLES* 

BY T. S. PETERSON 

1. Introduction. It is the purpose of this paper to consider 
certain conditions for the solution of the following linear integral 
equation : 

/% b /% b 

y(a, j8) = y(a, 0) + X | K(a, a)y{<r, 0)d<r + /* I L(0, r)y(a, r)dr 

s* b s*b 

+ v I I M(a, jÖ, a, r)y(a, r)d(rdr 
J a J a 

and, particularly, the truncated form with M {a, /3, a, r) ^ 0 . The 
more important results of the paper are to be found summarized 
in Theorems 2 and 3. 

Throughout the paper we shall consider all given functions 
as bounded and continuous, and in order to facilitate the work 
we shall adhere to the notation (1) to represent the variables of 
functions as indices, (2) to signify by the repetition of an index in 
a term, once as a subscript and once as a superscript, an integra­
tion on that variable over the fundamental interval {a, b). 

2. A Generalization of the Fredholm Equation. Let us con­
sider a special type of integral equation of a function of two 
variables which has as its origin the succession of two ordinary 
Fredholm equations, namely 

(1) yafi = yafi + X R a y<r0 _|_ ^Jjf yar + ^KfLf^. 

In fact, (1) is given by the succession of equations 

(2) z"? = y°P + \K«y°P, y"? = z"** + \xLTH°«. 

The equations (2) being ordinary Fredholm equations, it is evi­
dent at once that the equation (1) has the unique, continuous 
inverse 

(3) y«fi = y*0 -j- \&« j ^ + fll? J™ + V&" V f \ 

providing that X and \x are not characteristic values of their re-

* Presented to the Society, December 29, 1932. 
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spective kernels. In equation (3) the small lettered functions 
represent the respective inverses to the large lettered functions, 
that is, 

$ D[\K/] 
where Df \KKT

a\ and D [XiT/] are the first Fredholm minor and 
the Fredholm determinant respectively. If either parameter has 
a characteristic value, say X = \ , then it is evident again that the 
homogeneous equation (1), that is, y^^O, has a solution. More­
over these solutions will be of the form <£/*< ,̂ where <j>t is an 
arbitrary function and the $f, (i= 1, 2, • • • , n), are the funda­
mental solutions of the equation 

Further properties of equation (1) may be written down at once 
following the classical theory of Fredholm. 

A general equation in which we are more interested, however, 
is of the following form : 

(4) y# = y* + \K? yf> + »Lf y™ + vM?ry
T. 

To solve equation (4), let us consider the succession of trans­
formations 

(5) g*? = y*fi + \K?y°P, z<# = za^ + \iLTHa\ y"? = z<# + N?rz?r. 

These on substitution yield 

( 6) re = y# + XK« yfi + ^ y«r+ | NfT + xNfTKl 

+ nN%L: + \nN$K*Ll + X M 0 4 } y°\ 

which, subject to the conditions that X, fif and 1 are not char­
acteristic values of the kernels of (5), has the unique, continuous 
inverse 

(7) y* = y* + \Kyfi + drT + {KÎ + x*|«?T 

A necessary and sufficient condition that the equation (4) be 
representable in the form (6) is that we may solve the integral 
equation 

(8) vMfT = NfT + \NgK* + vN?TL"T + \vJf$K*It + X^KL* 

file:///Kyfi
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for iV£?. For X and /x non-characteristic values this equation 
may be readily solved as has been noted in the first part of the 
paper. Doing this, we have 

(9) N% = vMt + IvMgk* + fxvMfvn+ \ixvM«£klll - \pka£. 

THEOREM 1. The parameters X and fj, being non-characteristic 
values of the kernels K? and L?, respectively\ a necessary and suffi­
cient condition that (4) have a unique, continuous solution is that 
the parameter v have a value which does not make null the Fredholm 
determinant of the kernel iV£? as given in (9). The solution is then 
given by (7). 

I t is to be noted that by taking the kernels of the transforma­
tions (5) in different order, that is for example 

we shall obtain the above theorem with a different permutation 
of functions, but in all instances the Fredholm determinant of 
the kernel N"? so obtained reduces to exactly the same quan­
tity. 

COROLLARY 1. The parameters X and fi being non-characteristic 
values of the kernels K? and Lf, respectively, a necessary and suffi­
cient condition that the equation 
(10) y°* = y<*P + X£«y* + pLf y«T 

have a unique, continuous inverse is that the Fredholm determinant 
of the kernel —\iik?lf be different from zero. In addition, for X 
and jit sufficiently small the solution will be given by 

where R"?[ — X/x^Ç] is the resolvent kernel of —X/zè^/f. 

To prove the last part of the corollary, we note by hy­
pothesis that* 

(il) K*[- \u#;] = \»k*£ + wmf/T + • • •, 
and so 

* This is the usual series development of an inverse kernel. 
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If the Fredholm determinant of the kernel —\ixk?fT is zero, 
we see from (5) that the homogeneous equation (10), that is, 
;y«0==O, has a solution. Let us seek now to determine the nature 
of X and ju when this condition is fulfilled. For X and fx sufficiently 
small, the resolvent kernel of —\fxk^l/ is given by (11). To say 
that D[—\tikflf ] - 0 is to say that (11) or 

pa/3 
afi _ J^OT 

Kar = 
XjLt 

has a singularity for the particular values of X and /* taken. 
By the Hadamard multiplication theorem, we know that the 

singular values of the series 

(12) R?T{z) = Kl + M f ^ C * + • • • 
+ X>"^4* • • • tf^l ...£"*»+••• 

will be given by the product of the singularities of the two 
series 

(13) K(Z) = ixk^kl • • • *«v, fT(z) = f><*s • • • r;z\ 

By means of a well known relation satisfied by a resolvent 
kernel, namely 

we see that the equations (13) reduce to 

(14) *«(*)= Z - - * ? « ' , iHz) = E - - V * ' . 
»-«o 1̂ «X* i=-.o *! »Ml 

Since the equations (14) are of the form of a MacLaurin's ex­
pansion, it is easily seen that the singular ensembles of k?(z) 
and 1/(z) are given respectively by s = X/X — 1 and s = /Z/ju — 1 , 
where X and /Z are characteristic values of the kernels K? and 
Lf, respectively. Thus by Hadamard's theorem the singular en­
semble of (12) is given by z = (X/X — l)(/z//x —1). If we define 
z = 1 to belong to this ensemble, then we see that X and ju must 
satisfy the relationship X /X+M/M = 1. 
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THEOREM 2. For X and JJL sufficiently small and non-characteris­
tic values of their respective kernels, a necessary and sufficient con­
dition that the equation 

(15) y# + \#,« yP+ ixL? y°« = 0 

have a homogeneous solution is that the parameters satisfy a rela­
tion 

X ix 

(16) +JLm.lf 
X JX 

where X and jx are characteristic values of the kernels K? and L%, 
respectively. 

The sufficiency of the theorem is evident since (16) implies 
XM = (X—X)(M"~M)

 a n d this in (12) is singular because of (14). 
Let us now consider the ordinary associate equations with the 

kernels K? and lfT respectively, that is, 

j *«< + \KS*f = 0 , (i = 1, 2, • • • , »), 

I'My + WW =0 , 0' = 1, 2, • • • , m). 

These two equations have the solutions as indicated. In multi­
plying (15) separately by y&£ and /z'Sfy and integrating, we ob­
tain the equations 

Xqrjyfi + \\yjK«y°P + \p&jLfy*T = 0, 

ji'i&fjy* + X/z'Myi^y^ + ixjx'^tfL?yaT = 0. 

These equations in virtue of (17) and (16) reduce to 

(18) vj {y*p + p,L?y«T} = o, ' v {y** + *K?yp} = o. 

It is evident that all solutions of (15) must satisfy simultane­
ously the equations (18) ; hence we have the following theorem. 

THEOREM 3. All solutions of (15), for a particular set of char­
acteristic parameters X and il satisfying (16), are of the form 

n m 

where the c^ are constants, and $f* and ' $ / are the respective 
fundamental solutions of the homogeneous equations 

<t>« +1K«<I>« = 0, V + pLf'4>T = 0. 
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With respect to the above theorem we must bear in mind 
that for an equation (15) with given parameter values X and /x, 
there may exist more than one pair of characteristic parameters 
satisfying (16) and accordingly the totality of homogeneous so­
lutions of (15) is enlarged. 

It follows directly from the above theorem that the totality 
of solutions of the associate equation to (15), that is, 

(19) y«„ + \Ka'y,p + »Lfyar = 0, 

have the form 

n m 

i = l j = l 

We have already noted the equivalence between (15) and the 
equation 
(20) f& - \nk?l(yT = 0. 

In like manner, we may show the equivalence between (19) and 

(21) yaB - \tika'h
ry,T = 0. 

Since X and JU are not characteristic values of their respective 
kernels, by adding \ ixK?L/y a r to (10) and applying (3), we may 
write equation (10) in the form 

(22) y°P - Xfikfl/ yaT = *)?* + \k? y? + \xl$ yaT + \fik?l? fT. 

A necessary and sufficient condition that (22) have a solution 
when X and \x satisfy (16) is that all solutions of (21) when com­
posed with the right hand side of (22) yield zero. Furthermore, 
from the identities 

1 1 

X — X Jx — JJL 

we see that a necessary and sufficient condition that the equation 
(10) have a solution when the parameters satisfy a relationship 
(16) is that the function ya^ satisfy the n-m equations 

y*'Vpiy# = 0, (i = 1, 2, • • • , n;j = 1, 2, • • • , m). 

The actual solutions may be computed from the equation (22) 
in the usual fashion. 
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LEMMA. A necessary and sufficient condition that 

A«Py«e + B?y* + Cfy«T + D^y* = 0 

be true for all continuous functions yal* is that 

A«e s 0, B? s 0, Cf s 0, Dt = 0 

in the field of continuous functions. 

This lemma may be easily verified by taking yaP=(j)a\pP and 
applying repeatedly a known lemma* that if 

pafa + QJtf. = 0 

be true for all continuous functions ƒ*, then P a ^ 0 , Q? = 0 . 
In virtue of the transitivity of equations of the form (4) and 

the preceding lemma, we see that a necessary and sufficient con­
dition that 

y"? = y<*0 -)- \ £ a y*P + fjj/yar _|_ M^f7, 

where we have assumed X and \x to have non-characteristic 
values, be an inverse to (4) is that the kernel M°fT satisfy the 
relations 

mt + vmt + vmtMll + \vti\M?T + nvf,M?T + \mfrK* 

+ fxmfvVT + \ixKL0
T + \ixK°fT = 0, 

mt + vmt + vmtM** + \vMfkl + pvMfj! + X * > | ? 

+ ixL^mVr + \nKLi + \fiKa/T = 0. 

(23) 

THEOREM 4. The parameters X and fj, being non-characteristic 
and satisfying no relationship (16), a necessary and sufficient con­
dition that a linear integral equation of the form 

y«fi = y«P -f \K « y? + ixLf yar 

have a solution in the same form is that the kernels K? and L?T 

satisfy conditions 

(24) cK? + K? + ckKfK,* = 0, cLf -L ? + cuLfLS = 0 , 

* See Michal and Peterson, The invariantive theory of functional forms under 
the group of linear functional transformations of the third kind, Annals of Mathe­
matics, vol. 32 (1932), p. 432. 
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simultaneously, where c is a constant. 

From (23) we see by hypothesis that we must have 

k?Lf + Kflf = 0. 

Dividing this equation by KfLf, we see that it is necessary 
that 

k? = cKf, 1/ = -cLf, 

where c is a constant. Substituting these values of the resolvent 
kernels in the well known relation satisfied by a kernel and its 
resolvent, we obtain (24). The sufficiency of the theorem is 
easily shown by noting that the hypotheses of the theorem im­
ply from (23) that 

mt + \K%mfT + vl^mVr = 0. 

SinceX and t̂ satisfy no relation of the form (16), by Corollary 1, 
it follows that m°fT^0. 

As an example of kernels whose resolvent kernel is just a con­
stant times the kernel itself, consider the kernel K? — A aBa î 
then k« = -K«/(l+Kl). If the kernels K? and Lf of the 
above theorem are of this type, then it is necessary that 

KS + LS = - 2, 

in order that the theorem apply. 
In concluding this paper, it is of interest to note that the 

linear integral equation 

(25) y^ = A*?* + X J # y + MCaV r + vD?9yr 

may be reduced to the form (4) provided the kernels of (25) 
are of such a nature that B^ /A "? is free of /3, Cf? /A "? is free of 
a, and Aa^0, (a^a, j8^6). 
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