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which have been developed mainly under the form of sub­
stitution groups. 

I t may be well to add that the symbol sts~H~x has been 
used in substitution groups for a long time, but its use has 
been very limited. As far as we know its practical appli­
cation to determine important properties of a group was 
first explained in the recent article in the Quarterly Journal 
to which we referred above. 

GÖTTINGEN, 
September, 1896. 

NUMEEICALLY EEGULAE EETICTJLATIONS UPON" 
SUEFACES OF DEFICIENCY H I G H E E THAN 1. 

BY PROFESSOR HENRY S. WHITE. 

By the term reticulation I shall designate for present pur­
poses any system of lines lying upon a closed surface, 
together with all the points in which these lines intersect 
one another. Further I shall assume that they divide the 
surface into portions, of which each by itself is simply con­
nected, i. e., has deficiency zero. These portions of the 
closed surface may be termed faces, and their intersection 
points vertices, while each boundary line terminated by two 
consecutive vertices is an edge. If F, V and E denote the 
numbers of faces, vertices and edges, respectively, in a 
reticulation, and p the deficiency of the supporting surface, 
then Euler's relation for convex polyedra, generalized, 
will be E= V+F+2p—2. 

A reticulation is clearly entitled to be called numerically 
regular when it has: 

1. In every vertex a constant number of termini of edges; 
call this number p+2=r. 

2. In every circuit bounding a face a constant number of 
edges, call this number <J+2=S. 

We may for the present regard these two numbers /> and 
a alone as characteristics of a regular reticulation; there 
will remain for subsequent inquiry the determination of the 
number of essentially different types having any given set 
of characteristics p, <r, and p. From these three the values 
of F, V, and E can be computed, as will be seen below. 
Counting then as one class all regular reticulations char­
acterized by the same values of p and a, it can be shown that 
on a surface of given deficiency p, there can exist only a finite 
number of classes of numerically regular reticulations. 
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To prove this we notice that the edges may be enumer­
ated in two ways, either by counting the vertices or by 
counting the faces: 

2E=Vr = F(/> + 2), 

2E=Fs = F(<r + 2). 

Combining these equations with Euler's relation and elim­
inating two of the three letters E, V, F, we find expressions 
for the values of these three quantities in terms of p, <t 
and^>. 

F _ ( 4 j > - 4 ) Q > + 2), ( 4 j » - 4 ) Q r + 2 ) 
p<T — 4 pa — 4 

E = ( 2 ^ - 2 ) ^ + 2 ) ^ + 2) 
p (T — 4 

The restriction of p to values greater than unity makes 
all three numerators positive integers. The three cases 
where the denominator is zero are common to all deficien­
cies, being the division of a surface into triangles, quadri­
laterals and hexagons respectively; E, F and F being then 
infinite except for p = 1, which particular value makes 
them indeterminate. Omitting these cases, we see that 
positive values of F, V and E require positive values of 
P (T — 4. Accordingly p a has the lower limit 5, and we 
seek next to find an upper limit. 

Two cases may be distinguished. Either p = <r, or else 
they are unequal. Since the formulae for V and F are 
merely exchanged when p and <r are permuted, we shall 
assume in the second case that p is the greater. 

From p = a it follows that 

F=V= 
6 — 2 

i. e., (T — 2 can have only those values that are factors of 
4p — 4, a finite number, and the upper limit of p<* is for 
this case (4p — 2)2. From p > <T it follows also that p<r < 

(4j? — 2)2. For since -^=° , we have F > F and 

p <r — 4 """ > 

(4|> — 4 ) 0> — <T) — p<r^ — 4, 



118 NUMERICALLY REGULAR RETICULATIONS UPON [ D e c . , 

adding (4^ —- 4)2 to each side, and factoring we have 

(4p - 4 + P) (4p - 4 - a) ^ 4 (2p — 1) (2p — 3). 

Since £> > 1, the second member is positive, therefore 

4tp — 4 — (7 > 0, 
ö- < 4p — 4. 

As F ^ l , /xr — 4 ^ ( 4 p — 4) 0 + 2), 
or /><r<4 ( 4 / — 6j9 + 3), 
an upper limit for the second case, less than (4_p — 2)2. 

Since then ^ has for every value of p > 1 finite lower 
and upper limits, and since any admissible value has only 
a finite number of pairs of factors, and only those values 
of p and <r are to be retained which give integral values to 
V and F, it is now shown that for given p only a finite 
number of classes of regular reticulations can exist. 

In tabulating the classes belonging to a given p, it is con­
venient to treat as one any two which differ only in that 
the values of p and <r, hence also of V and F, are permuted. 
In the table for p = 2, we find 14 classes, representing 25 
when such dual reticulations are distinguished. 

EEGULAR EETICULATIONS FOR p = 2. 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

pc 

5 
6 
6 
7 

8 
8 
9 

1 io 
12 
16 
16 
20 
24 
36 

P 

5 
6 
3 
7 
8 
4 
3 

10 
6 

16 
4 

10 
8 
6 

a 

1 
1 
2 1 
1 1 
1 
2 
3 
1 
2 
1 
4 1 
2 
3 
6 

Fr 

127 

68 
85 
49 
3io 
46 

45 
"12 
28 

1 lis 
26 

I12 
lio 
Is 

i^s 

283 

I63 
10, 
12, 
103 

64 
45 
83 
44 
63 
26 
34 
25 
Is 

J? J 

42 1 
24 1 
20 1 
18 1 
15 1 
12 1 
10 1 
12 1 
8 I 
9 1 
6 
6 
5 
4 

For realizing those number-schemes upon models, I have 
not formulated any a priori infallible method, but have 
treated the problem as a test exercise for the geometric im-
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agination. My own success was limited to the production 
of two models. The other twelve, with one exception, 
were designed with great facility and neatness by Mr. OLIN 
H. BASQUIN, Fellow in Physics in Northwestern University. 
Any closed surface free from double lines and possessing 
visibly the deficiency 2 is suitable for displaying graphically 
these 14 (or 25) reticulations. Five have been illustrated 
upon small plaster forms cast for the purpose, double rings; 
and the entire series is traced upon flat cards through which 
two apertures have been made. Both sides of a card are 
considered as forming the surface, the opposite sides being 
connected by every apparent sharp edge. In only one in­
stance did Mr. Basquin find it necessary to let the same line 
occur twice in the boundary of a single face ; but often it 
is seen that the same point occurs twice or even thrice in the 
boundary of the same face. As an experimental fact it is 
worth while to record that every class of numerically regular 
reticulations that is arithmetically 'possible upon a surface of defi­
ciency p = 2 has been realized graphically in these 14 models, 
classes dual to each other being counted as one. 

The 14 regular reticulations of the above scheme for 
p = 2 are fundamental to certain others that exist on sur­
faces of every deficiency p > 2. From each of the former 
is derived one of the latter for each deficiency. Such a 
derivation is arithmetically evident, and Mr. Basquin has 
proposed a practical method for following out in the model 
the arithmetical indications. If I illustrate this method 
by derivation from p = 2 to p = 3, the extension of the pro­
cess to jp = 4, 5, etc., will be immediately evident; and the 
similar derivation from p — 3 to p = 5, 7, etc., or from 
p = n + 1 to p = 2n + 1, Sn + 1, etc., will need no explana­
tion. 

If on a surface of deficiency 2 a regular reticulation is 
characterized by the numbers //, <r', F , JF', E, then on a sur­
face of deficiency 3 there is a regular reticulation marked by 
the same />', <T', together with values V, F, E, such that 

F = 2 F , F=2F, E = 2E. 

For if //, (7' render F', F'', E' integers, where 

4 Q / + 2) 4 Q / + 2 ) - 2 Q / + 2 ) (* '+2) 

then they render integral also the values V, F, E belonging 
t o p = 3, (4p —4 = 8), where 
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p'a'—4 ' pf <J'—4 

pf a'— 4 

All such sets of numbers V, F, E, obtained by doubling 
the numbers in the table for p = 2 , 1 shall call derivative sets 
for p = 3; the corresponding reticulations will also be called 
derivative. All others I shall call special sets or reticula­
tions for p = 3. For p = 5 there would be of course two 
kinds of derivatives ; those coming from the scheme for 
p = 2 by five-folding the numbers in the columns V, F, E, 
and those coming from the special sets for p == 3 by doubling 
the members F, JF, J57. So for higher deficiencies there 
would be often several kinds of derivatives, but for a prime 
(p — 1) only one kind. 

For p = 3 the special regular reticulations are readily de­
termined by trial; for the value of (pa — 4) must contain at 
least the factor 8, with either p or <r an odd number, other­
wise it will contain a factor 16. 

SPECIAL EEGULAR RETICULATIONS FOR p = 3. 

No. 

1 
2 
3 
4 
5 
6 
7 

pa 

1 12 

12 
28 
28 
36 

| 60 
100 

P 

4 
12 

7 
28 
18 
12 
10 

a 

3 
1 
4 
1 
2 
5 

10 

Fr 

56 

3 * 
29 

I30 
I20 
l u 
I12 

Fs 

% 
143 

36 

io3 
54 
2Y 
I12 

J0 

15 
21 

9 
15 
10 

7 
6 

For these seven special classes Mr. Basquin has con­
structed card models. Here, therefore, we record, as an 
empirical fact, that every special class of regular reticulations 
that is arithmetically possible upon a surface of deficiency 3 can be 
realized graphically. 

How to produce a derivative reticulation from its funda­
mental remains to be explained. With a model of some 
one reticulation of deficiency 2 before the eye, prepare or 
imagine a duplicate of it; and let both be of material easily 
cut and distorted. Cut the first along any closed line that 
does not divide it into separate parts. Make an exactly 
similar cut in the second model. Distort each severed ex-
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tremity through 90° in such a direction that then the 
models can be opposed to each other and each severed por­
tion can be united to the duplicate of that from which it 
was divided. The resulting surface will be of deficiency 3 
and will contain a regular reticulation with twice as many 
vertices, faces and edges as its original. As illustrations 
of this mode of derivation Mr. Basquin has found fairly 
simple examples to arise from 'NOB. 3, 6, 9, 11 of the table 
for deficiency 2. I t will be seen that the closed line mark­
ing the cut may be equally well any number, not greater 
thanj? — 1, of non-intersecting closed curves. Wherep > 2, 
this observation points to an interesting variety of deriva­
tive reticulations. 

Of the starred polyedra, one is found to belong to this 
scheme of regular reticulations, namely the starred dode-
caedron; in the others, the connectivity of the individual 
faces and vertices has to be taken into account. Semi-reg­
ular reticulations, analogous to the solids of Archimedes, 
I have not investigated; but I should expect that the 
graphical production of such would give the inventive 
faculties more exercise and pleasure than the construction 
of those wholly regular.* 

NORTHWESTERN UNIVERSITY, 
EVANSTON, I I I . , August, 1896. 

COKKECTIOlSr. 

T H E theorem given in the first paragraph of the article 
" Note on the Special Linear Homogeneous Group," p. 336, 
of the last volume of the BULLETIN, is not true, and is not, as 
there stated, a consequence of results given on p. 232. The 
theorem given in the second paragraph, p. 336, regarding 
the special linear homogeneous group in n variables, for 
n = 2 or composite, and the method of proof which follows, 
holds also if n is an odd prime. HENRY TABER. 

* The theory of canonical dissections of a Kiemann surface leads to 
the completion of the foregoing discussions.—H. S. W. 


