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AN APPLICATION OF THE NOTIONS OF ¢«“GEN-
ERAL ANALYSIS” TO A PROBLEM OF THE
CALCULUS OF VARIATIONS,

BY PROFESSOR OSKAR BOLZA.

(Read before the Chicago Section of the American Mathematical Society,
April 8, 1910.)

THE object of the following note is to give an illustration of
the unifying power of Professor E. H. Moore’s methods of
¢ General Analysis” * by showing that a certain theorem of the
calculus of variations and a certain theorem of analytic geome-
try are special cases of one and the same theorem of general
analysis.

The theorem of the calculus of variations is the so-called
fundamental lemma for isoperimetric problems,t viz.,

TaeorEM 1. «“If

M o= [ ME) + N E)]de =0

Jor all functions n(x) which are (a) of class C' on [xx,],
(b) vanish at x, and x,, and (c) satisfy the m conditions
@ = [ DEEE) + N @)de =0
L =1,2m),
then there exist m constants ¢, ¢,, - - -, ¢, such that
(3) w(m) + e (n) + egpy(n) + - -+ + e, (n) =0

for all functions n(x) satisfying conditions (a) and (b).
The functions M{xz), N(x) are supposed to be continuous on
The theorem of analytic geometry is the well known

* Compare E. H. Moore, ‘‘ On a form of General Analysis with applica-
tions to linear differential equations and integral equations,” Atti del IV
congresso internazionale dei Mathiematici, vol. 2, p. 98; and ‘‘ Introduction
to a form of General Analysis,’’ in The New Haven Mathematical Collo-
quium, Yale University Press, New Haven, 1910.

tCompare for instance Bolza, Vorlesungen iiber Variationsrechnung, p.
462, footnote 1, and the references given there.
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TueoreM II. “If,in a plane and in homogeneous coordinates,
1) U=Ax+ By+ Cz=0

is the equation of a straight line passing through the point of inter-
section of the two mnon-coinciding * lines

(2) U=Axz+By+ Cz=0, Uy=Agxg+ By+ Cz=0,
then there exist two constants N, N, such that

U, = N\U, +\U2

§ 1. The General Theorem.

Let p be a general parametert ranging over a set P of ele-
ments ; these elements may be any mathematical entities what-
ever : real or complex numbers, pairs, triples, etc., of such
numbers, even infinite sets of numbers; functions of one or
several variables ; systems of functions ; points, curves, surfaces ;
ete., ete.

Along with the set 8 we consider the set Q of all possible
systems (a,, a,; p,, p,) of a pair of real numbers a,, a, and a
pair of elements p,, p, of B, and we suppose that a correspond-
ence has been established by which to every element of Q. cor-
responds a unique element of P which we denote by

Fla,, a,; py, py)-

We shall then say that a real single-valued function § u(p)
defined on P is «linear as to F,” if

4) w[F(a, ay; pyy p)] = au(p,) + au(p,) on Q,

i. e., for every combination (a,, a,; p,, p,) of Q.
Then the following theorem holds: ||
Treorem I1I. If

Bo(P)y (D)« /"m(p)

* We may omit the word *‘ non-coinciding *’ if we replace *‘ point of inter-
section of ’ by ¢ point or points common to.”’

1 Compare Moore, ‘‘Introduction ete.,’” § 1 ; I use throughout this section
Moore’s notation.

1 In Moore’s terminology ¥ is a ‘function on . to ,”” ‘‘Introduction
ete.,’’ § 4.

§ Compare Moore, ‘‘ Introduction ete.,”” § 5 ; if U denotes the set of all
real numbers, #(p) is in Moore’s terminology a *‘ function on P to A.”’

|| This generalization of Theorem I has been suggested to me by a remark
in §177 of Hadamard’s Lecons sur le calcul des variations, Paris, 1910.




404 AN APPLICATION OF GENERAL ANALYSIS. [May,

are m + 1 real single-valued functions of p, defined on B, which
satisfy the following two conditions :
A) they are linear as to F,

B) the equation
1) w(p) =0

holds for every element of B which satisfies simultaneously the m
equations

@) m(p) =0, m(p)=0, -+, m(p)=0,
then there exist m real numbers c,, ¢,, - - -, ¢, , independent of p,
such that

@) mlp) +om(p) + - + o, (p) =0 on P,
i. e., for every element of .

Proof: We notice first that there always exist elements of 3
which do satisfy the m equations (2”); for F(0, 0; p,, p,) is an
element of B for any two elements p,, p, of B, and on account
of A4)

"’i[F(O’ 0; Pu pz)] = 0: (i= 1) 2’ ) m)
Further we observe that if we define
F[1, ay; Fla, ay; py, p,), ps] = Flay, @y ag; pyy pys Py)
and generally
(5) F[l! Q,; F<a1’ Qgy =+ 0y Qpy5 Py Py =" pn-1)> pn]

n/ 3
=f(“1) Aoy =+ 09 Q5 Py Py = * s P,,)’

then Fla,, a, «--, @, ; Py, Py - -+, P,) 18 again an element of B,
and, if (4) is satisfied, then also

(6) wm[Hay, ay ---,a,; pypy -5 P)]

= ap(p) + apu(p) +--- + a,u(p,)-

After these preliminary remarks we distinguish two cases:
Case I: The m equations (2”) are satisfied for every p of .
Then according to B)

 m(p)=0 on .
Hence we may write

p(p)+0-p(p)+0-p(p)+---+0-p,(p)=0 on P,
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and the theorem is proved with the particular values ¢, = 0,
¢,=0,..,,¢,=0.

Case IT: The m equations (2”) are not all satisfied for every
p of P.

Then there exists a definite integer n (1 =n =1m) such that
in the determinant

A=lu(p)] (k=12 m)

at least one minor of degree n is different from zero for some
special system p,, p,, - - -, p,, Whereas (for n <<m) all minors of
degree n + 1 vanish identically, that is, for every choice of the
m elements p,, p,, -+, p,. Inorder to fix the ideas we sup-
pose that the minor

(7) A0=|Mg(ph)l=l=0 (g)h=]72y"',n)°
Let now p be any element of P and p,, p,, ---, p, the n
special elements for which Aj 4= 0 ; then
q=F(1, ay ay -+, a,5 P, P, Py 5 P,)
is an element of 3, and according to A4)
(8) () = w(p) + ap(py) + - - + a4 (p,)
(j=0) L2.., m‘)'

On account of (7) we can so determine a,, a,, -, a, that

9 (q) =0, my(9) =0, -+, m(q)=0.

If n < m, it follows from the identical vanishing of the minors
of degree n + 1 of the determinant A, p taking the place of
Poi1> that also

(10) Poir() =0y #,.5(9) =0, «-+ n,(q)=0.

Hence for n <m as well as for n = m, ¢ is an element of P
which satisfies the m equations (2”) and therefore it satisfies
according to B) also the equation

(11) (@) = 0.

But from the n 4 1 equations (9) and (11) it follows, if we
write the #(g)’s in their explicit form (8), that the determinant

(12)  |e(p)y m(P)y =+ m(P)|=0 (j=0,1,2, ... n)
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If now we expand this determinant according to the elements
of the first column, the coefficient of u(p) is the determinant
A, and therefore different from zero, and this determinant as
well as the remaining coefficients of the expansion is indepen-
dent of p. Hence if we divide by A, we obtain equation (3")
withe, ,=0,¢,,=0, ¢, =0,and this equation holds on %,
since p was any element of PB. Thus our theorem is proved.*

§ 2. Theorems I and II as Special Cases of Theorem III.

In order to obtain Theorem I as a special case of Theorem
III, we identify the set P with the totality of all functions
n(x) of class C" on [«,,] which vanish at z, and x,, and define

(13) F(ay, ay;m,, 1,) = am, + a0,

If a,, a, are two constants and 7, (), n,(x) two functions of B,
a,n,(x) + a,n,(x) again belongs to P and the ¢ functions”’

zg
w) = [ THanE) + Nap@lde (=01, m)
o/ x1
are “linear as to F,” since

(14) 'u'j<al171 + (’2772) = al'“'j(nl) + az/“’j(ﬂz)'

For this special choice of the set 8, the operator F, and the
functions u,, Theorem III becomes identical with Theorem I

More generall) we may take for P the totality of all func-
tions n(z) of class C" on [xx,] which satisfy any given system
of conditions provided only that these conditions are linear, i. e.,
such that they are satisfied by an, 4+ a,n, whenever they are
satisfied by %, and 7,, two functions of class C' on [2@,].
We thus obtain a generalization of Theorem I indicated by
Hadamard.

On the other hand, to obtain Theorem II as a special case of
Theorem III, we identify the set 8 with the totality of all triples
p = (e, y, z) formed with three independent variables z, y, 2,

*1 bad originally thought it necessary to add to the assumptions 4) and
B) of the theorem the further assumption that A %= 0 for some system
P1, P2, -+, Py I am indebted to Professor Moore for calling my attention to
the fact that this assumption may be omitted, as well as for other valuable
suggestions.

1 loe. cit., §176.
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each ranging over all real values, and define, in Cayley’s set
notation,

Flay, ay; pyy py) = 0,2y Yy 21) + 0Ty Yoy 2), 1. €,
= (0@, + a2, QY +05Y, a2 + a.2,).

(15)
F(a,, a,; p,, p,) belongs again to P, however the numbers a,,
a, and the triples p, = (2, ¥, 2) and p,= (2, ¥,,7,) may be
chosen

With this definition of F) the functions

(19) u(p) =A@ + Bjy + sz’) (j=0,1,2)
are ‘linear as to F.”

If n =2, there exists at least one pair of triples (2, ¥,, 2,),
(%, ¥,y 2,) for which the determinant

Az + By, + Cg, Ajp, + By, + Cg,
Az, + By, + Cg, Az, + By, + Cpg,

This means geometrically, if we interpret , y, z as homogeneous
coordinates of a point in a plane, that the two lines

(20) Awx+ By+ Ce=0, Ag+ By + Cz=0

do not coincide.

Theorem III then specializes into Theorem II.

The assumption n = 1 leads to the trivial case alluded to on
page 403, footnote *.

In like manner the corresponding theorems on pencils and
bundles of planes and their generalizations to spaces of higher
dimensions follow immediately as special cases from Theorem

III.

THE UNIVERSITY OF CHICAGO,
February, 1910.



