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SINGULAR POINTS O F A S I M P L E K I N D O F 
D I F F E R E N T I A L EQUATION O F T H E 

SECOND ORDER. 

BY PROFESSOR C. A. NOBLE. 

(Read before the San Francisco Section of the American Mathematical 
Society, September 28, 1907.) 

I N a series of four memoirs in the Journal de Mathématiques 
(series 3, numbers 7, 8 ; series 4, numbers 1, 2) Poincaré has, 
among other things, discussed the topology of curves defined 
by ordinary differential equations of a simple character. In a 
recent course of lectures Hubert laid considerable stress on the 
importance of these results and exhibited an elegant method 
for obtaining them in the case of a differential equation of the 
form dyjdx = (ex -f dy)jax + by). In the following paper I 
have shown how the same method can be used for an ordinary 
differential equation of the second order. My results tally 
with those of Poincaré insofar as the latter are enumerated ; 
but they are more detailed than his and are, I think, more 
simply obtained. 

Given (1) d2y/dx2 = (dx + ey + ƒ• dy/dx)/(ax+by + c • dyjdx), 
a, 6, c, d, 6, ƒ real constants. Put . (2) dyjdx = z and (1) 
becomes 

(3) dzjdx = (dx + ey + fz)j(ax + by + cz). 

Now write 

(4) dxjdt = ax + by + cz, dyjdt = z, dzfdt — dx + ey + fz. 

Multiply the second and third of these equations by m and n 
respectively and add, 

(5) d(x + my + nz)jdt = (a + nd)x + (6 + ne)y + (c + m+nf)z. 

Equate the second member of (5) to \(x + my + nz) and de­
termine m, n and X accordingly. We find 

(6, 7) n — (X — a)/X, m = (bd — ae + eX)jd\ 

(8) X3 - (a + ƒ )X2 + (af - ed - e)\ - (bd - ae) = 0. 
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Indicate the three values of X arising from (8) and the cor­
responding values of m} n by subscripts. Put 

9) x + m$ + nYz = £, x + m2y + n2z = r}, x + m$ + n3s = f 

and we obtain as the equivalent of (4) 

(10) dg/dt = Xx£, dy/dt = \2v, dÇ/dt = \Ç 

or, eliminating t, 

(11) drifdf;=K-Ti/f;, dÇfdÇ^fi- f/£, where tc=\j\v fi=\/\. 

The problem in hand is to investigate the nature of the 
critical point (0, 0, 0) in x, y, z space for the equations (4). By 
virtue of the substitutions (9) this point goes over into (0, 0, 0) 
in £, rj, Ç space. There are three principal cases to consider, 
depending upon the roots of (8). They are : I . The X. all real 
and different; I I . Two X. conjugate complex; I I I . Two or 
more X̂  identical. 

I . \ v X2, X3 real and different. The integrals of (11) are 

(12, 13) v = (%*, ? = -Df* (O, D integration constants). 

The intersections of these two surfaces constitute oc2 integral 
curves. How are these curves distributed in the immediate 
vicinity of (0, 0, 0) ? How many pass through (0, 0, 0) ? An 
answer to these questions amounts to a characterisation of the 
critical point. There are three possibilities. They arise accord­
ing as ic, fi are (i) both > 0, (ii) both < 0, or (iii) unlike in sign. 

(i) K > 0, fi > 0. By appropriately naming the roots of (8) 
we can make tc >̂ 1, \x > 1. Every cylinder (12) passes through 
the £-axis and is tangent to the plane 7) == 0. Every cylinder 
(13) passes through the ^-axis and is tangent to the plane £=0 . 
There are therefore oo2 integral curves passing through (0, 0, 0), 
all tangent to one of their number, viz., to the £-axis. Hubert 
would probably call this singular point a Scheitel-scheitelpunkt. 

(ii) K < 0, ft < 0. We may write (12), (13) in the form 

(12,13) vtK=C, ? r * = D. 

The only integral curves passing through (0, 0, 0) now are 
£ = 0 = ?7, ?7 = 0 = £ ' , and f = 0 = £. (12) represents a 
family of hyperbolic cylinders with generators parallel to the 
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£-axis; (13) a family of hyperbolic cylinders with generators 
parallel to the ?;-axis. All the oo2 integral curves, barring the 
three above mentioned, tend to hug the £-axis and the ^f-plane. 
Hilbert would call this singular point a Sattel-sattelpunkt. 

(iii) K > 0, fi < 0 (or tc < 0, fi > 0). Write (12), (13) in 
the form 

(12.13) v=Ct, ? r * = D. 

Every cylinder (12) yields two integral curves through 
(0, 0, 0), viz., the curves of intersection with £ = 0 and with 
£ = 0 (these two planes are members of (13)). There are thus 
ool integral curves through the origin, all of them lying in one 
plane, except one, this one being the f-axis. Hilbert would 
probably call this singular point a Scheitel-sattelpunkt mit 
isoliertem Strahl. 

I I . \ real ; X2, \ conjugate complex. The integrals of 
(10) may now be written 

(12.14) 1=C%% £ = I V 

(/c = \ / \ , v = \ j \ , C, D arbitrary constants). 

I f we seek an interpretation of (12), (14) in real space by 
means of the substitutions 

£ = x -f w&,y + nxz = X) 

(15) 7] = x + m2y -\-n2z = x + m2y + n'2z + i(m2y + n2z) = Y+ iZ, 

Ç=x + mBy + n3z = x + m2y + n'2z—i(m'2'y+ n'2z) = Y—iZ, 

whereby 

m2 = m2 + im2, mz = m2 — im2, n2 = n'2-\- in'2\ n3 = n2 — in2, 

we get from (12) 

Y+ iZ= CXHlkx — G3TA2'/Al • eW//Al)logX 

( 1 6 ) = CX*"*{cos l(\'a'/\) logX] +isin [(X^/XjlogX] } 

(\ = x; + i\'2y 
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Separating real and imaginary parts in (16) and equating, 

(17) F = CX*'* cos [(Xj'/Xj log X ] , 

(18) Z = CX"'* sin [(K/\) log X ] . 

Squaring (17), (18) and adding we obtain 

(19) F 2 + Z2 = CPX**/*, 

a surface, or rather ool surfaces, of revolution upon which all 
the oo2 integral curves lie. Again, we have from (14) by 
means of (15), 

(20) Y-iZ=D(Y+iZ)\ 

Let us introduce polar coordinates into the F, Z plane by 
putting Y + iZ = pei<f>. We obtain from (20) 

p = constant • ̂ (1+v ) / (1-v) 

(21) 
= constant • e ^ w -_. gcv/vx^+const.) 

a family of oo1 spiral cylinders winding about the X-axis. The 
oo2 integral curves are thus the intersections of the two sets of 
surfaces in X , JF, Z space 

(18) Z = CX^ • sin [(\'2'/\) log X ] , 

(21) p = ^ w w + c o ( Q' an arbitrary constant). 

The critical point (0, 0, 0) in X, F, Z space, which is likewise 
the origin in x, y, z space, might be called a Strudelpunkt, 
by analogy with the corresponding situation which arises for a 
differential equation of the first order. The surfaces (18) lie 
entirely in space X > 0, and they all contain the F-axis as a 
"stop l ine" when ^2/\ > 0. I f ̂ 2/\ > 0, none of the sur­
faces (18) (except the one for ( 7 = 0 ) contains the F-axis — 
they cease being defined when X approaches zero. In fact, 
these cylinders (18) have, along the F-axis, a definite tangent 
plane only when ^2/\^> 1. In the present case, therefore, 
there is no integral curve containing (0, 0, 0). If, however, 
^'2/\> 1, there will be oo2 curves which approach (0, 0, 0) 
asymptotically in space X > 0. 

For the topological discussion of the equation of the first 
order there is but one integral equation, viz., the analogon of 
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(21), and the special assumption X2/X2 '=: ^ then yields the 
special class of singular point called" Wirbelpunkt, which is 
completely enclosed by each one of the 001 integral curves 
p = constant. Here, however, in space, no such situation can 
arise, because (18) loses geometric meaning for X2/X2' = 0. 
There appears to be nothing in the present problem analogous 
to the Wirbelpunkt in the plane. 

I I I j . X3 = X2 =|= \ . The three equations (10) now shrink 
to two, and another means of integrating (4) must be devised. 
Take the three equations 

dÇ/dt = XA£, dr)/dt = X/j, dz/dt = dx + ey + fz. 

Assume the second member of the third equation identically 
equal to a% -\- /3rj + yz. This necessitates 

a = \d/(\ - X2), /3 = - X2d/(X1 - X2), 7 = X2, 

so that, instead of (10), we have as our three equations 

d£/dt = Xj£, drj/dt = X2T;, 
( 2 2 ) dz/dt = (\d/{\ - X2))f - (\df(\ - \))q + \p. 

Eliminating t, 

dS/dv = (\/\Wv), 
dz/dr} = (\d/X2(\ - \2))(Ç/V) ~ d/(\ - X2) + z/V. 

Solving the first of these and making use of the result in the 
second we obtain as complete integral 

(12) f = C Y " , 

(24) z = (G\d/(\ - \2)
2)V

1IK - (d/(\ - \2))v log v + DV 

(C, D arbitrary). 

As before noted, every surface (12) passes through the origin 
in £, rj, z space, which is also the origin in x, y, z space. Different 
possibilities can arise according as tc is >• 0 or < 0, and accord­
ing as d is zero or not. 

d 4= 0, tc > 0. Each of the surfaces (24) contains the £-axis 
as a " stop line," since 77 must be ^ 0 ; and each of these 
surfaces is tangent along the £-axis to the £s-plane, since 
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dz/dr) = oo for rj = 0. Hence all the oo2 integral curves 
enter (0, 0, 0) in the half space rj — 0. This singular point is 
of the sort which Hubert calls Endpunkt. 

d 4= 0, K < 0. Write (12), (24) in the following form 

(12) fr-V'^C, 

(24) ^-1^=CX1^/(X1~X2)2-(d/(X1~X2))7?
1-3^ .logv+Dv1-11"-

For ( 7 = 0 (12) gives the planes £ = 0, v = 0, while (24) 
gives oo1 cylinders in space rj ~ 0 and having the ^-axis as 
" stop line." The intersections of (12) and (24) therefore 
furnish, for ( 7 = 0 , oo1 curves containing (0, 0, 0), all but one 
of them lying in the half-plane ^ = 0 rj ~ 0 and having (0, 0, 
0) as "stop point/' while that exceptional one is the £-axis 
itself. 

For (7 4= 0, (12) gives a set of oo1 hyperbolic cylinders with 
generators parallel to the #-axis, while (24) gives (for rj small 
but < 0 ) a set of oo2 hyperbolic half-cylinders with generators 
parallel to the £-axis. The intersections of (12) and (24), there­
fore, furnish, for (7=f= 0, oo2 curves all lying in space rj > 0 ; 
and none of these contains (0, 0, 0). The singular point for 
d 4= 0, tc < 0 is thus of a kind distinct from those previously 
considered. Only one integral curve passes through (0, 0, 0) ; 
oo1 integral curves have (0, 0, 0) as " stop point ;" and oo2 

integral curves pass by (0, 0, 0) in arbitrary proximity. This 
singular point might be call Sattel-Endpunkt mit isoliertem 
Strahl. 

d = 0, tc 4= 0. Our integrals now take the form 

(12,25) V=Ct, z = Dv> 

We have here no new kind of singular point. If K > 0, the 
origin is a Scheitelpunkt. If K < 0, the origin is a Sattelpunkt. 

I I I „ . \ = X2 = X3 4= 0. The three equations (10) now 
shrink to one, and we must seek still another means of inte­
grating (4). Assume 

(26) dx/dt=ax-\-fir] + yz, dr}/dt=Xr]y dz/dt=a'x+/3'rj+y'z, 

where a, /3, 7, a, B\ 7' are to be determined so that the 
equations (26) shall be identities in x, y, z. The appropriate 
values of these constants are 
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a = \\a - X)/(X2 + e), 0 = bdj{\2 + e), 

7 = (cX2- b\ + ab + ce)/(X2+ e), 
a' = X2d/(X2 + e), /3' = ed/(X2 + e\ 

7' = X(/X+2e)/(X2 + e). 

We may now write (26) in the form 

dx/drj = axjXr] + 72/X77 + /3/X, 

dz/drj = ax/Xrj + yz/\r) + /3'/X. 

From this we can pass, by the substitution u=x + (\—a)z/a, 
to the equivalent pair 

du/drj = U/T? + (X2 + e)/\2, 

dz/drj = \duj(\2 + e)?? + 3/17 + ed/X(\2 + e). 

The integrals of (28) are 

(29) u = filog(Onl+«»), 

(30) a = ( d / \ ) [(6+X2 log 0 ) 7 log i?/(e+X2)+ ^ ( log^) 2 ] +D>?. 

By all the substitutions above used, the origin has remained 
unchanged, so that in u, 77, z space the critical point is still (0,0, 0). 
In (29) t] may take negative as well as positive values, but not 
for the same value of C ; so that the z axis is a " stop line " for 
every surface represented by (29). In (30), however, rj must 
be > 0 as long as d =(= 0. We must therefore distinguish two 
possibilities, according as d is, or is not, zero. 

d 4= 0. All the surfaces (29) will enter the 2-axis tangent to 
the plane T ? = 0 except when 1 + e / X 2 = 0 ; but this exception may 
be excluded, since the above transformations would then be im­
possible. Every surface (30) contains the ^-axis as a " stop 
l ine" and enters that line tangent to the plane 77 = 0. The 
peculiarity of the singular point (0, 0, 0) in the present case is 
that every curve of intersection of (29) and (30) not only enters 
it as a " stop point," but enters it from the same octant. The 
point might still be called an Endpunkt. 

d = 0. The surfaces (30) are now a one-parameter set of 
planes through the -w-axis. All the integral curves have 
(0, 0, 0) as a " stop point," which is therefore to be classed as 
Endpunkt. 

ZURICH, August 14, 1907. 


