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ON T H E INTERSECTIONS OF PLANE CURVES. 

BY F. S. MACAULAY, M.A. 

I N a review of the theory of the u Intersections of plane 
carves" in the March number of the BULLETIN (pp. 260-
273), Professor Charlotte A. Scott has included a full and 
appreciative criticism of my paper on " Point-Groups in 
relation to curves" (Proceedings of the London Mathematical 
Society vol. 26 (1895), pp. 495-544). I am exceptionally 
fortunate in having my work in this subject so clearly 
described and explained ; and I hope I may be allowed 
to discuss further some interesting points raised in Miss 
Scott's paper. 

For the sake of clearness it may be well to repeat what 
is meant by excess and defect. If a C6 and C7 are drawn 
through 4 points on a straight line they intersect again in 
38 points. These 38 points are such that a C8 through 35 
of them necessarily passes through the remaining 3, and a 
C9 through 37 of them necessarily passes through the last, 
so that the 38 points supply only 35 independent conditions 
for a 08, and 37 for a 09; these properties are expressed 
by saying that the 8-ie excess of the group of 38 points 
is 3, and the 9-ic excess is 1. So, in general the n-ic ex* 
cess rn of a group of JV points is the excess of JV over the 
number of independent conditions that the point group JV 
supplies for n-ics. This number of conditions is therefore 
JV -— rn. So also the n-ic defect qn of the same point group 
JV is the number of independent conditions by which the 
group falls short in determining an n-ic ; in other words, it is 
the degree of freedom of the general n-ic through the point 
group JV. Hence the formula 

N~rn + qn = ln(n + Z). (1) 

Of course rn may be zero ; but it is important to bear in 
mind, if JV is a point group derived in some way from the 
intersection of curves, that rn is just as likely to be greater 
than zero as to be zero. 

The terms excess and defect are nearly equivalent to the 
terms suggested by. Cayley, viz., postulation for the number 
JV — rw, and postulandum for qn ; but on account of the fact 
that the numbers JV —- rn and qn are not so convenient for 
dealing with as rn and qn it is preferable to have simple 
terms for the latter. Excess and defect are complementary 
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numbers, of equal importance, having an intimate recipro­
cal relation which is most clearly seen in the light of the 
Riemann-Roch theorem. 

We shall use another formula below, which requires some 
explanation, for proof of which I refer to my paper. Let a 
Ct and Cm be drawn through the point group JV, intersecting 
again in a finite point group JV' = lm — JV, I and m being 
great enough for this to be possible. Then, if qj denote the 
n'-ic defect of JV', we shall have 

where n + n' = I + m — 3, 

provided n is not less than I — 2 or m — 2. Formula 
(2) implies that JV' lies on an n'-ic if ^ w ^l> since then 
qj > 0 ; and that JV' does not lie on an n'-ic if rn = 0. 
These properties are both true. 

This formula, which is given by Miss Scott, easily supplies 
the answer to her question on p. 270: "Having found in 
any given case that the JV points which form the partial in­
tersection of Gl and Cm have an n-ic excess rw, is there any 
way of deciding whether a Gn through JV— rn of these neces­
sarily passes through the remainder?" In hazarding an 
answer she speaks of the n'-ic through the JV' = Zm — JV 
points, apparently not noticing that if r n > 1 formula (2) 
shows that there is a system of n'-ics through JV' with 
freedom rw—-1. " A n w-ic through N — rn of the N 
points passes necessarily through the remainder rM, if the 
N — rn points supply N — rn independent conditions for 
w-ics" (Art. 2, h of my paper); but it is quite possible 
that this condition should not be fulfilled. In order that 
the n-ic excess of N may be rn it is necessary and suffi­
cient that the n'-ic defect of N' should be rw — 1; and in 
order that the n-ic excess of JV — rn may at the same time 
be 1, it is necessary and sufficient that the w'-ic defect of 
Nf + rn should be 0, or that the rn points should lie on an 
w/-ic through the N' points. And as the w'-ics through 
JV' have a degree of freedom rn— 1, this only imposes one 
additional interconnection between the rn or the N points. 
For example, let Cn and C8 intersect in 56 points, made up 
of N' = 9 points forming the base of a pencil of cubics, r = 2 
more points lying on a cubic through the 9, and N — r = 45 
others. The 9-ic excess of the N = 47 points is 2, and the 
9-ic excess of the JV— r = 45 points is 1, so that a 9-ic 
through the JV — r = 45 points does not necessarily pass 
through the remaining 2 of the JV= 47 points. 
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Miss Scott justly points out (p. 268) the obscurity of the 
terms complete, incomplete, and redundant, as applied in my 
paper to point groups. But these terms, or some equivalent 
ones, are useful ; and a great deal depends on recognizing the 
distinctions involved in them. If we take away 2 points from 
the group of 38, mentioned in the second paragraph above, 
we have left a group of 36 points whose 8-ic excess is 1, 
while every 8-ic through the 36 points passes through 2 
more fixed points. The 38 points form a complete group 
which cannot, in general, be decomposed into simpler 
groups ; while the 36 points are said to form an incomplete 
group, because they form part of the complete group 38. 
But 7-ics through the 36 points pass through the 2 fixed 
points and 4 others, forming a group of 42 points (the total 
intersection of 06 and C7). This group of points is also 
complete ; but it is not only complete, it is composite, since 
it can be decomposed into a group of 4 points on a straight 
line and the group 38. So also the 47 points mentioned 
above, which are made up of 45 and 2, form a composite 
group. A redundant point group, consisting of a non-
composite group together with an additional number of 
general points, is the simplest kind of a composite point 
group. In order to reduce a point group, by passing two 
curves through it to intersect again in a less complex group, 
it is, in general, essential to recognize, and separate out, 
its constituent groups, if it happens to be composite. 

The method of reduction in my paper includes the re­
duction of redundant but not of other composite point 
groups. Some notes are given explaining how the appear­
ance of composite point groups may be avoided in the 
course of reduction ; but these are not so much " limita­
tions " as extensions of the method. This is exemplified in 
the reduction of the point group given below. The object 
is to find the simplest reduction, and consequent construc­
tion, for a point group of assigned characterization, i. e., a 
point group of which the number of points and the excesses 
for curves of all orders are given. I t seems probable that 
the simplest point group with an assigned characterization 
is a non-composite one if such exists, and that, in any 
case, it is the least composite. I may add here that in my 
paper I give formulae for easily calculating the number of 
independent interconnections of the points of a group if 
its construction is known. This number is an important 
one, and serves as an index of the complexity of the group. 

On p. 272 Miss Scott gives an example of what she con­
siders to be an impossible point group, viz., JV = 369 with 
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excesses 48, 28, 16, 7, 2 for curves of order 24, 25, 26, 27, 
28. I proceed to show that a point group with this char­
acterization can be constructed. We begin by supposing 
that the point group is redundant, i. e., that it consists of a 
point group N0 = 367, and 2 general points in the plane. 
We also suppose N0 to lie on a C23, and that its 23-ic defect 
is 1, so that its 23-ic excess is 69. This would still leave it 
impossible for a 023 to pass through N. The excesses of JV0 
for curves of order 24 to 28 will clearly be the same as 
those of N. For the reduction we modify formula (2) by 
substituting for qj its value in terms of rj from (1) ; we 
then have 

r,,/ = JV' + r . - K » ' + ! ) ( » ' + 2 ) , (3) 

where n + n' = I + m — 3, N + N' = lm9 rn > 0, and n is 
not less than I—-2 or m — 2. The reduction may be ex­
hibited as follows, the explanation being given after : 

^o = 367, r28 = 2, r21 = 7, r26 = 16, r25 = 28, r24 = 48, r23 = 69 ; 

N' = 162, r15' = 28, r16' = 16, r1T' = 7, r18' = 0, r19' = 0, r20' = 0 ; 

J\T" = 63, r12" = 0, r n " = l , r10" = 4 ; 

J\T0- = 65, r12" = l , r n " = 3, r10" = 6 ; 

N"f = 35, r5
,/r = 15, r / " = 10, r/ r / = 5. 

The point group N' is derived from iV0 by passing two 
curves 023 through N0 ( g 2 3 = l ) . Hence JV'= 232 — 367 
= 162 ; and in applying (3) to find the excesses rj of N', 
we have 1 = m=^23, n + nf = 43, and the values corre­
sponding to n= 28, 27, •••, 23 in the first line are n' = 15, 
16, •••, 20, in the second line. Similarly N" = 63 is derived 
by passing two curves C15 through N' (gi5= 1), and (3) is 
again applied for finding the excesses of N". Since r18' = 0, 
JV" does not lie on a C9. We have supposed N" to be in­
complete, forming part of a complete iV"0" = 65. The 10-ic 
and 11-ic excesses of JV0" will exceed those of N" by 2, and 
we have supposed the 12-ic excess to be 1. Finally N,,r = 35 
is derived by passing two curves C10 through JV0" (q10" = 6). 
The last point-group N"r is a recognizable one, although, 
as Miss Scott says, it must be examined with care. N,,r 

consists of 35 general points on a C5, for the excesses of 35 
such points for curves of order 5, 6, 7, 8 are 15, 10, 5, 0. 

All the steps are reversible. Since two curves C10 through 
JV0" determine JV'", so two curves C10 through N"' deter-
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mine JV0"; N0" deprived of two of its points gives N" ; two 
curves C16 through N" determine N'; and two curves C23 
through N' determine iV0, to which is added any two gen­
eral points in the plane, giving N. 

The number of independent interconnections of the 
JV= 369, or the N0 = 367, points, when constructed in this 
way, is 217. The least possible number of interconnections 
for a point group with the assigned characterization is 215. 

If two curves GM are passed through the N= 369 points, 
constructed as above, they determine a group of 207 points 
which is composite, being made up of 45 points on a conic 
and the N' = 162 points found above. In the actual re­
duction we have, so to speak, eliminated the 45 points. 

If I omitted all reference to the criticism in Miss Scott's 
last paragraph but one (p. 273) I might be taken as acqui­
escing in it. The whole question resolves itself into this. 
Having given a Cn with any number and kind of multiple 
points can we always find a curve CJ (n' being greater than 
n if necessary) whose coefficients differ from those of Gn only 
by infinitely small amounts, and such that at each and every 
multiple point A, of order p on Gn the curve GJ passes 
through Jp(p + 1) points arbitrarily but generally chosen 
about and infinitely near to A ? This is not so much a doubt­
ful matter of opinion as a matter of fact which can be proved 
or disproved analytically. The convention, which I adopt, 
of replacing Gn by CJ is an extremely convenient one for 
the purpose of reasoning geometrically about the intersec­
tions of curves, since, for one thing, it enables us to con­
sider the intersection of two curves at a common multiple 
point as being made up of separate instead of coincident 
points, just as we consider a tangent to a curve as meeting 
it in two points at the point of contact. I t does not claim 
to have any other merit or application. 

I may add that, since writing the above, I have succeeded 
in proving that a point group is a possible one if the second 
differences of its excesses for descending orders of curves 
are all positive integers, among which zeros may be included ; 
otherwise the point group is impossible. 

LONDON, 
June 6, 1898. 


