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AN A P P L I C A T I O N O F T H E NOTIONS O F "GEN­
ERAL A N A L Y S I S " TO A PROBLEM O F T H E 

CALCULUS O F VARIATIONS. 

BY PROFESSOR OSKAR BOLZA. 

(Read before the Chicago Section of the American Mathematical Society, 
April 8, 1910.) 

T H E object of the following note is to give an illustration of 
the unifying power of Professor E. H. Moore's methods of 
" General Analysis " * by showing that a certain theorem of the 
calculus of variations and a certain theorem of analytic geome­
try are special cases of one and the same theorem of general 
analysis. 

The theorem of the calculus of variations is the so-called 
fundamental lemma for isoperimetric problems,f viz., 

THEOREM I . "If 

J (*X2 

I [M0(x)V(x) + N0(x)v'(x)-]dx = Q 

for all functions i)(x) which are (a) of class C on [a^œj, 
(b) vanish at xx and x2, and (c) satisfy the m conditions 

(2) pit,) m P [M.{x)r,{x) + Nlx)rj'(x)] dx = 0 

( i = 1, 2 , . . . , ro) , 

then there exist m constants cv c2, • • •, cm such that 

(3) r0(v) + <V,0?) + °2^(v) + • • • + °J*m(v) = 0 

for all functions 7](x) satisfying conditions (a) and (&). 
The functions M(x), N(x) are supposed to be continuous on 

The theorem of analytic geometry is the well known 

* Compare E. H. Moore, 4* On a form of General Analysis with applica­
tions to linear differential equations and integral equations,'' Atti del IV 
congresso internazionale dei Mathematici, vol. 2, p. 98; and " Introduction 
to a form of General Analysts," in The New Haven Mathematical Collo­
quium, Yale University Press, New Haven, 1910. 

f Compare for instance Bolza, Vorlesungen über Variationsrechnung, p. 
462, footnote 1, and the references given there. 



1910 . ] AN APPLICATION OF GENERAL ANALYSIS. 403 

THEOREM I I . " If in a plane and in homogeneous coordinates, 

(1') U0 = A0x+ 11^+0^ = 0 

is the equation of a straight line passing through the point of inter­
section of the two non-coinciding * lines 

(2') U^Ap + Btf+Cf-O, ü2 = A,x + Bj)+Gf = 0, 

then there exist two constants \ v X2 such that 

u^xj^ + xw 
§ 1. The General Theorem. 

Let p b e a general parameter f ranging over a set *p of ele­
ments ; these elements may be any mathematical entities what­
ever : real or complex numbers, pairs, triples, etc., of such 
numbers, even infinite sets of numbers ; functions of one or 
several variables ; systems of functions ; points, curves, surfaces ; 
etc., etc. 

Along with the set 3̂ we consider the set D of all possible 
systems (av a2 ; pv p2) of a pair of real numbers av a2 and a 
pair of elements pv p2 of ^5, and we suppose that a correspond­
ence has been established by which to every element of Q, cor­
responds a unique element of ty which we denote by J 

F(av a2 ; pv p2). 

We shall then say that a real single-valued function § /x(p) 
defined on ty is " linear as to F," if 

(4) f*[F(av a2; pv p2)] = a^pj + a2n(p2) on D, 

i. e., for every combination (av a2; pv p2) of Q. 
Then the following theorem holds : || 
THEOREM I I I . If 

A*o(jp), /*i(jP)> •••> f*m(P) 

* We may omit the word " non-coinciding " if we replace u point of inter­
section of " by "point or points common to." 

f Compare Moore, '* Introduction etc.," § 1 ; I use throughout this section 
Moore's notation. 

J In Moore's terminology F is a " function on Q to $ , " " Introduction 
etc.," §4. 

§ Compare Moore, " Introduction etc.," § 5 ; if 21 denotes the set of all 
real numbers, fi(p) is in Moore's terminology a " function on $ to 2L" 

|| This generalization of Theorem I has been suggested to me by a remark 
in § 177 of Hadamard's Leçons sur le calcul des variations, Paris, 1910. 
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are m + 1 real single-valued functions of p, defined on ?$, which 
satisfy the following two conditions : 

A) they are linear as to F, 

B) the equation 
(1") M„(j>)-0 

holds for every element of 5̂ which satisfies simultaneously the m 
equations 
(2") Ml(p) = 0, A*,(p) = 0, • • •, pm(p) - 0, 

then there exist m real numbers cx, c2, • • -, cm9 independent of py 

such that 

(3") /*,(/>) + < W P ) + • • • + cjim(p) - 0 on % 

i. e., for every element of tyA 

Proof: We notice first that there always exist elements of ty 
which do satisfy the m equations (2") ; for F(0, 0 ; pv ft) is an 
element of 5̂ for any two elements pv p2 of $p, and on account 
of A) 

Viim 0 ; ft, ft)] = 0, ( i - 1, 2, . . . , m). 

Further we observe that if we define 

F[l, a3; F(av a2; ft, ft), ft] = F(av a2, a3; pv ft, ft) 

and generally 

(5) F[l, an; F(av a2, • • ., an_x; pv ft, • • -, pn_0, ft] 

= *"W a2, • • - , » » ; Pi, ft, • • • j f t ) , 

then J P ^ , a2, • • : , an; pv fty • • -, ft) is again an element of $p, 
and, if (4) is satisfied, then also 

(6) ii [F(av a2,-.-,an; ft, ft, • • •, ft)] 

= aAPi) + V(ft) + • • • + V O J -
After these preliminary remarks we distinguish two cases : 
Case I: The m equations (2") are satisfied for every p of ?$. 
Then according to B) 

PoiP) = 0 on «p. 
Hence we may write 

/*.(*>) + ° • ̂ i(P) + 0 • rip) + • • • + 0 • (tm(p) - 0 on «p, 
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and the theorem is proved with the particular values cx = 0, 
C2 = 0>' ' '9 °m = O-

Case II: The m equations (2") are not all satisfied for every 
poî^. 

Then there exists a definite integer n (1 ^ n = m) such that 
in the determinant 

A=k<(2>*)| M = l , 2, ...,m) 
at least one minor of degree n is different from zero for some 
special system pv p2, • • -, pm) whereas (for n < m) all minors of 
degree n + 1 vanish identically, that is, for every choice of the 
m elements pv p2f • • -, pm. In order to fix the ideas we sup­
pose that the minor 

(7) A 0 = K Q > J | * 0 ( f l F , A - l , 2 , . . . , n ) . 

Let now p be any element of 3̂ and jpx, £>2, • • •, pn the n 
special elements for which A0 =|= 0 ; then 

q = F(l, av a2, --,an;p, pv p2, . . . , pn) 

is an element of ^3, and according to ^1) 

(8) Pj(q) = Pj(p) + <V/Pi ) + • • ' + <*J*j(pn) 
0 ' = 0, 1, 2, . . . , m ) . 

On account of (7) we can so determine al9 a2f • • •, dn that 

(9) / » ! ( ? ) - 0 , ^ (? ) = 0, ••', A».(3)-0. 

If n < m, it follows from the identical vanishing of the minors 
of degree n + 1 of the determinant A, p taking the place of 
pn+v that also 

(10) ^+1(q) = 0, Mn+2(?) = 0, • • -, pjq) = 0. 

Hence for n < m as well as for n = m, g is an element of ^ 
which satisfies the m equations (2") and therefore it satisfies 
according to B) also the equation 

(11) M,(?) = 0. 

But from the w + 1 equations (9) and (11) it follows, if we 
write the /^( j /s in their explicit form (8), that the determinant 

(12) | h(p), M/ft), • • -, fij(pj | = 0 (j = 0, 1, 2, • • -, n). 
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If now we expand this determinant according to the elements 
of the first column, the coefficient of fJ>0(p) is the determinant 
A0 and therefore different from zero, and this determinant as 
well as the remaining coefficients of the expansion is indepen­
dent of p. Hence if we divide by A0, we obtain equation (3") 
with cw+1 = 0, cn+2 = 0, • • -, cm = 0, and this equation holds on $p, 
since jö was any element of ^3. Thus our theorem is proved.* 

§ 2. Theorems I and II as Special Cases of Theorem III. 

In order to obtain Theorem I as a special case of Theorem 
I I I , we identify the set ^ with the totality of all functions 
r)(x) of class C' on \jcxx2~\ which vanish at xl and x2, and define 

(13) F(al} a2; nv n2) = alVl + a2n2. 

If av a2 are two constants and ^(œ), v2(
x) *w o functions of $$, 

a\Vi{x) + a
2V2(

x) a g a m belongs to 5)3 and the "functions" 

lM/x)n(x) + N/x)f,Xx)] dx (j = 0,l,...,m) 

are " linear as to F" since 

(14) ^K*?i + ct2v2) = a ^ f o ) + a2/x.(rj2). 

For this special choice of the set ^}, the operator F, and the 
functions fi., Theorem I I I becomes identical with Theorem I . 

More generally we may take for 9$ the totality of all func­
tions w(x) of class C' on \_xxx^ which satisfy any given system 
of conditions provided only that these conditions are linear, i. e.} 

such that they are satisfied by alnl + a2n2 whenever they are 
satisfied by wx and ?72, two functions of class C' on [^^2]« 
We thus obtain a generalization of Theorem I indicated by 
Hadamard. f 

On the other hand, to obtain Theorem I I as a special case of 
Theorem I I I , we identify the set ^ with the totality of all triples 
p = (x, yy z) formed with three independent variables x, y, z, 

* I had originally thought it necessary to add to the assumptions A ) and 
B) of the theorem the further assumption that A + 0 for some system 
pi, p%, • • -, pm ; I am indebted to Professor Moore for calling my attention to 
the fact that this assumption may be omitted, as well as for other valuable 
suggestions. 

floe, cit., §176. 
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each ranging over all real values, and define, in Cayley's set 
notation, 

FK <V Pv P2) = ai(xv Vv zi) + aixv Vv z2)> i- *-> 

= K » ! + a2
xp ai2/i + < % aizx + «A)-

F(av a2 ; pv p2) belongs again to ^3, however the numbers av 

a2 and the triples p1 = (xv yv zx) and p2 = (x2, y2, z2) may be 
chosen. 

With this definition of JF, the functions 

(19) M,(P) = Ap + B.y + ty, (J = 0, 1, 2) 

are " linear as to F" 

If n = 2, there exists at least one pair of triples (xv yv zx), 
(x2, y2, z2) for which the determinant 

I Axi + Bi!fi + cizv Axi + ^22/i + C&l 
J ^ + Bxy2 + Ci»„ ^ 2 + B2y2 + C2z2\ 

This means geometrically, if we interpret x, y, z as homogeneous 
coordinates of a point in a plane, that the two lines 

(20) Axx + Bxy + Cxz = 0, A2x + B2y + C2z = 0 

do not coincide. 
Theorem I I I then specializes into Theorem I I . 
The assumption n = 1 leads to the trivial case alluded to on 

page 403, footnote *. 
In like manner the corresponding theorems on pencils and 

bundles of planes and their generalizations to spaces of higher 
dimensions follow immediately as special cases from Theorem 
I I I . 

THE UNIVERSITY OF CHICAGO, 
February, 1910. 


