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of orthogonal functions, leads, if applied to the case ƒ = g to 
BesseFs identity 

(6) ( T / - i > * ff<PPdBÏdR= f fdB-±\ Cf<l>pdEf, 
JRL P=L JB J JR P=I L*JR J 

from which BessePs inequality immediately follows. 
5. Theorems analogous to those of the present note involv­

ing finite sums or infinite series in place of integrals may be 
proved in a similar manner. 

GÖTTINÖEN, 
June, 1909. 

ON T H E TACTICAL P E O B L E M O F STEINER. 

BY PROFESSOR W. H. BUSSEY. 

(Read before the American Mathematical Society, February 24, 1906.) 

T H E study of tactical configurations known as triple systems 
had its origin in two problems proposed independently by J . 
Steiner * and T. P . Kirkman. f The Steiner problem, which 
is the more general and includes the other, is as follows : 

For what values of n is it possible to arrange n elements in 
sets of three, called triads, so that every set of two elements is 
contained in one and only one triad? If n is a number for 
which there is such an arrangement in triads, are there other 
arrangements that cannot be obtained from it by a mere permu-
tation of the elements ? When such an arrangement in triads 
has been made, is it possible to arrange the n elements in sets 
of four, called tetrads, so that no triad is contained in a tetrad 
and so that every set of three that is not a triad is contained in 
one and only one tetrad ? When such an arrangement in tetrads 
has been made, is it possible to arrange the n elements in sets 
of five, called pentads, so that no triad or tetrad is contained 
in a pentad, and so that every set of four that is not a tetrad 
and does not contain a triad is contained in one and only one 
pentad? In general, when an arrangement in k-ads has been 
made, is it possible to arrange the n elements in sets of h + 1, 
called (Jc + l)-ads so that no l-ad (l^lc) is contained in a 
(k + l)-ad, and so that every set of h elements that is not a 

* Journal für die reine und angewandte Mathematik, vol. 45, p. 181. 
f The Lady's and Gentleman's Diary for 1850. For other references to the 

literature of Kirkman's fifteen school girls problem see Ball's Mathematical 
Recreations and Essays, 4th edition, page 121. 
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k-ad and does not contain an l-ad (I < k) is contained in one 
and only one (k + 1 )-ad ? 

The part of the problem that relates to triads has been com­
pletely solved. * The other parts have been little studied. 

If an arrangement of n elements in triads, tetrads, pentads, 
etc., is possible, the number of k-ads for k = 3, 4, 5, • • • is 
given by the formula 

• ^ - ^ , « ( » - l ) ( » - 3 ) - - - ( » - [ 2 ^ , - l ] ) -

This formula was suggested by Steiner. I t may be proved 
without much difficulty by complete induction. 

This paper has to do with the case in which n is a number 
of the form 2J — 1. Its object is to show that it is possible to 
arrange such a number of elements in k-ads for k = 3, 4, 5, 
••-9j + 1. The formula gives Nk = 0 when k > j + 1. 

Consider the 2&+1 — 1 elements (xv x2, cc3, • • -, xk+l) , each x 
being 0 or 1 and the element (0, 0, 0, • • -, 0) being excluded. 
For convenience the language of geometry is used and each 
of the elements is called a point. The 2k+l — 1 points are said 
to constitute a finite geometry of k dimensions, or, more briefly, 
a A-space.f Consider also the linear homogeneous congruence, 
modulo 2, 

(1) axxx + a2x2 + asx3 + • . • + ak+lxk+l = 0, 

in which each coefficient is 0 or 1 and at least one of them is 
not zero. The points of the &-space that satisfy such a con­
gruence are said to constitute a (k — 1 )-space ; the points 
that satisfy two linearly independent congruences of the type 
(1) are said to constitute a (k — 2)-space ; and, in general, the 
points that satisfy (k — I) linearly independent congruences of 
type (1) are said to constitute an espace. The number of 
solutions of a set of congruences of type (1) may be counted 
without much difficulty and the number of points in an Z-space, 
Z<&, found to be 2l+1 •— 1. In particular, the number of 
points in a plane (2-space) is seven, and the number in a line 
(1-space) is three. A single point constitutes a 0-space. The 
points common to two /-spaces, if there are any, constitute an 
r-space, where 0 = r = £ — l . A set of / + 1 points which are 

* Encyclopédie des Sciences mathématiques, vol. 1, p. 80. 
fSee Veblen and Bussey, ' 'Finite projective geometries," Transactions 

Amer. Math. Society, vol. 7 (1906), pp. 241-259. In particular, see §2. 
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not all contained in the same (7— l)-space is contained in one 
and only one /-space. The I + 1 points of such a set, if taken 
I at a time, determine a number of (I — l)-spaces whose points 
constitute a set that may conveniently be called a simplex * 
of order I. The I + 1 points are called vertices. A convenient 
symbol for a simplex of order I is 8(1 + 1 ) . Any i + 1 of the 
vertices of a $(Z -f 1) are the vertices of a simplex 8(i + 1) 
whose points are all contained in the S(l + 1 ) . 

THEOREM. The number of points in a simplex of order I is 
one less than the number of points in the l-space determined by 
its I + 1 vertices. 

By actual count, the theorem is true for 1 = 3. The rest of 
the proof consists in showing that it can be proved for a simplex 
8(m + 1) if it be assumed true for every simplex 8(1 + 1) for 
which I < m. This is done by arranging the points of the 
simplex 8(m + 1) in the m following sets. The sets are not 
mutually exclusive. 

1. The m + 1 vertices of the simplex 8(m + 1). 
2. The points of the m + 10 2 lines determined by the vertices 

taken two at a time. 
3. The points of the m + 1 0 3 planes determined by the vertices 

taken three at a time. 
4. The points of the m+1C4 3-spaces determined by the ver­

tices taken four at a time. 

i + 1. The points of the m+l Oi+l i-spaces determined by the 
vertices taken i + 1 at a time. 

n. The points of the m+1Cm (m — l)-spaces determined by 
the vertices taken m at a time. 

[Note : The symbol m+1C. means the number of combinations 
of m + 1 things taken j at a time.] 

The set numbered i + 1, i being any one of the numbers 
1, 2, 3, • •-, m, consists of the points contained in m+lOi+1 i-
spaces each of which is determined by i + 1 of the vertices of 
the simplex S(m + 1) or, in other words, by the i + 1 vertices of 
a simplex 8(i + 1 ) which is contained in the simplex S(m + 1). 
By hypothesis, each of these i-spaces contains one and only one 

*The word is used in geometry of w-dimensions to denote the configura­
tion analogous to the triangle in the plane or the tetrahedron in 3-space. 
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point not contained in the simplex S(i + 1) that determines it. 
But that one point is a point of the simplex S(m + 1) by the 
very definition of simplex. Therefore, if one begins to count 
with the first set and counts through the sets in order, the num­
ber of points in the set numbered i + 1 that have not been 
counted in any previous set is m+1Oi+v I t follows that the 
number of points in the simplex S(m + 1) is 

which is one less than the number of points in the m-space de­
termined by the m + 1 vertices of the simplex. 

From this theorem it follows that the I + 1 vertices of a sim­
plex of order I determine uniquely another point, namely, the 
one point of the espace determined by the simplex that is not 
also a point of the simplex. I t is convenient to call this point 
the point complementary to the simplex. The triads, tetrads, 
pentads, etc. of the Steiner problem are found as follows : 
Every simplex 8(2) determines a triad consisting of its two 
vertices and the complementary point; every simplex $(3) de­
termines a tetrad consisting of its three vertices and the comple­
mentary point; and, in general, every simplex /8(Z— 1), 
l^=k + 2, determines an l-ad consisting of the I— 1 vertices 
and the complementary point. There are no l-ads for I > h + 2. 

When n = 26 — 1 = 63, it is possible to arrange the n ele­
ments in triads, tetrads, pentads, hexads, and heptads. There 
is no arrangement of the 63 elements in Z-ads for £ > 7. This 
special case was involved in Steiner's investigation of the con­
figuration of the 28 double tangents of a quartic curve * and 
led him to propose for solution the " Combinatorische Aufgabe " 
which I have called " The tactical problem of Steiner." 

ON T H E SO-CALLED GYROSTATIC E F F E C T . 

BY PROFESSOR ALEXANDER S. CHESSIN. 

(Head before the American Mathematical Society, April 24, 1909.) 

I N computing the resisting couple of gyrostats or the so-called 
" gyrostatic effect " it is customary to assume that it is equal to 
C\(o sin 0, where C, X, co and 0 denote respectively the moment 
of inertia of the gyrostat about its geometrical axis, the angular 

* Journal f iir die reine und angewandte MathemaWc, vol. 49, pp. 265-272. 


