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Abstract

This paper wishes to foster communication between mathematicians
and physicists working in mirror symmetry and orbifold Gromov–Witten
theory. We provide a reader friendly review of the physics computation in
[ABK06] that predicts Gromov–Witten invariants of [C3/Z3] in arbitrary
genus, and of the mathematical framework for expressing these invariants
as Hodge integrals. Using geometric properties of the Hodge classes, we
compute the unpointed invariants for g = 2, 3, thus providing the first
high genus mathematical check of the physics predictions.

0 Introduction

0.1 Scope and results

All too often mathematicians and physicists are compared to a couple in
a disfunctional marriage: sharing a household but unable to communicate
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properly. This paper attempts to contradict this stereotype, by exploring
the orbifold Gromov–Witten theory of [C3/Z3].

On the one hand, we distill for a mathematical audience, in Sections 3 and
4, the physics calculation of [ABK06], which provides a prediction for the
unmarked and marked Gromov–Witten invariants of [C3/Z3] at any genus.
This calculation is close in spirit to the original calculation of the number
of rational curves in the quintic threefold by Candelas et al. [CDLOGP91],
relying on mirror symmetry and topological string theory.

On the other hand, [C3/Z3] invariants can be defined mathematically, and
interpreted in terms of Z3-Hodge integrals: top intersections of characteristic
classes of some natural vector bundle on moduli spaces of covers of curves.
We present this point of view in Section 1, trying to cater especially to the
physicist reader. Z3-Hodge integrals are new mathematical creatures, and
their systematic exploration is on the second author’s research agenda. In
low genus, some ad hoc considerations lead to the following original result,
which is proved in Section 2.

Theorem 0.1. The unpointed invariants of [C3/Z3] are mathematically
computed for g = 2 and 3, and agree with the predictions of [ABK06].

This result provides an interesting validity check of the high genus pre-
dictions of [ABK06], since so far only the genus 0 predictions had been
proved mathematically, computed in three independent ways by Coates et al.
[CCIT07a], Bayer and Cadman in [BC07] and by Cadman and Cavalieri
[CC07].

0.2 History and connections

The orbifold [C3/Z3] has recently been an exciting object of study both for
mathematicians and physicists. In mirror symmetry, it represents a special
point in the stringy Kähler moduli space of its crepant resolution, local P

2.
This point of view has been used in various ways in the past to study string
physics on [C3/Z3] — see for instance [DLOFS02, DG00] for D-brane aspects.
However, only recently was it used to relate the (orbifold) Gromov–Witten
theory of [C3/Z3] to the Gromov–Witten theory of local P

2 [ABK06]. Math-
ematically, this is an incarnation of the McKay philosophy, stating that the
G-equivariant geometry of a space X should equal the geometry of a crepant
resolution of the quotient X/G. Precise statements about this equivalence
in Gromov–Witten theory have been formulated by Ruan [Rua01], Bryan
and Graber [BG06] under some technical assumption on the target orbi-
fold and Coates et al. [CCIT07b]. These conjectures have been verified
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in genus 0 for several examples [BG06, CCIT06, CCIT07b, CCIT07a, Gil07,
BG07a, BG07b]). To the best of our knowledge, no examples for higher
genus have been worked out yet.

1 The mathematics

We first review some aspects of the mathematics of orbifold Gromov–Witten
invariants, and then focus on the main character [C3/Z3] of this note.

1.1 Orbifold Gromov–Witten invariants

Let X be an orbifold, or, if you prefer, a Deligne–Mumford stack. The study
of Gromov–Witten invariants of orbifolds is developed by Chen and Ruan
in [CR02, CR04]. The algebraic point of view is established in [AGV06]. In
order to obtain a good mathematical theory (i.e., a compact and reasonably
well behaved moduli space, equipped with a virtual fundamental class) they
introduce the following two modifications to the ordinary Gromov–Witten
set-up:

Twisted stable maps: the source curves must be allowed to become
“stacky.” Informally, a twisted stable curve is “almost” a curve: it
has a finite set of twisted points, where it locally looks like [C/Zn],
the (stack) quotient of C by the action of a cyclic group. Ordinary
stable maps are replaced by (representable) morphisms from twisted
stable curves.

Orbifold cohomology insertions: ordinary Gromov–Witten invariants
have insertions that take value in the cohomology of the target space.
Here, one needs to enlarge cohomology to the Chen–Ruan orbifold
cohomology ring, including classes that contain a combination of geo-
metric and representation theoretic data, keeping track of the auto-
morphisms that the cohomology classes might have. Formally, this
is defined to be the cohomology of a related orbifold IX, called the
inertia orbifold.

With these two modifications in place, the moduli space Mg,n(X, β) is a
proper Deligne–Mumford stack of expected dimension

(1 − g)(dim X − 3) − KX · β + n, (1.1)

and just about any desirable (and undesirable) feature of ordinary Gromov–
Witten theory carries over to the orbifold setting.
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Figure 1: A map C → BZ3 corresponds to an admissible cover of C. Notice
that not all marked points must be twisted.

1.2 Twisted stable maps to BZ3

Consider the orbifold X = BZ3, which can be thought of as the classifying
space for principal Z3 bundles, or as the global quotient [pt/Z3] of a point
by the trivial action of the group Z3.

In [ACV03], Abramovich, Corti and Vistoli show that the stack
Mg,n(BZ3, 0) is the (normalization of the) moduli space of admissible Z3-
covers of genus g curves. This stack parameterizes degree 3 covers p : E → C
such that:

• C is a stable (n)-marked genus g curve (the coarse moduli space of the
twisted curve C);

• E is a nodal curve; nodes of E “correspond to”1 nodes of C;
• E is endowed with a Z3 action;
• p is the quotient map with respect to the action;
• p is ramified only over the marked points of C, and possibly over the

nodes;
• when p is ramified over a node, denote x1 and x2 the shadows of the

node in the normalization Ẽ. The Z3-representations induced on Tx1

and Tx2 are dual to each other.

This description is illustrated in figure 1.

We turn our attention now to the case with no marks. A general point
in the moduli space Mg(BZ3, 0) represents an étale Z3-cover of a smooth
genus g curve C, equivalent to the data of the curve C and a monodromy

1The preimages of nodal (resp. smooth) points of C are nodal (resp. smooth) points
of E.
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representation, i.e., a group homomorphism

ϕ : π1(C) → Z3. (1.2)

The canonical forgetful morphism

Mg(BZ3, 0) −→ Mg (1.3)

is finite of degree2 32g/3, but not étale: it ramifies over the boundary of Mg.

It is important to observe that the moduli space Mg(BZ3, 0) consists of
two connected components:

Mg(BZ3, 0)disc: parameterizes disconnected covers: three copies of C
mapping down to C via identity maps. These covers correspond to
the trivial monodromy. This component is in fact essentially a copy
of Mg: the only difference is that the covers have a degree 3 non-
trivial automorphism. Therefore the forgetful map restricted to this
component has degree 1/3.

Mg(BZ3, 0)conn: parameterizes connected covers, corresponding to non-
trivial monodromy representations.

1.3 Hodge bundles

The Hodge bundle E
h is a rank h vector bundle on Mh, whose fiber over

a smooth curve X is the space of holomorphic one forms (H0(X, KX)), or
equivalently the dual of H1(X, OX).

On the moduli space Mg(BZ3, 0) we can define two Hodge-like bundles,
according to whether we focus on the base or on the cover curve. The former
is however a natural subbundle of the latter, as we shall see in an instant.

1.3.1 Connected covers

By the Riemann Hurwitz formula, given an étale, connected Z3-cover E →
C, the genus of E is h = 3g − 2. There is a natural forgetful morphism

Mg(BZ3, 0)conn −→ Mh, (1.4)

and we can define the Hodge bundle on Mg(BZ3, 0) by pulling back E
h via

this morphism. The group action on the covers induces a Z3 action on E
h,

2The factor of 1/3 comes from the fact that every cover has a degree 3 non-trivial
automorphism, given by the action of a generator of Z3.
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which gives a decomposition

E
h = E1 ⊕ Eω ⊕ Eω̄ (1.5)

into eigenbundles (with respect to the action of the primitive generator of
the group). Here ω and ω̄ are non-trivial cube roots of unity and denote the
corresponding eigenvalues.

The fibers of E1 are Z3-invariant forms, i.e., forms pulled back from the
base curve. It follows that the rank of E1 is g. By symmetry arguments the
ranks of Eω and Eω̄ are g − 1. We denote by λi,ω (resp. λi,ω̄) the ith Chern
class of Eω (resp. Eω̄).

1.3.2 Disconnected covers

In the case

p :
3⊔

1

C −→ C, (1.6)

the Hodge bundle corresponding to forms on the cover curves is a rank 3g
bundle: three copies of the Hodge bundle pulled back from Mg. Keeping
track of the Z3 action, E

3g is naturally identified with the tensor product
of E

g with the standard representation of Z3. The eigenbundles are each a
copy of E

g.

1.4 Invariants of [C3/Z3] and Hodge integrals

It might seem deceiving that we discussed at length the Gromov–Witten
theory of BZ3 when really we are interested in [C3/Z3]. In fact, typi-
cally one cannot even define Gromov–Witten invariants for a non-compact
target space, as the moduli space of stable maps is itself non-compact.
When a space X admits a torus action with compact fixed locus F , Bryan
and Pandharipande [BP01] define the invariants of X via localization: the
Gromov–Witten theory of X is thus reduced to the Gromov–Witten theory
of F “corrected” by the Euler class of an obstruction (virtual)3 bundle
constructed from the normal bundle NF/X (see [BP04, Section 2.2]).

A three-dimensional torus (C∗)3 acts naturally on C
3, and this action

descends to the quotient. The only fixed point for the action is the image

3In general, it should really be considered as an element in K-theory.
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of the origin, which is a copy of BZ3. Therefore,

〈 〉g
([C3/Z3],0) =

∫

Mg(BZ3,0)
e(−R•π∗f

∗(NBZ3/[C3/Z3])). (1.7)

Remark 1.4.1. Note that the orbifold [C3/Z3] contains no compact curve
classes, therefore the only invariants correspond to constant maps (β = 0).

The normal bundle to the image of the origin consists of three copies of
a line bundle denoted Lω: it descends from a copy of C with a non-trivial
action of Z3. In the world of orbifolds this is an essential feature: the fibers
of Riπ∗f∗(Lω) over a curve X are not the full H i(X, OX), but only the ω̄
eigenspace.

Therefore,
R1π∗f

∗(Lω) = (Eω)∨ (1.8)
and

R0π∗f
∗(Lω) =

{
O on Mg(BZ3, 0)disc,

0 on Mg(BZ3, 0)conn.
(1.9)

Finally, we are able to express our Gromov–Witten invariants as Hodge
integrals:

〈 〉g
([C3/Z3],0) =

1
t1t2t3

∫

Mg(BZ3,0)disc
e(((Eω)∨)3) +

∫

Mg(BZ3,0)conn
e(((Eω)∨)3)

(1.10)

=
1

3t1t2t3

∫

Mg

e((E∨)3) + (−1)g−1
∫

Mg(BZ3,0)conn
λ3

g−1,ω. (1.11)

Remark 1.4.2. Contribution (1.10) is a “classical” Hodge integral on the
moduli space of stable curves, computed by Faber and Pandharipande in
the late 1990s [FP00, Fab99]. Contribution (1.11) is a new and interesting
creature, for which we are currently seeking a systematic approach. In low
genus one can use ad hoc methods to show that this contribution vanishes.

1.5 Tools for the computation

The invariants in genus 2 and 3 are computed making use of the following
classical results.

Mumford relation [Mum83]:

ct(E ⊕ E
ν) = 1. (1.12)
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G-Mumford relation [BGP05]:

ct(Eω ⊕ (Eν)ω) = ct(Eω ⊕ (Eω̄)ν) = 1. (1.13)

Faber–Pandharipande computation [FP00]:

∫

Mg

λgλg−1λg−2 =
1

2(2g − 2)!
|B2g−2|
2g − 2

|B2g|
2g

. (1.14)

Here, ct denotes the Chern polynomial and Bn the nth Bernoulli number.

2 Invariants of [C3/Z3] with g > 1

In this section, we perform some computations of Gromov–Witten invariants
of [C3/Z3] with g > 1, using the Hodge integral approach developed in the
previous section.

2.1 g = 2

Let us start by computing the genus 2 unmarked Gromov–Witten invariant
of [C3/Z3].

2.1.1 Vanishing of (1.11)

In this case both Eω and Eω̄ are line bundles. Integral (1.11) is

−
∫

λ3
1,ω. (2.1)

Relation (1.13) yields

• λ1,ω = λ1,ω̄,
• λ1,ωλ1,ω̄ = 0 .

This immediately shows the vanishing of our desired integral.

2.1.2 Computation of (1.10)

Integral (1.10) in this case is

1
3t1t2t3

∫

M2

(λ2 − λ1t1 + t21)(λ2 − λ1t2 + t22)(λ2 − λ1t3 + t23). (2.2)
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Setting the weights to be Calabi–Yau (t1 + t2 + t3 = 0), we obtain the fol-
lowing weight independent expression:

1
3

∫

M2

−λ3
1 + 3λ2λ1 =

1
3

∫

M2

λ2λ1, (2.3)

where the last equality follows from the application of Mumford’s relation
(1.12) that tells us that 2λ2 = λ2

1. Using formula (1.14), we get

〈 〉2([C3/Z3],0) =
1

17280
. (2.4)

2.2 g = 3

We now compute the genus 3 unmarked Gromov–Witten invariant of
[C3/Z3].

2.2.1 Vanishing of (1.11)

In this case the vanishing of (1.11) is only slightly more elaborate. We want
to compute

A =
∫

λ3
2,ω =

∫
λ3

2,ω̄ (by symmetry). (2.5)

Relation (1.13) gives us

(a): λ1,ω = λ1,ω̄ = α,
(b): α2 = λ2,ω + λ2,ω̄,
(c): αλ2,ω = αλ2,ω̄,
(d): λ2,ωλ2,ω̄ = 0.

Using some elementary algebra and all of the relations above:

2A =
∫

λ3
2,ω + λ3

2,ω̄ =
∫

(λ2,ω + λ2,ω̄)(λ2
2,ω + λ2

2,ω̄)

=
∫

α2(λ2
2,ω + λ2

2,ω̄) = 2
∫

α2λ2,ωλ2,ω̄ = 0. (2.6)
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2.2.2 Computation of (1.10)

The computation here is identical to genus 2. With Calabi–Yau weights,
and by formula (1.14):

〈 〉3([C3/Z3],0) = −1
3

∫

M3

λ3λ2λ1 = − 1
4354560

. (2.7)

2.3 Higher genus

Starting with g = 4, there is no reason why the contribution from the con-
nected covers should vanish. In fact, the prediction from physics, which
we will describe in the next section, does not match (1.10). Invariants with
insertions can also be expressed in terms of Z3-Hodge integrals, whose struc-
ture is still completely unexplored. In collaboration with Charles Cadman
and Arend Bayer, the second author is attempting a systematic approach
of Z3 Hodge integrals in higher genus. Currently two avenues are being
pursued:

• Evaluating via localization integrals on auxiliary moduli spaces as a
mean to produce relations between Z3-Hodge integrals. This approach
is similar in spirit to [CC07].

• Using stacky Grothendieck–Riemann–Roch and the natural covering
map between Mg(BZ3, 0)conn and Mg in order to express Z3-Hodge
integrals in terms of polynomials in tautological classes on Mg. Such
gadgets can then be evaluated through the use of Witten’s conjecture,
implemented for example in Faber’s algorithm [Fab99].

3 The physics

In this section we review the calculation of [ABK06]. We first discuss
relevant features of the two main ingredients in the calculation, namely
mirror symmetry and topological string theory, and then move on
to the actual calculation of Gromov–Witten invariants of [C3/Z3]. Good
references on mirror symmetry include the two books [CK99, HKK+03],
while topological string theory is explored in detail in the book
[Mar05].
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3.1 Mirror symmetry at large radius

To start with, we recall the usual local description of mirror symmetry at
large radius. The main characters are:

• (X, Y ): a mirror pair of Calabi–Yau three-folds;
• M(Y ): a suitable compactification of the complex structure moduli

space of Y ;
• KM(X): a suitable compactification of the complexified Kähler mod-

uli space of X — the so-called stringy or enlarged Kähler moduli space.

Mirror symmetry provides a local isomorphism, called the mirror map,
between KM(X) and M(Y ), which maps a neighborhood of a maximally
unipotent boundary point q0 ∈ M(Y ) to a neighborhood of a corresponding
large radius point p0 ∈ KM(X). Moreover, mirror symmetry tells us that
the mirror map lifts to an isomorphism between the A-model amplitudes at
p0 ∈ KM(X), and the B-model amplitudes at q0 ∈ M(Y ).

But what are the A- and B-model amplitudes? Start with a theory — a
non-linear sigma model — of maps f : Σ → M from Riemann surfaces Σ to a
Calabi–Yau threefold M . There are two ways of twisting this sigma model to
obtain topological theories, namely the A- and the B-model. The A-model
does not depend on complex moduli, while the B-model is independent of
Kähler moduli.

3.1.1 The A-model

The A-model on X becomes a theory of holomorphic maps f : Σ → X,
which can be reformulated in terms of Gromov–Witten invariants of the
target space X. In the neighborhood of p0 ∈ KM(X), the A-model genus
g amplitudes Fg become generating functionals for the unmarked genus g
Gromov–Witten invariants 〈 〉g

(X,β) of X, that is

Fg =
∑

β∈H2(X)

〈 〉g
(X,β)Q

β, (3.1)

where
Qβ = e2πi

∫
β ω, (3.2)

and ω is a complexified Kähler class of X.

3.1.2 The B-model

The B-model on Y localizes on constant maps, and becomes a theory of vari-
ations of complex structures of the target space Y . As opposed
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to their A-model cousins, the B-model amplitudes do not afford a simple
mathematical description. Nevertheless, the genus 0 amplitude can be deter-
mined by special geometry,4 and corresponds to the so-called prepotential.
The genus 1 amplitude can be defined in terms of Ray–Singer torsion of Y .
For the higher genus amplitudes, one can use the holomorphic anomaly equa-
tions of [BCOV94] — which may be understood as some sort of higher genus
generalization of special geometry — to reconstruct the amplitudes recur-
sively in the neighborhood of q0 ∈ M(Y ), up to an unknown holomorphic
function at each genus depending on a finite number of constants. External
data, such as boundary conditions, must be used to fix these functions.

Since the A-model on X is mirror to the B-model on Y , one can use the
B-model point of view to compute the Gromov–Witten theory of the mirror
X. The two main ingredients entering in the calculation are:

• the mirror map near the large radius point;
• a framework to compute the B-model amplitudes near q0, such as

special geometry and the holomorphic anomaly equations.

This was the strategy used by Candelas et al. [CDLOGP91] to compute the
number of rational curves in the quintic three-fold, which was extended to
higher genus in [BCOV94].

3.2 Global mirror symmetry and orbifold points

So far we only gave a local description of mirror symmetry, near a large
radius point of KM(X). However, from a physics point of view, mirror
symmetry should be global, in the sense that KM(X) should be globally
isomorphic to M(Y ), and similarly for the A- and the B-model amplitudes.

Generically, the stringy Kähler moduli space KM(X) has a rather com-
plicated structure, which goes beyond the Kähler cone of X. However, when
X is toric, KM(X) is also toric and is easily described by the secondary fan
associated to X (see for instance [CK99, Section 3.4 and Chapter 6], for a
more precise discussion). Roughly speaking, KM(X) is obtained by gluing
along common walls the Kähler cones of three-folds birationally equivalent
to X. Some of these cones correspond to smooth three-folds related to X by
flops; each such cone then contains a large radius point, which is mapped by
mirror symmetry to a corresponding maximally unipotent boundary point in
M(Y ). However, some other patches correspond to “non-geometric phases,”
by which we mean that they are obtained from X by contracting some cycles.

4See [Fre99] for a mathematical exposition of special geometry.
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In particular, we will be interested in the case where KM(X) comprises a
patch that contains an orbifold point porb ∈ KM(X), where some cycles of
X are contracted to yield an orbifold X. This orbifold point is mapped on
the mirror side to a point of finite monodromy qorb ∈ M(Y ), around which
monodromy of the periods is finite.5

Our aim is now to study mirror symmetry in the neighborhood of the
points porb and qorb. First, one needs to define an orbifold mirror map, which
identifies these two neighborhoods, and should lift to an isomorphism of the
A- and the B-model amplitudes near these points. The relation between
A-model amplitudes and Gromov–Witten theory is still valid near porb;
namely, the A-model genus g amplitudes now become generating functionals
for the genus g orbifold Gromov–Witten invariants of X. Hence, our goal
is to use the B-model around qorb to compute the orbifold Gromov–Witten
invariants of X via the orbifold mirror map. As in the traditional large radius
calculation, the essence of the calculation boils down to two ingredients:

• the orbifold mirror map near the orbifold point;
• a framework to compute the B-model amplitudes near qorb.

Let us look at both of these items a little closer.

3.3 The orbifold mirror map

3.3.1 Large radius point

At large radius, the mirror map can be described as follows. H2(X, C) is
spanned by

t1T1 + · · · + trTr, (3.3)
where T1, . . . , Tr is a basis of generators for the cone σ containing the large
radius point p0 ∈ KM(X) corresponding to X. The complexified Kähler
parameters t1, . . . , tr parameterize KM(X) near p0. On the mirror side, as
is standard in special geometry we parameterize M(Y ) using periods of the
holomorphic volume form Ω on Y . Choose a symplectic basis of three-cycles
AI , BJ ∈ H3(Y ), with I, J = 0, . . . , r, and define the periods

ωI =
∮

AI

Ω,
∂F
∂ωI

=
∮

BI

Ω, (3.4)

where F is the prepotential. The periods are solutions of the Picard–
Fuchs equations, with the following properties. In terms of coordinates

5Here, for simplicity, we implicitly assumed that KM(X) and M(Y ) are one dimen-
sional, which will be the case for the orbifold [C3/Z3].
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qi, i = 1, . . . , r centered at the maximally unipotent boundary point q0 ∈
M(Y ), there is a unique period which is holomorphic, say ω0, and r periods
have logarithmic behavior,

ωi =
ω0

2πi
log(qi) + O(q), i = 1, . . . , r. (3.5)

There are r other periods that are quadratic in the logarithm, and one is
cubic. The mirror map is then given by

(t1, . . . , tr) �→ 1
ω0 (ω1, . . . , ωr). (3.6)

Note that when X and Y are noncompact,6 the mirror map is simplified by
the fact that ω0 = 1, hence the ti are directly identified with the logarithmic
periods ωi.

What is important to note here is that the mirror map was fixed by
finding:

(1) a canonical basis for the cohomology group H2(X, C) at the large
radius point p0 ∈ KM(X);

(2) a basis of solutions of the Picard–Fuchs equations (periods) around the
maximally unipotent boundary point q0 ∈ KM(Y ) with the required
leading behavior.

The second point can also be understood in terms of monodromy proper-
ties of the periods. Under monodromy around q0 the logarithmic periods
behave as

ωi �→ ωi + 1, (3.7)

while on the A-model side the amplitudes are given as an expansion in terms
of the exponentiated parameters Qi = e2πiti , see (3.1). The Qi’s are then
invariant under the shift ti �→ ti + 1, which implies that the amplitudes are
invariant under monodromy around q0.

3.3.2 Orbifold point

To fix the mirror map around the orbifold point porb ∈ KM(X) we follow
the lessons of the previous section. What we want is:

(1) a canonical basis for the orbifold cohomology of X;

6See, for instance [Hos04] for a more precise discussion of special geometry and periods
of a noncompact Calabi–Yau three-fold Y .
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(2) a basis of solutions of the Picard–Fuchs equations near qorb ∈ M(Y )
such that the amplitudes are invariant under the finite monodromy
around qorb.

As simple as it looks, we will see that these two conditions are sufficient
to fix unambiguously the orbifold mirror map for simple orbifolds such as
[C3/Z3], up to a scale factor. A prescription equivalent to condition (2) will
be to match the representation theoretic data in the orbifold cohomology
ring of X to the action of the finite monodromy on the periods.

3.4 B-model at the orbifold point

The next item that we need is a formalism to compute the B-model ampli-
tudes near qorb ∈ M(Y ). This is provided by the holomorphic anomaly
equations of [BCOV94].

Recall that at qorb there is a basis of periods ωi which is selected by the
orbifold mirror map. As usual the genus 0 amplitude F0 is simply given by
the prepotential F of special geometry. For the higher genus amplitudes Fg,
g ≥ 1, one can solve the holomorphic anomaly equations near qorb to obtain
the following recursive system:

Fg = hg − Γg

[
Eij ,

∂

∂ωi1
· · · ∂

∂ωin
Fr<g

]
, (3.8)

where Γg is a functional depending on the derivatives of the lower genus
amplitudes Fr<g with respect to the periods ωi, and on the “propagator”

Eij =
∂F1

∂τij
, (3.9)

with τij the period matrix:

τij =
∂2F

∂ωi∂ωj
=

∂2F0

∂ωi∂ωj
. (3.10)

The hg are undetermined functions, depending on a finite number of con-
stants. As an example, the genus 2 functional is given by

Γ2 = Eij
(1

2∂i∂jF1 + 1
2∂iF1∂jF1

)

+ EijEkl
(1

2∂iF1∂j∂k∂lF0 + 1
8∂i∂j∂k∂lF0

)

+ EijEklEmn
(1

8∂i∂j∂kF0∂l∂m∂nF0

+ 1
12∂i∂k∂mF0∂j∂l∂nF0

)
, (3.11)
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where we used the notation

∂iFk =
∂Fk

∂ωi
. (3.12)

We refer the reader to [ABK06] for the explicit iterative derivation of this
recursive system, which is perhaps easily understood in terms of wavefunc-
tion properties of the topological string partition function. We note that
the holomorphic anomaly equations can also be solved by direct integration
using modular properties of the amplitudes, see [GKMW07].

As mentioned earlier, equation (3.8) is not complete, in the sense that
it cannot be used alone to reconstruct recursively the amplitudes Fg, since
the holomorphic functions hg are undetermined. Hence, the system must
be supplemented by additional data, such as boundary conditions, to fix
the hg’s.

What kind of additional data can we use at the orbifold point? Well,
the simple realization of [ABK06] is that we in fact do not need any new
data! Indeed, a crucial point is that the hg are holomorphic functions, which
are globally defined all over the moduli space M(Y ). Hence, if we know the
amplitudes at a large radius point q0 ∈ M(Y ), we can fix the hg and use
them, in conjunction with (3.8), to compute the amplitudes at the orbifold
point qorb ∈ M(Y ).

3.5 Strategy

Our strategy to compute orbifold Gromov–Witten invariants should now be
clear. Consider a smooth Calabi–Yau three-fold X for which the compacti-
fied Kähler moduli space KM(X) contains an orbifold point porb ∈ KM(X)
corresponding to an orbifold X. We first determine the mirror maps near
the large radius point p0 ∈ KM(X) and the orbifold point porb ∈ KM(X),
using the principles of Section 3.3. The calculation then proceeds in three
steps, which are illustrated in figure 2:

(1) We compute the generating functionals of Gromov–Witten invariants
of X, using for instance the topological vertex [AKMV05, LLLZ04]
if X is toric, or localization of Hodge integrals. These are mapped
by mirror symmetry at large radius to the B-model amplitudes near
q0 ∈ M(Y ).

(2) From these amplitudes we fix the holomorphic functions hg, which
are valid all over the moduli space and can be used to compute the
B-model amplitudes at qorb through recursion (3.8).
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Figure 2: A schematic illustration of our strategy to compute orbifold
Gromov–Witten invariants.

(3) Finally, we use the orbifold mirror map to extract the orbifold Gromov–
Witten invariants of X from the B-model amplitudes at qorb.7

4 The physics computation

We now turn to the calculation of orbifold Gromov–Witten invariants of
[C3/Z3].

4.1 Mirror symmetry

The orbifold [C3/Z3] has a unique crepant resolution, which is the (non-
compact) toric Calabi–Yau three-fold

X = O(−3) → P
2, (4.1)

often called local P
2 in the physics literature. The stringy Kähler moduli

space KM(X) is one dimensional, and includes two distinct patches; one
of which contains the large radius point p0 of X, and the other contains
an orbifold point porb where the P

2 is contracted to zero size, yielding the
orbifold X = [C3/Z3].

Following the standard procedure of [HV00], the mirror three-fold Y
can be described as follows. Let w, w′ ∈ C, and x, y ∈ C

∗. Then Y is the

7We note here that there is an alternative strategy to compute the orbifold amplitudes,
which combines modular — or wavefunction — properties of the amplitudes and the
symplectic transformation between the periods canonically chosen by the mirror maps
at the large radius point and the orbifold point. This was the approach emphasized in
[ABK06], where it was shown to be equivalent to the procedure outlined here.
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non-compact three-fold

Y = {ww′ = y2 + y(1 + x) + qx3}, (4.2)

where q is a coordinate on M(Y ) centered at the large radius point q0 :=
{q = 0} ∈ M(Y ). That is, Y is a conic fibration over C

∗ × C
∗, where the

fiber degenerates to two lines over the one-parameter family of Riemann
surfaces

Σ(q) = {y2 + y(1 + x) + qx3 = 0}, (4.3)

which has genus 1 and three punctures. The point of finite monodromy
qorb ∈ M(Y ) is located at q → ∞. A natural coordinate centered at qorb is

ψ = q−1/3, (4.4)

as can be read off from the secondary fan. Note that under Z3-monodromy
around qorb = {ψ = 0}, ψ undergoes

ψ �→ e2πi/3ψ. (4.5)

4.2 The orbifold mirror map

The first ingredient that we need to fix is the mirror map near the orbifold
point porb ∈ KM(X). In order to do so, we start by solving the Picard–Fuchs
equations near qorb ∈ M(Y ). Following the work of Chiang et al. [CKYZ99],
we know that the Picard–Fuchs differential operator that annihilates the
periods is given by, in terms of the coordinate ψ centered at qorb:

Dψ = ψ3Θ3
ψ + 27(Θψ − 2)(Θψ − 1)Θψ, (4.6)

with Θψ = ψ∂ψ. DψΠorb = 0 can be solved with techniques from [GKZ94];
a solution vector is given by Πorb = (1, B1(ψ), B2(ψ)) with

Bk(ψ) =
∑

n≥0

(−1)3n+k+1ψ3n+k

(3n + k)!

(
Γ

(
n + k

3

)

Γ
(

k
3

)
)3

. (4.7)

As described in Section 3.3, to get the orbifold mirror map we need to find
linear combinations of the solutions above that are mapped to a basis for the
orbifold cohomology of [C3/Z3]. The orbifold cohomology H∗

orb([C
3/Z3]) has
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basis 10, 11/3 and 12/3, where the 1r/3 are components of the inertia stack
corresponding to the elements [r] of Z3. The basis elements have degrees

deg(10) = 0, deg(11/3) = 2, deg(12/3) = 4. (4.8)

Hence H∗
orb([C

3/Z3]) is spanned by

σ010 + σ111/3 + σ212/3. (4.9)

The orbifold mirror map will be given by mapping σ1 to an appropriate
combination of 1, B1(ψ) and B2(ψ).

Recall that monodromy around qorb is given by ψ �→ e2πi/3ψ, which implies

(1, B1(ψ), B2(ψ)) �→ (1, e2πi/3B1(ψ), e4πi/3B2(ψ)). (4.10)

But 11/3 corresponds to the element [1] ∈ Z3, or, in terms of third roots of
unity, to e2πi/3. Thus, it is clear that σ1 must be mapped to B1(ψ) directly,
up to an overall scale factor. More precisely, we claim that the mirror map
is given by

(σ1, σ2) = (B1(ψ), B2(ψ)). (4.11)

Another way of arguing for this mirror map is by computing the genus
0 amplitude, as we do next. Up to scale, the above mirror map is the
only map that yields a genus 0 amplitude which is invariant under orbifold
monodromy. Note that this is also the mirror map that was proved in
[CCIT07a].

4.3 Genus 0 amplitude

Before computing the genus 0 amplitude, let us clarify the relation between
the A-model amplitudes and Gromov–Witten theory at the orbifold point.
At large radius, the genus g A-model amplitudes become generating func-
tionals for genus g Gromov–Witten invariants 〈 〉g

(X,β) in homology classes
β ∈ H2(X, Z), with no insertions. At the orbifold point, [C3/Z3] contains no
compact curve, hence the only invariants correspond to constant maps β = 0.
However, the A-model amplitudes now become generating functionals for
orbifold Gromov–Witten invariants with marked points, more precisely

F orb
g =

∞∑

n=0

1
n!

〈(11/3)
n〉g

([C3/Z3],0)σ
n
1 . (4.12)
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Note that the unmarked (n = 0) invariants are only well-defined for g ≥ 2.
Moreover, only contributions with n ∈ 3Z are non-zero, which ensures that
the amplitudes are invariant under orbifold monodromy.

To compute the genus 0 amplitude, we use the fact that it is given by the
prepotential of special geometry, which is defined by8

σ2 = −3
∂Forb

∂σ1
. (4.13)

Forb gives the genus 0 orbifold Gromov–Witten potential F orb
0 of [C3/Z3].

Integrating σ2, we get

F orb
0 =

∞∑

k=1

1
(3k)!

〈(11/3)
3k〉g=0

([C3/Z3],0)σ
3k
1 (4.14)

with the invariants N0,k := 〈(11/3)3k〉0([C3/Z3],0):

N0,1 =
1
3
, N0,2 = − 1

33 , N0,3 =
1
32 , N0,4 = −1093

36 , . . . (4.15)

Agreement with the mathematical computation of the genus 0 amplitude
fixes the normalization of the mirror map (4.11).

4.4 Higher genus amplitudes

To extract the higher genus amplitudes of [C3/Z3], we need to compute the
holomorphic functions hg at each genus g. This can be done easily at large
radius, by first computing the A-model amplitudes through the topological
vertex, and then mapping them to the B-model side using the usual mirror
map at large radius. We obtain, for the marked invariants:

F orb
g =

∞∑

k=1

1
(3k)!

〈(11/3)
3k〉g

([C3/Z3],0)σ
3k (4.16)

with the numbers Ng,k := 〈(11/3)3k〉g
([C3/Z3],0):

8The unusual factor of −3 here comes from the fact that since Y is non-compact, it is
not possible to find a symplectic basis of three cycles; instead, the A- and the B-cycles
have intersection number −3.

We would like to thank A. Klemm for the computation of the g ≥ 3 invariants.



HIGH GENUS INVARIANTS OF [C3/Z3] 715

g k = 1 2 3 4

0 1
3 − 1

33
1
32 − 1093

36

1 0 1
35 − 14

35
13007

38

2 1
24·34·5 − 13

24·36
20693
24·38·5 − 12803923

24·310·5

3 − 31
25355·7

11569
25395·7 − 2429003

253105·7
871749323
243115·7

4 313
273952 − 1889

2739
115647179
2631352 − 29321809247

2831252

5 − 519961
29311527·11

196898123
29312527·11 − 339157983781

29314527·11
78658947782147

293165·7

6 14609730607
212313537211 − 258703053013

210315517211
2453678654644313

212314537211 − 40015774193969601803
211318537211

The unmarked invariants (n = k = 0) for g ≥ 2 (these are not well defined
for g = 0, 1) can also be calculated, and read

N2,0 =
−1

2160
+

χ(X)
5760

, N3,0 =
1

544320
− χ(X)

1451520
, (4.17)

N4,0 = − 7
41990400

+
χ(X)

87091200
, N5,0 =

3161
77598259200

− χ(X)
2554675200

, . . .

where χ(X) is the “Euler number” of X = O(−3) → P
2.

A little more should be said about the unmarked invariants. To compute
these invariants, we first needed the degree 0 unmarked invariants at large
radius, that is the invariants 〈 〉g

(X,0) for constant maps to X = O(−3) →
P

2, which give the second term in each of the expressions above. These
invariants were computed by Faber and Pandharipande:

〈 〉g
(X,0) = (−1)gχ(X)

∫

Mg

λgλg−1λg−2, g ≥ 2, (4.18)

where we use the notation of Section 1. The integral here is precisely the
Hodge integral (1.14). Even though talking about the Euler characteristic
of a non-compact three-fold might make some differential geometers cringe,
we observe that any vector bundle retracts to its zero section. Therefore,
χ(X) = χ(P2) = 3, and we obtain

N2,0 =
1

17280
, N3,0 = − 1

4354560
, (4.19)

which match perfectly the results obtained earlier via Hodge integrals.

To end this section, let us mention that although the calculation of the
unmarked invariants here is relatively similar to the Hodge integral calcu-
lation performed earlier (in particular the use of Faber–Pandharipande’s
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formula), it is fundamentally different. Indeed, as noticed in Section 2,
for g ≥ 4 the second integral (1.11) should not vanish anymore, and the
direct Hodge integral calculation necessitates an understanding of these new
Z3-Hodge integrals. However, for the physics calculation, only the Faber–
Pandharipande standard Hodge integral is needed, since the corrections
come from the functions hg and the recursive formula (3.8).
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