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Abstract

We offer a new construction of Lagrangian submanifolds for the
Gopakumar–Vafa conjecture relating the Chern–Simons theory on the
3-sphere and the Gromov–Witten theory on the resolved conifold. Given
a knot in the 3-sphere, its conormal bundle is perturbed to disconnect
it from the zero-section and then pulled through the conifold transi-
tion. The construction produces totally real submanifolds of the resolved
conifold that are Lagrangian in a perturbed symplectic structure and
correspond to knots in a natural and explicit way. We prove that both
the resolved conifold and the knot Lagrangians in it have bounded geom-
etry, and that the moduli spaces of holomorphic curves ending on the
Lagrangians are compact in the Gromov topology.

Introduction

In [26], Witten argues that the large N expansion of the U(N) Chern–Simons
theory on a 3-manifold M should be equivalent to an open string theory
on T ∗M . In the absence of knots (Wilson loops), the latter is supposed to
describe pseudoholomorphic curves (strings) on T ∗M with boundaries on the
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zero-section. When knots are present Ooguri and Vafa suggested that curves
should additionally be allowed to end on conormal bundles to them [21].
Unfortunately, ordinary Gromov–Witten theory on T ∗M is trivial, since
there are no non-trivial pseudoholomorphic curves there. Neither closed
surfaces nor surfaces ending on the zero-section or a conormal bundle may
be pseudoholomorphic due to a vanishing theorem in [26] (see Remark 1.5).
One way around this proposed by Witten himself is to use some degenerate
“curves” (fat-graphs), but it is unclear how to formalize such a theory (see,
however, [18]).

Another way around this difficulty was proposed by Gopakumar and Vafa
in [10] for M = S3. The idea is to change the topology of T ∗S3 so that
Gromov–Witten theory on the resulting manifold is non-trivial and still
equivalent to the Chern–Simons theory on S3. The resulting manifold in
this case is the O(−1) ⊕ O(−1) bundle over CP

1 and it can be obtained from
T ∗S3 by shrinking the S3-cycle to a point and then inserting an S2-cycle in
its place. Thus, the U(N) Chern–Simons theory on S3 is predicted to be dual
to the Gromov–Witten theory on O(−1) ⊕ O(−1). This is the Gopakumar–
Vafa conjecture.

The midpoint in the transition is a singular variety C called the conifold
and the change from T ∗S3 to O(−1) ⊕ O(−1) is called the conifold transi-
tion. In the physical literature, T ∗S3 is referred to as the deformed coni-
fold and the resulting O(−1) ⊕ O(−1) bundle ̂C as the resolved conifold.
Schematically,

T ∗S3 � ̂C
�

�
�

�
�

F
� ��

�
�

�
�

π2

C
with F being the contraction map and π2 projecting to C

4 (see Section 1
for details). We note that π−1

2 is defined on C \ {0} so the dashed arrow is
“almost” well defined and π−1

2 (0) � CP
1 is the exceptional S2-cycle.

As the S3-cycle represented by the zero-section in T ∗S3 shrinks the open
curves that end on it become closed and then get lifted to ̂C. Although this
picture has no mathematical meaning, note that unlike T ∗S3, the resolved
conifold ̂C does admit non-trivial closed holomorphic curves and one can
talk about equivalence or duality between the Chern–Simons on S3 and the
Gromov–Witten on ̂C. In the case of closed curves, it was verified by a direct
computation in [8].
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When knots are present the geometric part of the Gopakumar–Vafa
conjecture predicts that the conormal bundle to a knot undergoes the coni-
fold transition and produces some Lagrangian submanifold L in ̂C [21]. Then
the Chern–Simons theory with knot observables (Wilson loops) on S3 has
to be dual to the open Gromov–Witten theory, where the curves end on L.
Ooguri and Vafa were able to produce L explicitly in the case of the unknot
using antiholomorphic involutions. This is a trick that does not generalize
to any other knots. For this case, the conjecture has been verified in [13,
15] using some narrow definition of open Gromov–Witten invariants. Later
Labastida, Mariño, and Vafa offered a way to construct Lagrangians for alge-
braic knots, in particular, torus knots [14]. This construction as explained
by Taubes [25] begins with producing a two-dimensional Lagrangian surface
in C

2 that intersects spheres of large radii along a given knot. Then this sur-
face is translated with twisting along the fibers of ̂C over the equator of CP

1

completing a half-twist after the full circle (analogous to the Möbius strip
considered as a bundle over the circle). To match up the ends, the original
surface in C

2 must be centrally symmetric which imposes a restriction on
admissible knots. Taubes came up with a generalization to non-algebraic
knots and links, but the rather artificial symmetry restriction remained.
In particular, it excludes something as simple as the trefoil knot. The main
flaw of this construction though is that the Lagrangian submanifold con-
structed is entirely unrelated to the conormal bundle in T ∗S3 it is supposed
to come from.

Our approach in contrast will be to obtain the corresponding Lagrangians
directly by applying the conifold transition to the conormal bundle N∗

k of a
knot k. As a result, the manifold L is produced for all knots in a uniform
way and without restrictions. However, this approach presents its own diffi-
culties. Since N∗

k intersects the zero-section of T ∗S3 which is being shrunk
into the conifold singularity, it also acquires a singularity in the process.
In general, this singularity is not resolved by subsequent lifting to ̂C. The
intuitive idea held by physicists (e.g., C.Vafa) is that one needs to perturb
N∗

k into N∗
k,ε disconnected from the zero-section and only then perform the

conifold transition to get CT(N∗
k,ε). The problem is that N∗

k is an exact
Lagrangian and there is an obstruction to disconnecting it from the zero-
section by a symplectic isotopy. It was discovered originally by Gromov for
compact submanifolds [3, 11] and then generalized to non-compact ones by
Oh using the Floer homology [20].

However, a smooth disconnecting isotopy can easily be found. The con-
struction is very straightforward. Let k : S1 ↪→ S3 be a naturally para-
metrized knot. Embed S3 into R

4 in the standard way then the embedding of
T ∗S3 � TS3 into R

4 × R
4 is also standard. The conormal bundle
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to k is realized as

N∗
k = {(x, p) ∈ T ∗S3 | x = k(t), p · k̇(t) = 0}.

To disconnect N∗
k from the zero-section we shift it in the fibers of T ∗S3 in

the direction tangent to the knot, namely

N∗
k,ε := {(x, p + εk̇(t)) | x = k(t), p · k̇(t) = 0}.

Since F (N∗
k,ε) misses the conifold singularity the conifold transition is given

simply by
CT(N∗

k,ε) := π−1
2 ◦ F (N∗

k,ε).

The transition CT(N∗
k,ε) turns out to be a smooth submanifold in ̂C and has

the correct topology S1 × R
2. Predictably, it fails to be Lagrangian in the

standard Kähler structure of the resolved conifold.

We beleive, however, that this is a false problem. Although the standard
Kähler structure on ̂C is the simplest one, it is not in any way special from
the physical point of view. The physically significant structure, if any, is
the one induced by the Calabi-Yau metric. The Calabi-Yau metric on ̂C
is known almost explicitly [5], but no attempt has been made to check if
even the Ooguri-Vafa submanifold for the unknot is Lagrangian in it. More-
over, the computations of open invariants in [13] only use the fact that
it is Lagrangian in the standard metric on the resolved conifold. On the
other hand, one does not need a necessarily Lagrangian submanifold to
build a theory of open holomorphic curves. It suffices to have a totally
real submanifold [19] with some uniformity conditions in non-compact cases
[3, 23]. Conifold transitions of perturbed conormal bundles constructed
in this paper do meet these conditions. Moreover, one can show that
the moduli of holomorphic curves ending on these submanifolds are com-
pact and thus suitable for defining open Gromov–Witten invariants (Theo-
rem 5.12).

The paper is organized as follows. In Section 1, we briefly review the
conifold transition and introduce a natural notion of the conifold transition
for submanifolds of T ∗S3. In Section 2 we compute explicitly the conifold
transitions of the conormal bundles to the unknot and torus knots. In the
former case, we get the well-known Ooguri-Vafa Lagrangian [21], while in
the latter a variety which is neither smooth nor Lagrangian. In Section 3,
a perturbed conormal bundle is defined and we prove that its conifold tran-
sition is a tame Lagrangian in ̂C (see Definition 3.4). In Section 4, we lay
the geometric groundwork for the compactness result in Section 5. Namely,
we use the technique of second fundamental forms and bi-Lipschitz maps
to prove that the resolved conifold has bounded geometry, i.e., its sectional
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curvature is bounded from above and the injectivity radius is bounded from
below. The key point is Lemma 4.8 which formalizes the idea that the
conifold has cone-like geometry. Finally, in Section 5 the moduli spaces
of open curves are introduced following [16] and the compactness of the
moduli of curves ending on CT(N∗

k,ε) is proved. In the end we present our
conclusions.

1 The conifold transition

In this section, we first review some basic facts about the conifold transition
[5, 6, 9, 24] and fix the notation used throughout the paper. Then we define
the conifold transition for submanifolds in T ∗S3 and apply it to conormal
bundles to knots in S3.

It is convenient to think of S3 as being embedded into R
4 as the unit

sphere and identify T ∗S3 with TS3 via the standard metric. At each point x
of the sphere the tangent space TxS3 is naturally identified with the tangent
hyperplane in R

4 at this point. Shifting it to the origin we get the subspace
of R

4 orthogonal to x and obtain a natural realization of the tangent bundle
in R

4 × R
4 as

T ∗S3 = TS3 = {(x, p) ∈ R
4 × R

4 | |x| = 1, p · x = 0}.

Now introduce complex coordinates on R
4 × R

4 � C
4 by zj := xj + ipj .

As realized above, T ∗S3 is not an algebraic submanifold of C
4, but it is

diffeomorphic to any member of the family with a > 0:

Ca :=
{

z ∈ C
4 | Σ

j
z2
j = a2

}

=
{

(x, p) ∈ R
4 × R

4 | |x|2 − |p|2 = a2, p · x = 0
}

.

Any Ca is manifestly algebraic and the diffeomorphism with T ∗S3 is given by

T ∗S3 Fa−→ Ca

(x, p) �−→
(

x
√

a2 + |p|2, p
)

.

The standard Kähler form

ω :=
i

2

∑

j

dzj ∧ dzj =
∑

j

dxj ∧ dpj (1.1)

on C
4 restricts to a Kähler form on every Ca. We can pull these forms

back to T ∗S3 via Fa, i.e., ωa := F ∗
a ω |Ca . It is straightforward to check

that the standard symplectic form on T ∗S3 is obtained as the limit ω∞ :=
lima→∞ ωa/a, but ω∞ is no longer Kähler.
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Let us look at the other limit a → 0 (cf. [24], Section 3). The algebraic
subvariety

C := C0 =
{

z ∈ C
4 | Σ

j
z2
j = 0

}

=
{

(x, p) ∈ R
4 × R

4| |x| = |p|, p · x = 0
}

(1.2)
is called the conifold [5]. It is singular with a nodal (ordinary double)
point at the origin [6, 9]. Equivalently, one can think of it as T ∗S3 with
the singular form ω0 := F ∗

0 ω |C that degenerates along the zero-section. The
manifolds Ca or equivalently (T ∗S3, ωa) are called the deformed conifolds.
The parameter a has a simple geometric interpretation as the radius of the
3-sphere p = 0 in Ca, i.e., of the zero-section. As a goes to 0 this sphere
collapses into the singular point in C. The map

F (x, p) := F0(x, p) = (|p|x, p) (1.3)

contracts T ∗S3 onto the conifold (Figure 1).

An alternative to smooth deformation when dealing with singularities
is resolution. The simplest type of resolution is blow-up [17] and blowing
up the origin in C

4 produces an algebraic submanifold of CP
3 × C

4. Let
π2 : CP

3 × C
4 → C

4 be the natural projection to the second factor. Then
the proper transform ˜C := π−1

2 (C \ {0}) is the blow-up or the large resolution
of C (here and below the overline denotes the closure). The inverse image
of the singular point π−1

2 (0) � CP
2 is called the exceptional divisor.

However, the conifold singularity admits a smaller resolution that only
adds an exceptional curve CP

1 instead of a whole divisor CP
2. To describe

this resolution it is convenient to use different coordinates on C
4:

w1 = z1 + iz2 w2 = −z3 + iz4
w3 = z3 + iz4 w4 = z1 − iz2.

(1.4)

Figure 1: The “conifold” transition two dimensions down S1 × R
1 �

S0 × R
2.
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Up to the factor of 1/
√

2, this is a unitary transformation of C
4 and the

difining equation (1.2) of the conifold becomes:

C =
{

w ∈ C
4 | w1w4 − w2w3 =

∣

∣

∣

∣

w1 w2
w3 w4

∣

∣

∣

∣

= 0
}

.

In the w-coordinates the small resolution can be written explicitly as

̂C :=
{

([u : v], w1, w2, w3, w4) ∈ CP
1 × C

4
∣

∣

∣

∣

∣

∣

∣

∣

w1 w2
u v

∣

∣

∣

∣

=
∣

∣

∣

∣

w3 w4
u v

∣

∣

∣

∣

= 0
}

,

(1.5)
and ̂C is called the resolved conifold. It is obvious from the definition that
̂C → CP

1 is a holomorphic sub-bundle of the trivial C
4-bundle over CP

1, and
therefore the total space is a smooth manifold. We denote its zero-section
by 0(̂C). The resolution preserves the canonical class [6, 9] and ̂C along with
C and Ca is a Calabi-Yau threefold [12].

To understand the resolved conifold better, consider the tautological line
bundle over CP

1:

O(−1) :=
{

([λ], w) ∈ CP
1 × C

2 | w ∈ [λ]
}

.

Here, we interpret [λ] as a line in C
2 and the fiber over it consists of all the

points on this line (hence the name tautological). The letter O is traditional
for holomorphic bundles in algebraic geometry and and the number −1 refers
to the fact that the first Chern class of this bundle evaluates to −1 on the
base CP

1 [4, 17]. More explicitly,

O(−1) =
{

([u : v], w1, w2) ∈ CP
1 × C

2
∣

∣

∣

∣

∣

∣

∣

∣

w1 w2
u v

∣

∣

∣

∣

= 0
}

and one can see by inspection that

̂C = O(−1) ⊕ O(−1).

Denoting by π1, π2 the natural projections to CP
1 and C

4, respectively, one
notes that

C = π2(̂C), ̂C = π−1
2 (C \ {0}).

Moreover, the projection π2 restricts to a biholomorphism from ̂C \ π−1
2 (0) to

C \ {0}. The resolved conifold ̂C admits a Kähler form π∗
1ωFS + π∗

2ω, where



598 SERGIY KOSHKIN

ωFS is the Fubini-Study form on CP
1 and ω is the standard Kähler form

(1.1) on C
4.

The conifold transition from the deformed to the resolved conifold is
streamlined in the following diagram

T ∗S3 � ̂C ⊂ � CP
1 × C

4

�
�

�
�

�
F

� ��
�

�
�

�

π2

C

(1.6)

where F (x, p) = (|p|x, p) is the contraction (1.3) that shrinks the zero-section
to the conifold singularity at the origin. Since π−1

1 (0) � CP
1 the singularity

gets replaced by a new S2-cycle in ̂C. Topologically, we have the transition
S3 × R

3 � S2 × R
4 (see Figure 1).

We will also be interested in the conifold transitions of certain submani-
folds of T ∗S3. The most natural transition seems to be the contraction by
F into C followed by the proper transform.

Definition 1.1. The conifold transition of a submanifold N ⊂ T ∗S3 is

CT(N) := π−1
2 (F (N) \ {0}). (1.7)

In our case, F (N) will be Lagrangian and not complex submanifolds so
we cannot expect that the proper transform will produce smooth manifolds.
In fact, as examples in the next section show, the conifold transitions are
not smooth in general.

The submanifolds we are primarily interested in are conormal bundles
to knots. We will show in Example 2.2 that our conifold transition of the
conormal bundle to the unknot is the Ooguri-Vafa Lagrangian obtained in
[13, 21] as the fixed locus of an antiholomorphic involution.

Definition 1.2. Let S ↪→ M be a submanifold. Then its conormal bundle
in T ∗M is

N∗
S := {� ∈ T ∗M | π(�) ∈ S, � |TS= 0}
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Let k : S1 → S3 be a knot. Then under the identification of T ∗S3 with
the submanifold of R

4 × R
4 one gets:

N∗
k =

{

(k(t), p) ∈ T ∗S3 | t ∈ S1, p · k̇(t) = 0
}

=
{

(k(t), p) ∈ R
4 × R

4 | t ∈ S1, p · k(t) = p · k̇(t) = 0
}

.
(1.8)

Lemma 1.3. N∗
k admits the following parametrization:

S1 × R
2 K−→ T ∗S3

(t, α, β) �−→ (k(t), αp1(t) + βp2(t)),
(1.9)

where p1(t), p2(t) are fundamental solutions in R
4 to

k(t) · p = 0

k̇(t) · p = 0,

and for every t, the vectors k(t), k̇(t), p1(t), p2(t) form an orthonormal basis
in R

4. Moreover, p1, p2 are C∞-smooth if k is.

Proof. Since k(S1) ⊂ S3, we have |k(t)| = 1 which implies k(t) · k̇(t) = 0.
Choosing the natural parametrization for the knot we also get |k̇(t)| = 1.
This means that the system for p1, p2 is non-degenerate. Choose a stereo-
graphic projection σ : S3 → R

3 ∪ {∞}, so that k passes neither through the
north nor through the south pole. By transversality, we may also assume
that σ(k(t)) and σ∗k̇(t) are linearly independent for every t. Set p̃1(t) to be
the cross-product σ(k(t)) × σ∗k̇(t) in R

3 then k(t), k̇(t), σ−1
∗ p̃1(t) are linearly

independent in R
4. Now, one can get p1(t) by the Gram–Schmidt process.

Finally, p2(t) := k(t) × k̇(t) × p1(t), the cross-product of three vectors in R
4.

The smoothness is obvious from the construction. �

It turns out that N∗
k is an exact Lagrangian submanifold in T ∗S3. Let us

recall the definition [3].

Definition 1.4. A symplectic manifold (X, ω) is exact, if ω has a primitive,
i.e., there is a 1-form λ such that ω = dλ. A Lagrangian submanifold L ↪→ X
is exact, if [λ |L] = 0 ∈ H1(L, R).

In particular, any X = T ∗M with the canonical symplectic structure
is exact and λ is the canonical Liouville form. In Darboux coordinates,
λ = −Σjpjdxj and λ |0(T ∗M)= 0, where 0(T ∗M) denotes the zero-section
corresponding to p = 0. So the zero-section is always an exact Lagrangian
submanifold.
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Remark 1.5. Note that if f : (Σ, ∂Σ) → (T ∗M, L) is a pseudoholomorphic
open curve (see Section 5) ending on the zero-section or any other exact
Lagrangian submanifold L then

Area(f) =
∫

Σ
f∗ω =

∫

Σ
d(f∗λ) =

∫

∂Σ
f∗λ = [λ |L](f∗[∂Σ]) = 0.

Thus f has to be a constant. Witten [26] calls this fact “the vanishing
theorem”.

In our case, the symplectic form on T ∗S3 was the restriction of ω =
Σ4

j=1dxj ∧ dpj from R
4 × R

4. If one sets λ := −Σ4
j=1pjdxj , then obviously

ω = dλ and since d commutes with restrictions ω |T ∗S3= d(λ |T ∗S3).

Lemma 1.6. N∗
k is an exact Lagrangian submanifold in T ∗S3.

Proof. In fact, we will show that λ |N∗
k
= 0. Identifying T(x,p)N

∗
k with a

subspace of R
4 × R

4 in the usual way one gets:

K∗∂t = (k̇, αṗ1 + βṗ2)

K∗∂α = (0, p1)

K∗∂β = (0, p2)

Thus
λ(K∗∂t) = (αp1 + βp2) · k̇ = αp1 · k̇ + βp2 · k̇ = 0

and
λ(K∗∂α) = (αp1 + βp2) · 0 = 0 = λ(K∗∂β).

Finally, N∗
k has the right dimension, dimN∗

k = 1/2 dim T ∗S3 = 3. �

Intuitively, this corresponds to the fact that the only x-direction in N∗
k

is the one orthogonal to its p-directions so λ = −p · dx vanishes on it “by
definition”.

Recall from (1.3) that the first half of the conifold transition is the
contraction F (x, p) = (|p|x, p). It turns out that although this map is not
symplectic it does map exact Lagrangians into exact Lagrangians away from
the singular locus.

Lemma 1.7. F (N∗
k ) \ {0} is a Lagrangian submanifold in C.

Proof. On T ∗S3 one has F ∗λ = |p|λ, F ∗ω = |p|ω + d|p| ∧ λ. Indeed,

F ∗λ = F ∗(− Σ
j

pjdxj) = − Σ
j

pjd(|p|xj)
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= −|p| Σ
j

pjdxj − Σ
j

pjxjd|p|

= |p|λ − (p · x)d|p| = |p|λ,

since p · x = 0 on T ∗S3. The second relation follows from the first one:

F ∗ω = F ∗dλ = dF ∗λ = d(|p|λ)

= |p|dλ + d|p| ∧ λ.

N∗
k ∩ 0(T ∗S3) will be mapped into the conifold singularity at the origin, but

away from that point λ |F (N∗
k )= F ∗λ |N∗

k
= |p|λ |N∗

k
= 0, i.e., F (N∗

k ) \ {0} is
still a Lagrangian submanifold. �

The last step is to lift F (N∗
k ) to the resolved conifold ̂C. The Kähler

structure on ̂C is induced by the product structure on CP
1 × C

4, namely
ω̂ := (π∗

1ωFS + π∗
2ω) |

̂C with ω = i
2Σ4

j=1dzj ∧ dzj = iΣ4
j=1dwj ∧ dwj in com-

plex coordinates.

Theorem 1.8. π−1
2 (F (N∗

k ) \ {0}) is Lagrangian in (̂C, ω̂) if and only if it
projects to a set of zero volume in CP

1.

Proof. Since π∗
2 : ̂C \ π−1

2 (0) → C \ {0} is a biholomorphism we have,

ω̂ |π−1
2 (F (N∗

k )\{0}) = π−1∗
2 ω̂ |F (N∗

k )\{0}= π−1∗
2 (π∗

1ωFS + π∗
2ω) |F (N∗

k )\{0}

= (π1 ◦ π−1
2 )∗ωFS |F (N∗

k )\{0} + ω |F (N∗
k )\{0}

= ωFS |π1(π−1
2 (F (N∗

k )\{0}))′,

where we used the fact that F (N∗
k ) \ {0} is Lagrangian by Lemma 1.7. The

left-hand side is 0 if and only if π−1
2 (F (N∗

k ) \ {0}) is Lagrangian, while the
right-hand side is 0 if and only if its projection to CP

1 has 0 volume. �

Recall that by our definition, CT(N∗
k ) = π−1

2 (F (N∗
k ) \ {0}) so this theorem

does not guarantee that the conifold transition of a conormal bundle is a
manifold even if it does project to a null set. However, if the closure is indeed
a smooth manifold with the projection of zero volume, it will automatically
be Lagrangian (ω̂ = 0 on the closure by continuity). Another remark is that
our choice of ω̂ on ̂C is more or less arbitrary. From the physical point of view
a more natural choice is ωCY , the Kähler form induced by the Calabi-Yau
metric on ̂C [5]. But as we will see, CT(N∗

k ) is not even a smooth manifold
already for torus knots.
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2 The unknot and torus knots

Here we use the parametrization of N∗
k from the previous section

(Lemma 1.3) to compute CT(N∗
k ) for k the unknot or a torus knot. For

this computation, it is convenient to use a different complex structure on
R

4 × R
4 given by the new holomorphic coordinates

ξ = (ξ1, ξ2) = (x1 + ix2, x3 + ix4)

η = (η1, η2) = (p1 + ip2, p3 + ip4).

In these coordinates

T ∗S3 =
{

(ξ, η) ∈ C
2 × C

2 | |ξ| = 1, Re(ξη) = 0
}

and the change to w-coordinates is

w1 = ξ1 + iη1 w2 = −(ξ2 + iη2)
w3 = ξ2 + iη2 w4 = ξ1 + iη1

The parametrization of a conormal bundle has the same form as before

K(t, α, β) =
(

k(t), αp1(t) + βp2(t)
)

but k, p1, p2 now are C
2 vectors. Applying the contraction F one obtains

F ◦ K(t, α, β) =
(

k(t)
√

α2 + β2, αp1(t) + βp2(t)
)

,

which suggests the change to polar coordinates

r =
√

α2 + β2, tan θ =
β

α
,

where F ◦ K(t, r, θ) = r(k(t), ℘(t, θ)), ℘(t, θ) := p1(t) cos θ + p2(t) sin θ.
Here r ≥ 0 and r = 0 corresponds to the conifold singularity.

Example 2.1. For the unknot we have

k(t) = (eit, 0) ∈ S3 ↪→ C
2,

k̇(t) = (ieit, 0),

p1(t) = (0, 1),

p2(t) = (0, i).

Thus ℘(t, θ) = (0, 1) cos θ + (0, i) sin θ = (0, eiθ) and F ◦ K(t, r, θ) = r(eit,
eiθ). In terms of this parametrization F (N∗

k ) \ {0} = F ◦ K(S1 × R>0 ×
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S1). To find the proper transform, we change to w-coordinates:

w1 = reit w2 = ireiθ = −ire−iθ

w3 = ireiθ w4 = reit = re−it

By definition of the resolved conifold

π−1
2 (w1, w2, w3, w4) = ([u : v], w1, w2, w3, w4),

where
∣

∣

∣

∣

w1 w2
u v

∣

∣

∣

∣

=
∣

∣

∣

∣

w3 w4
u v

∣

∣

∣

∣

= 0. Since on F (N∗
k ) \ {0} when r > 0 both w1,

w2 are never 0, we can just set [u : v] = [w1 : w2] and get:

CT(N∗
k ) = π−1

2 (F (N∗
k ) \ {0})

=
{

([eit : −ie−iθ], reit,−ire−iθ, ireiθ, re−it) | t, θ ∈ S1, r ≥ 0
}

=
{

([iei(t+θ) : 1], reit,−ireiθ, ireiθ, re−it) | t, θ ∈ S1, r ≥ 0
}

This becomes more transparent if one sets

α := iei(t+θ)

b := −ire−iθ

so that
CT(N∗

k ) =
{

([α : 1], αb, b, b, αb) | α ∈ S1, b ∈ C

}

.

This is a smooth submanifold of ̂C diffeomorphic to S1 × C and since
|α| = 1 it fibers over the equator of CP

1 (Figure 2). By Theorem 1.8, this
means that CT(N∗

k ) is also Lagrangian. In fact, this is the same Lagrangian
submanifold that was obtained in [21] as the fixed locus of an antiholomor-
phic involution and used in [13] to compute open Gromov–Witten invariants.
Note that the topologies of N∗

k and CT(N∗
k ) are the same, namely S1 × R

2

even though T ∗S3 changes its topology from S3 × R
3 to S2 × R

4.

Figure 2: Conifold transition for the unknot (low-dimensional analog).



604 SERGIY KOSHKIN

Example 2.2 (Torus knots).

There is a standard copy of a 2-torus sitting in C
2 : {(ξ1, ξ2) | |ξ1| =

|ξ2| = 1}. If we change the normalization from 1 to 1/
√

2 this torus will
be placed inside S3 ↪→ C

2. The embedding k(t) = 1/
√

2 (eimt, eint) obvi-
ously winds m times around one of the cycles in T

2 and n times around
the other one. Therefore, for relatively prime (m, n) = 1 it represents an
(m, n) torus knot. We will assume, m �= n, since m = n = 1 is the case of
the unknot and otherwise m, n can not be relatively prime. We have

k(t) =
1√
2
(eimt, eint),

k̇(t) =
1√
2
(imeimt, ineint),

p1(t) =
1√
2
(eimt,−eint),

p2(t) =
1√

m2 + n2
(ineimt,−imeint).

The parameter t here is obviously not the arclength, but the only effect
this has is that |k̇|2 = (m2 + n2/2) = const instead of 1 so the difference is
insignificant.

℘(t, θ) =
1√
2

(

eimt

(

cos θ + i
n
√

2√
n2 + m2

sin θ

)

,

−eint

(

cos θ + i
m

√
2√

n2 + m2
sin θ

))

Writing F ◦ K(t, r, θ) = r(k(t), ℘(t, θ)) and changing to w-coordinates
one finds

w1 =
reimt

√
2

(

1 − n
√

2√
n2 + m2

sin θ + i cos θ

)

,

w2 = −re−int

√
2

(

1 +
m

√
2√

n2 + m2
sin θ − i cos θ

)

,

w3 =
reint

√
2

(

1 − m
√

2√
n2 + m2

sin θ − i cos θ

)

,

w4 =
re−imt

√
2

(

1 +
n
√

2√
n2 + m2

sin θ + i cos θ

)

.
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Just as in the case of the unknot for r > 0 one can set [u : v] = [w1 : w2] =

=

[

eimt

(

1 − n
√

2√
n2 + m2

sin θ + i cos θ

)

:

−e−int

(

1 +
m

√
2√

n2 + m2
sin θ − i cos θ

)]

and since the last expression does not depend on r taking the closure is
simply allowing r = 0 in the formulas for the wj above. Since F and π−1

2
are diffeomorphisms away from the zero-section of T ∗S3 and the origin,
respectively, CT(N∗

k ) is a smooth manifold everywhere, but possibly at the
zero-section of O(−1) ⊕ O(−1) � ̂C, where r = 0.

Now, we take a look at the CP
1 projection of CT(N∗

k ). It is parametrized
by [u : v](t, θ) given above and u/v is a possible coordinate on the projection
(unless m = n, which is the case we excluded). Hence

w(t, θ) :=
u

v
= −ei(m+n)t 1 −

(

n
√

2/
√

n2 + m2
)

sin θ + i cos θ

1 + (m
√

2/
√

n2 + m2) sin θ − i cos θ

parametrizes the image of the projection in C. The first factor is 1 in
absolute value while the absolute value of the second one changes between
two positive values less than and greater than 1.

This means that the CP
1 trace of CT(N∗

k ) is an annulus containing the
equator. In the case of the unknot, the trace was just the equator itself, in
particular it was one-dimensional (Figure 2). This is due to the fact that the
unknot in S3 can be flat, i.e., placed within a 2-plane, which is impossible
for any non-trivial knot. As a result of replacing the 3-cycle by a 2-cycle, the
conormal bundle to a non-planar knot “smashes” into an annulus on CP

1

and CT(N∗
k ) acquires a corner singularity along the edge of the annulus (see

Figure 3). By Theorem 1.8, CT(N∗
k ) is not Lagrangian even away from the

Figure 3: Corner singularity in the conifold transition for torus knots.
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singularity. For the unknot, the flatness makes it possible for the conifold
transited conormal bundle to just touch the equator.

3 Perturbed conormal bundles

The obvious reason for the conifold transition of a conormal bundle to be
singular is that it intersects the zero-section of T ∗S3 which collapses into a
singular point. The simplest way to avoid this is to perturb N∗

k so that it
is disconnected from the zero-section. Of course, we would like to obtain an
exact Lagrangian ˜N∗

k after perturbation since this would make CT( ˜N∗
k ) a

Lagrangian submanifold of the resolved conifold. Unfortunately, there is an
obstruction to such perturbation following from a theorem of Gromov-Oh:
in a cotangent bundle every exact Lagrangian submanifold intersects the
zero-section [3, 11, 20].

Thus we have to settle for an ordinary isotopy instead of a symplectic
one. Even though CT( ˜N∗

k ) will no longer be Lagrangian in ̂C, it will be
good enough for the purposes of open Gromov–Witten theory. Specifically,
it will be Lagrangian with respect to a different uniformly tame symplectic
form on C (tame Lagrangian, see Definition 3.4).

As before we identify T ∗S3 � TS3. To separate N∗
k from the zero-section,

we simply move it within each fiber in the direction tangent to the knot.
Recall that N∗

k = {(k(t), p) ∈ T ∗S3 | t ∈ S1, p · k̇(t) = 0}.

Definition 3.1. The perturbed conormal bundle is

N∗
k,ε := {(k(t), p + εk̇(t)) | t ∈ S1, p · k̇(t) = 0}. (3.1)

Since k̇(t) · k(t) = 0 one has N∗
k,ε ⊂ T ∗S3 for all ε ≥ 0. And p · k̇(t) = 0

implies |p + εk̇(t)|2 = |p|2 + ε2|k̇(t)|2 = |p|2 + ε2 ≥ ε2 > 0 so N∗
k,ε is, indeed,

disjoint from the zero-section for any ε > 0.

Since CT(N∗
k,ε) = π−1

2 ◦ F (N∗
k,ε), the proofs in this section split into two

parts. First, we prove that F (N∗
k,ε) is a tame Lagrangian in C and then

that π−1
2 preserves this property. Lemma 3.10 is also used to prove bounded

geometry of ̂C in the next section. It is convenient to represent N∗
k,ε as

the image of N∗
k under an ambient isotopy in R

4 × R
4 ⊃ T ∗S3. To this

end, let ξ be a smooth vector field in R
4 with compact support satisfying

ξ(k(t)) = k̇(t).
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Definition 3.2. Let

R
4 × R

4 Φε−→ Ca

(x, p) �−→ (x, p + εξ(x)).

Φε is an isotopy since Φ−1
ε (x, p) = (x, p − εξ(x)) and by construction of ξ,

Φε(N∗
k ) = N∗

k,ε.

Let us now look at the image of N∗
k,ε under the contraction F (x, p) =

(|p|x, p), the first half of the conifold transition:

F (N∗
k,ε) =

{(

x
√

|p|2 + ε2, p + εk̇(t)
)

| t ∈ S1, p · k̇(t) = 0
}

.

Recall the regularized contraction Fε from Section 1: Fε(x, p) :=
(x
√

|p|2 + ε2, p). The following diagram of maps commutes (see Figure 4):

N∗
k

Fε� R
4 × R

4

R
4 × R

4

Φε

�
F� R

4 × R
4.

Φε

�

Now we want to investigate in what sense F (N∗
k,ε) = F (Φε(N∗

k )) = Φε(Fε

(N∗
k )) is close to being Lagrangian in C.

Lemma 3.3. Fε(N∗
k ) is isotropic in R

4 × R
4, i.e., ω = Σidxi ∧ dpi vanishes

on it.

Figure 4: Disconnecting the conormal bundle from the zero-section.
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Proof. From the parametrization of N∗
k , we have for Fε(N∗

k ):

S1 × R
2 Fε◦K�−→ R

4 × R
4

(t, α, β) �−→
(

k(t)
√

α2 + β2 + ε2, αp1(t) + βp2(t)
)

.

Thus the tangent bundle is spanned by

(Fε ◦ K)∗∂f =
(

k̇(t)
√

α2 + β2 + ε2, αṗ1(t) + βṗ2(t)
)

(Fε ◦ K)∗∂α = (k(t)α(α2 + β2 + ε2)−1/2, p1(t))

(Fε ◦ K)∗∂β = (k(t)β(α2 + β2 + ε2)−1/2, p2(t))

Let J be the standard complex structure on R
4 × R

4 � C
4, then

J(Fε ◦ K)∗∂t = (−αṗ1(t) − βṗ2(t), (α2 + β2 + ε2)1/2k̇(t))

J(Fε ◦ K)∗∂α = (−p1(t), α(α2 + β2 + ε2)−1/2k(t))

J(Fε ◦ K)∗∂β = (−p2(t), β(α2 + β2 + ε2)−1/2k(t)).

Since k(t), k̇(t), p1(t), p2(t) are pairwise orthogonal for each t one can
see by inspection that J(TFε(N∗

k )) ⊥ TFε(N∗
k ), which is equivalent to

isotropy. �

However, F (N∗
k,ε) = Φε(Fε(N∗

k )) will no longer be Lagrangian in C.
It does satisfy a weaker property that we now introduce [17, 23].

Definition 3.4. Let (M, J, g) be an almost Kähler manifold. A symplectic
form ω̃ is called uniformly tame if there exists a constant C ≥ 1 such that
for any vector field X on M :

C−1g(X, X) ≤ ω̃(X, JX) ≤ Cg(X, X) (3.2)

A submanifold L ↪→ M is (uniformly) tame isotropic if there is a uniformly
tame ω̃ defined in its neighborhood such that ω̃ |TL = 0. If in addition
dim L = 1/2 dim M , then L is called (uniformly) tame Lagrangian.

Note that the Kähler form ω(X, Y ) = g(JX, Y ) is obviously uniformly
tame with C = 1 so this is a generalization of the Lagrangian condition.
Also, tame Lagrangian implies totally real, i.e., J(TL) ∩ TL = {0}. Indeed,
if X ∈ J(TL) ∩ TL, then JX ∈ TL since J2 = −I and |X|2 = g(X, X) ≤
Cω̃(X, JX) = 0 so X = 0. Most importantly for us, the property of being
tame Lagrangian or isotropic is preserved under biholomorphisms. Namely,
if Φ : (M, J, g) → (˜M, ˜J, g̃) is a biholomorphism and L ↪→ M is ω̃-Lagrangian
then Φ(L) is Φ∗ω̃ := Φ−1∗ω̃ -Lagrangian.
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So far, we have not imposed any restrictions on the perturbation parameter
ε. We will do so now to ensure uniform tameness. Let ξ be the perturbation
vector field from Definition 3.2 and Dξ be its Jacobian matrix. Set ‖Dξ‖ :=
supx∈R4 ‖Dξ(x)‖

Lemma 3.5. If ε < (1/‖Dξ‖), then Φε∗ω = Φ−1∗
ε ω is uniformly tame in

R
4 × R

4 � C
4.

Proof.

Φε∗ω = Φ−1∗
ε ω =

∑

i

Φ−1∗
ε (dxi ∧ dpi) =

∑

i

dxi ∧ d(pi − εξi(x))

=
∑

i

dxi ∧ dpi − ε
∑

i,j

∂ξi

∂xj
dxi ∧ dxj

Since J∂xi = ∂pi and J∂pi = −∂xi , we get

Φε∗ω(X, JX) =
∑

i

(dxi(X)2 + dpi(X)2)

− ε
∑

i,j

(

∂ξi

∂xj
− ∂ξi

∂xj

)

dpi(X)dxj(X)

= |X|2 − ε
(

(Dξ − DξT )dp(X), dx(X)
)

The absolute value of the second term is bounded by

2ε‖Dξ‖|dp(X)||dx(X)| ≤ 2ε‖Dξ‖|dp(X)|2 + |dx(X)|2
2

= ε‖Dξ‖|X|2

Therefore, (1 − ε‖Dξ‖)|X|2 ≤ Φε∗ω(X, JX) ≤ (1 + ε‖Dξ‖)|X|2 and if ε <
(1/‖Dξ‖), Φε∗ω is uniformly tame with C = (1 − ε‖Dξ‖)−1 �
Corollary 3.6. F (N∗

k,ε) is a tame Lagrangian in C for ε < (1/‖Dξ‖).

Proof. Let ω̃ = Φε∗ω. Since Φε is a diffeomorphism and Φε(Fε(N∗
k )) =

F (N∗
k,ε) vectors Φε∗X for X ∈ TFε(N∗

k ) span TF (N∗
k,ε). But

ω̃(Φε∗X, Φε∗Y ) = Φ−1∗
ε ω(Φε∗X, Φε∗Y ) = ω(X, Y ) = 0

since Fε(N∗
k ) is isotropic by Lemma 3.3. �

As N∗
k,ε is disjoint from the zero-section of T ∗S3, its contraction F (N∗

k,ε)
now avoids the singularity of the conifold at the origin. In fact, if (x, p) ∈
F (N∗

k,ε) then |x|2 + |p|2 ≥ 2ε2 > 0. Now the second half of the conifold
transition (1.6) constitutes lifts F (N∗

k,ε) to ̂C. Recall from (1.4) that we
changed the coordinates in C

4 from z = x + ip to w =
√

2 (Uz), where U is
a unitary matrix. Therefore, along F (N∗

k,ε) we have |w| ≥
√

2 ·
√

2 ε = 2ε
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and it is separated from 0. Since π−1
2 : C \ {0} → ̂C \ 0(̂C) is a biholomor-

phism there is no need to take closure in the conifold transition (1.7) and we
simply have

CT(N∗
k,ε) = π−1

2 (F (N∗
k,ε)).

To establish that CT(N∗
k,ε) is a tame Lagrangian in ̂C we need certain prop-

erties of π−1
2 .

Definition 3.7 [1]. A map Φ : (M, g) → (˜M, g̃) between Riemannian man-
ifolds is (uniformly) bi-Lipschitz if there exists a constant C ≥ 1 such that

C−1g ≤ Φ∗g̃ ≤ Cg. (3.3)

The map Φ does not have to be a diffeomorphism, e.g., any isometric
immersion would satisfy this condition with C = 1. If Φ is a diffeomorphism
then being uniformly bi-Lipschitz is equivalent to the norms of Φ∗ and Φ−1

∗
being bounded by a constant, i.e., |Φ∗X|g̃ ≤ C|X|g and |Φ−1

∗ Y |g ≤ C|Y |g̃.

Lemma 3.8. Let Φ : (M, J, g) → (˜M, ˜J, g̃) be a bi-Lipschitz biholomorphism
between two almost Kähler manifolds. If L ↪→ M is a tame Lagrangian then
so is ˜L := Φ(L).

Proof. Let ω′ be the corresponding uniformly tame symplectic form in the
neighborhood of L in M , i.e., ω′ |TL= 0, C−1

1 g(X, X) ≤ ω′(X, JX)
≤ C1g(X, X). Consider Φ∗ω′ = Φ−1∗ω′ =: ω̃′ in the neighborhood of ˜L.
Since Φ is a biholomorphism:

ω̃′(Φ∗X, JΦ∗X) = ω̃′(Φ∗X, Φ∗JX) = Φ−1∗ω′(Φ∗X, Φ∗JX) = ω′(X, JX).

Since Φ is bi-Lipschitz

C−1
2 g(X, X) ≤ g̃(Φ∗X, Φ∗X) ≤ C2g(X, X).

Therefore, combining the inequalities

(C1C2)−1g̃(Φ∗X, Φ∗X) ≤ ω̃′(Φ∗X, JΦ∗X) ≤ C1C2 g̃(Φ∗X, Φ∗X),

and ω̃′ is uniformly tame. Also if X, Y ∈ TL

ω̃′(Φ∗X, Φ∗Y ) = Φ−1∗ω′(Φ∗X, Φ∗Y ) = ω′(X, Y ) = 0

and ω̃′ |
T ˜L

= 0. �

In view of Lemma 3.8 to prove that CT(N∗
k,ε) is a tame Lagrangian,

we have to show that π−1
2 is bi-Lipschitz away from the singularity in C.
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Recall that the metric on ̂C is ĝ = π∗
1gFS + π∗

2gst, where gFS is the Fubinin-
Study metric on CP

1 and gst is the standard metric on C
4. Hence

π−1∗
2 ĝ = (π1 ◦ π−1

2 )∗gFS + gst ≥ gst.

To establish the inverse inequality let us introduce convenient notation.

Definition 3.9. If α, β are 1-forms then α � β := α ⊗ β + β ⊗ α defines
their symmetric product.

Then for instance gFS = 1/2(dz � dz)/((1 + |z|2)2), where z = u/v and
[u : v] are homogeneous coordinates on CP

1. One also has a Cauchy
inequality:

|α � β| ≤ 1
2
(α � α + β � β). (3.4)

Lemma 3.10. With the above notation

(π1 ◦ π−1
2 )∗gFS ≤ 2

|w|2 gst for w ∈ C \ {0}. (3.5)

Proof. If ([u : v], w1, w2, w3, w4) ∈ ̂C then
∣

∣

∣

∣

w1 w2
u v

∣

∣

∣

∣

=
∣

∣

∣

∣

w3 w4
u v

∣

∣

∣

∣

= 0. Therefore,

z = u/v = w1/w2 if w2 �= 0 and w3/w4 if w4 �= 0. Assume for now that
w2 �= 0 and (π1 ◦ π−1

2 )(w) = [w1 : w2]. Then

(π1 ◦ π−1
2 )∗gFS

=
1
2

d(w1/w2) � dw1/w2

(1 + |w1/w2|2)2

=
1
2

(w2dw1 − w1dw2) � (w2dw1 − w1dw2)
(|w1|2 + |w2|2)2

=
1
2

|w2|2dw1 � dw1 + |w1|2dw2 � dw2−w1w2dw2 � dw1−w2w1dw1 � dw2

(|w1|2 + |w2|2)2
.

By the Cauchy inequality (3.4):

|w1w2dw2 � dw1| = |w1dw2 � w2dw1| ≤ 1
2
(

|w1|2dw2 � dw2

+|w2|2dw1 � dw1
)

and the same estimate holds for the second cross-term. Hence

(π1 ◦ π−1
2 )∗gFS ≤ |w2|2dw1 � dw1 + |w1|2dw2 � dw2

(|w1|2 + |w2|2)2

≤ dw1 � dw1 + dw2 � dw2

(|w1|2 + |w2|2)
,
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or
(|w1|2 + |w2|2)(π1 ◦ π−1

2 )∗gFS ≤ dw1 � dw1 + dw2 � dw2.

Analogously, if w4 �= 0

(|w3|2 + |w4|2)(π1 ◦ π−1
2 )∗gFS ≤ dw3 � dw3 + dw4 � dw4.

Adding together the last two inequalities and taking into account that
gst = 1/2 Σ4

i=1 dwi � dwi, one gets

|w|2(π1 ◦ π−1
2 )∗gFS ≤ 2gst.

Although we assumed w2 �= 0, w4 �= 0 in the process, the final inequal-
ity holds by continuity for any w ∈ C and for w �= 0: (π1 ◦ π−1

2 )∗gFS ≤
(2/|w|2)gst. �

Corollary 3.11. π−1
2 is uniformly bi-Lipschitz on any C\BR(0) with

C = 1 + 2/R2.

Proof. gst ≤ gst + (π1 ◦ π−1
2 )∗gFS = π−1∗

2 ĝ ≤ (1 + 2/R2)gst by Lemma 3.10.
�

Now we are ready to state the main result of this section.

Theorem 3.12. Let k : S1 → S3 ↪→ R
4 be a knot and N∗

k,ε be its perturbed
conormal bundle. If ε < 1 then CT(N∗

k,ε) ↪→ ̂C is a tame Lagrangian in
the resolved conifold. Moreover, the form ω̃ε := π−1

2∗ Φε∗ω that makes it
Lagrangian is exact on ̂C \ 0(̂C).

Proof. By Corollary 3.6 F (N∗
k,ε) is a tame Lagrangian in C if ε < (1/‖Dξ‖),

where ξ extends k̇(t) from k to R
4. Since |k̇(t)| = 1 the extension can be

carried out so that ‖Dξ‖ = 1. F (N∗
k,ε) ⊂ C\B2ε(0) and π−1

2 is a bi-Lipschitz
biholomorphism on any C\BR(0) by Corollary 3.11. Since CT(N∗

k,ε) =
π−1

2 (F (N∗
k,ε)), the latter is a tame Lagrangian by Lemma 3.8. Since ω̃ε

is a pushforward and therefore a pullback of an exact form on T ∗S3 it is
exact. �

4 Geometry of the conifold

The ultimate goal of constructing Lagrangian or totally real submanifolds of
the resolved conifold is to consider the moduli of holomorphic curves ending
on them and to define open Gromov–Witten invariants. At the very least,
one needs these moduli spaces to be compact. Since neither the resolved
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conifold itself nor the conormal bundles and their conifold transitions are
compact certain uniform bounds are required to ensure compactness of the
moduli. They are known as bounded geometry [3, 23] and generalize geo-
metric properties of closed Riemannian manifolds and their submanifolds.

Definition 4.1. A Riemannian manifold (M, g) has bounded geometry
(or is geometrically bounded) if its sectional curvature is bounded from
above sec(X, Y ) ≤ K < ∞ and its injectivity radius is bounded from below
i(M) ≥ r0 > 0.

The main result of this section (Theorem 4.14) claims that the resolved
conifold ̂C is geometrically bounded. We use it to prove compactness of the
moduli of holomorphic curves ending on CT(N∗

k,ε) in the next section.

To obtain estimates on curvature it is convenient to use second funda-
mental forms. Recall the definition [22].

Definition 4.2. Let L ↪→ (M, g) be a smooth submanifold and X, Y ∈
Γ(TL) be vector fields on it. Then

IIL/M (X, Y ) := prT ⊥L(∇XY ),

where ∇ is the Riemannian connection on M and prT ⊥L is the orthogonal
projection to the normal bundle T⊥L of L in TM , is called the second
fundamental form of L in M .

If L ↪→ Q ↪→ (M, g), it follows from linear algebra that IIL/M = IIL/Q +
IIQ/M and the terms on the right are orthogonal to each other. In particular,

| IIL/Q | ≤ | IIL/M |. (4.1)

When there is no confusion we drop the ambient manifold from notation
and write simply IIL. The norm ‖ IIL ‖ is the smallest number C such that
| IIL(X, Y ) |g≤ C|X|g|Y |g. Our interest in the second fundamental forms
is explained by the Gauss equation [22]. If X, Y ∈ Γ(TL) and secL(X, Y ),
secM (X, Y ) denote the sectional curvatures in L and M respectively:

secL(X, Y ) = secM (X, Y ) + g
(

IIL(X, X), IIL(Y, Y )
)

− | IIL(X, Y )|2g. (4.2)

Thus a bound on ambient curvature and second fundamental form yields
one on the curvature of a submanifold. To consider the behavior of second
fundamental forms under smooth maps we need the following notion.

Definition 4.3 [7]. Let Φ : (M, g) → (˜M, g̃) be a smooth map between two
Riemannian manifolds. Let ∇, ˜∇ be the respective Riemannian connections
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and X, Y ∈ Γ(TM). The covariant Hessian ∇2Φ (“second fundamental form
of a map” in [7]) is by definition

∇2Φ(X, Y ) := ˜∇Φ∗X(Φ∗Y ) − Φ∗(∇XY ). (4.3)

∇2Φ ∈ Γ((T ∗M)⊗2 ⊗ Φ∗(T˜M)) and it is straightforward to check that it
is symmetric and tensorial. ‖∇2Φ‖ is the smallest number C such that
|∇2Φ(X, Y )|g̃ ≤ C|X|g|Y |g.

Lemma 4.4. Let X, Y ∈ Γ(TL) and

(M, g)
Φ� (˜M, g̃)

L
∪

�

Φ � L̃

∪

�

Then
IIL̃(Φ∗X, Φ∗Y ) = prT ⊥L(Φ∗ IIL(X, Y ) + ∇2Φ(X, Y )) (4.4)

Proof.

II˜L(Φ∗X, Φ∗Y ) = prT ⊥L(˜∇Φ∗XΦ∗Y )

= prT ⊥L((˜∇Φ∗XΦ∗Y − Φ∗(∇XY )) + Φ∗(∇XY ))

= prT ⊥L(∇2Φ(X, Y ) + Φ∗(prT ⊥L(∇XY ) + prTL(∇XY )))

= prT ⊥L(∇2Φ(X, Y ) + Φ∗ IIL(X, Y ))

+ prT ⊥L(Φ∗ prTL(∇XY ))

= prT ⊥L(Φ∗ IIL(X, Y ) + ∇2Φ(X, Y ))

since Φ∗(TL) ⊂ T L̃. �

Corollary 4.5. If Φ : (M, g) → (˜M, g̃) is a bi-Lipschitz map with a bounded
covariant Hessian then images of submanifolds with bounded second funda-
mental forms have bounded second fundamental forms.

Proof. Recall that by definition of a bi-Lipschitz map

C−1g ≤ Φ∗g̃ ≤ Cg

and, in particular, |Φ∗X|2g̃ = g̃(Φ∗X, Φ∗X) = Φ∗g̃(X, X) ≤ C|X|2g so ‖Φ∗‖ ≤
C1/2. By Lemma 4.4

| IIL̃(Φ∗X, Φ∗Y )|g ≤ |∇2Φ(X, Y )|g̃ + |Φ∗ IIL(X, Y ) |g̃
≤ ‖∇2Φ‖|X|g|Y |g + ‖Φ∗||‖ IIL ‖|X|g|Y |g
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≤ (‖∇2Φ‖ + C1/2‖ IIL ‖)|X|g|Y |g
≤ C(‖∇2Φ‖ + C1/2‖ IIL ‖)|Φ∗X|g̃|Φ∗Y |g̃.

Thus ‖ IIL̃ ‖ ≤ C(‖∇2Φ‖ + C1/2‖ IIL ‖). �

Note that if Φ is a bi-Lipschitz embedding, then L = M , IIL/M = IIM/M =
0 and ‖ IIL̃ ‖ ≤ C‖∇2Φ‖. In other words, second fundamental forms of
embeddings are controlled by the bi-Lipschitz constants and covariant
Hessians.

To obtain estimates on covariant Hessians, we need a coordinate repre-
sentation. For convenience, we use the following notation:

∂Φ(X) =
∂Φ
∂xi

Xi, ∂2Φ(X, Y ) =
∂2Φ

∂xi∂xj
XiY i,

Γ(X, Y ) = Γk
ijX

iY j , ˜Γ( ˜X, ˜Y ) = ˜Γk
ij
˜Xi
˜Y j ,

where Γk
ij , ˜Γ

k
ij are Christoffel symbols for ∇, ˜∇, respectively.

Lemma 4.6. Let Φ : (M, g) → (˜M, g̃). Then in local coordinates

∇2Φ(X, Y ) = ∂2Φ(X, Y ) + ˜Γ(∂Φ(X), ∂Φ(Y )) − ∂Φ(Γ(X, Y )). (4.5)

Proof. Since ∇2Φ is tensorial, we can ignore expressions containing deriva-
tives of X, Y in the calculation:

∇2Φ(X, Y ) = ˜∇XiΦ∗∂xi
(Y jΦ∗∂xj ) − Φ∗(∇Xi∂xi

Y j∂xj )

= XiY j
˜∇Φ∗∂xi

Φ∗∂xj − XiY jΦ∗(∇∂xi
∂xj )

= XiY j(˜∇Φ∗∂xi

(

∂Φα

∂xj

∂yα

)

− Φ∗(Γk
ij∂xk

))

= XiY j

(

∂2Φα

∂xi∂xj
∂yα +

∂Φα

∂xj

˜∇∂Φβ/∂xi
∂yβ

∂yα − ∂Φα

∂xk
Γk

ij∂yα

)

= XiY j(
(

∂2Φα

∂xi∂xj
∂yα +

∂Φα

∂xj

∂Φβ

∂xi

˜Γγ
βα∂yγ − ∂Φα

∂xk
Γk

ij∂yα

)

=
(

∂2Φα

∂xi∂xj
XiY j + ˜Γα

βγ

(

∂Φβ

∂xi
Xi

)(

∂Φγ

∂xj
Y j

)

−∂Φα

∂xk

(

Γk
ijX

iY j
)

)

∂yα

= ∂2Φ(X, Y ) + ˜Γ(∂Φ(X), ∂Φ(Y )) − ∂Φ(Γ(X, Y )). �
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Note that for a map between two flat spaces ∇2Φ turns into the usual
Hessian ∂2Φ.

Now we turn to the geometry of the conifold

C = {w ∈ C
4 | w1w4 = w2w3}.

We start by finding convenient parametrizations for C \ {0}.

Lemma 4.7. Let w ∈ C\{0}. Then there exist ξ, η ∈ C and z ∈ D := {z ∈
C | |z| ≤ 1} such that w = (ξ, zξ, η, zη) or w = (zξ, ξ, zη, η). Moreover,

C × (C2\{0}) Φ−→ C
4

(z, ξ, η) �−→ (ξ, zξ, η, zη)

is an embedding.

Proof. Since w �= 0 at least one of wi is non-zero, let w1 �= 0. If |w2| > |w1|,
then w2 �= 0 and we can set ξ = w2, z = (w1/w2) with |z| < 1. Otherwise,
set ξ = w1, z = (w2/w1) with |z| ≤ 1. Since the two cases are analogous let
us consider just the latter one. In this case, w3 = 0 implies w4 = 0 since
w1w4 = w2w3 and w1 �= 0. Therefore, w = (ξ, zξ, η, zη) with ξ, z as above
and η = 0. If w3 �= 0, then w4/w3 = w2/w1 = z and w = (ξ, zξ, η, zη) with
η = w3. The second possibility of w = (zξ, ξ, zη, η) arises when |w2| > |w1|.

The Jacobian of Φ is

⎛

⎝

0 ξ 0 η
1 z 0 0
0 0 1 z

⎞

⎠ and it obviously has full rank unless

ξ = η = 0 so Φ is an immersion. Also, if (ξ, zξ, η, zη) = (ξ′, z′ξ′, η′, z′η′) then
ξ = ξ′, η = η′ and one of them, say, ξ = ξ′ �= 0. But then z′ = z′ξ′/ξ′ =
zξ/ξ = z and Φ is an embedding. �

Lemma 4.7 implies that C\{0} can be covered by two charts, each of them
diffeomorphic (in fact, biholomorphic) to 2D × (C2\{0}). Since the corre-
sponding parametrizations are the same up to permutation of coordinates,
we may consider just one of them. First of all, we want to describe the
induced metric on C in terms of z, ξ, η.

Lemma 4.8. Let

2D × (C2\{0}) Φ−→ C
4

(z, ξ, η) �−→ (ξ, zξ, η, zη)

and
g :=

1
2
(

(|ξ|2 + |η|2)dz � dz + dξ � dξ + dy � dy
)

be a metric on 2D × (C2\{0}). Then Φ is uniformly bi-Lipschitz.
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Proof.

Φ∗gst =
1
2

(

dξ � dξ + d(zξ) � d(zξ) + dη � dη + d(zη) � d(zη)
)

=
1
2
(

dξ � dξ + |ξ|2dz � dz + |z|2dξ � dξ + |η|2dz � dz + |z|2dη � dη

+ ξzdz � dξ + ξzdξ � dz + ηzdz � dη + ηzdη � dz
)

.

Each of the cross-terms in the last line can be estimated using the Cauchy
inequality (3.4), e.g.,

|ξzdz � dξ| = |ξdz � zdξ| ≤ 1
2
(ξdz � ξdz + zdξ � zdξ)

=
1
2
(|ξ|2dz � dz + |z|2dξ � dξ).

Therefore,

Φ∗gst ≤ 1
2
((|ξ|2 + |η|2)dz � dz + (1 + |z|2)dξ � dξ + (1 + |z|2)dη � dη

+ |ξ|2dz � dz + |z|2dξ � dξ + |η|2dz � dz + |z|2dη � dη)

=
1
2
(2(|ξ|2 + |η|2)dz � dz + (1 + 2|z|2)dξ � dξ + (1 + 2|z|2)dη � dη)

≤ 9g since |z| < 2.

To prove the inverse inequality let us go back to Lemma 3.10. There we
proved that

1
2

dz � dz

(1 + |z|2)2 ≤ 2
|w|2

1
2

4
Σ

i=1
dwi � dwi,

where z = (w2/w1) = (w4/w3) when w1, w3 �= 0. Since w = (ξ, zξ, η, zη) in
terms of ξ, η, this gives

1
2

dz � dz

(1 + |z|2)2 ≤ 2
|ξ|2 + |zξ|2 + |η|2 + |zη|2 Φ∗gst,

and Φ∗gst ≥ 1
2

(|ξ|2 + |η|2)
2

dz � dz

(1 + |z|2) .

Also obviously

Φ∗gst ≥ 1
2
(dξ � dξ + dη � dη)
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Adding together the last two inequalities we obtain,

2Φ∗gst ≥ 1
2

(

1
2
(|ξ|2 + |η|2)(1 + |z|2)−1dz � dz + dξ � dξ + dη � dη

)

Φ∗gst ≥ 1
2 · 2 · 5

· 1
2
(|ξ|2 + |η|2)dz � dz + dξ � dξ + dη � dη)

=
1
20

g

Thus 20−1g ≤ Φ∗ggs ≤ 20g and Φ is bi-Lipschitz. �

The geometric meaning of this lemma is best described by considering a
three-dimensional analog. Let z2 = x2 + y2 be the standard cone in R

3. If
r, θ are the polar coordinates in the xy plane, then the induced metric on
the cone is 2dr2 + r2dθ2. The metric g on the conifold has similar structure
with θ replaced by z and r replaced by ξ, η. Sections with r = const describe
circles of growing radii as r → ∞ (Figure 5). In a similar way sections |ξ|2 +
|η|2 = const describe disks of growing diameter along the fiber parameters
ξ, η. Now recall that 2D × (C\{0}) only parametrizes half of the conifold,
the other half is also 2D × (C\{0}) with disks overlapping over an annulus
containing the unit circle. Put together the disks form CP

1-like sections of
increasing area and diameter as ξ, η → ∞.

On the narrow end, just as circles collapse into the singular point of
the usual cone at the origin, in the conifold CP

1 sections collapse into the
conifold singularity when ξ = η = 0. In the resolved conifold, this collapse
is prevented by replacing the singular point with a copy of CP

1 and adding
the Fubini-Study term to the metric.

Corollary 4.9. For any δ > 0 the second fundamental form of C in C
4 is

uniformly bounded on C \ Bδ(0).

Figure 5: Horizontal circles in the cone correspond to CP
1-like sections

of the conifold.



CONORMAL BUNDLES TO KNOTS 619

Proof. If w ∈ C\{0}, then w = Φ(z, ξ, η) by Lemma 4.7. In fact, a whole
neighborhood of (z, ξ, η) is mapped into a neighborhood of w in C. There-
fore, as was commented after Corollary 4.5 ‖ IIC/C

4
(w)‖ ≤ C‖∇2Φ‖, where

∇2Φ is computed in gst on C
4 and any metric g1 on 2D × (C2\{0}) such

that C−1g1 ≤ Φ∗gst. Let g1 = 1/2(dz � dz + dξ � dξ + dη � dη). If |w|2 =
(1 + |z|2)(|ξ|2 + |η|2) ≥ δ2, then (|ξ|2 + |η|2) ≥ (δ2/1 + |z|2) ≥ (δ2/5) and by
Lemma 4.8

g1 ≤ 5
δ2 g ≤ 5

δ2 · 20 Φ∗gst =
100
δ2 Φ∗gst.

Thus one can take C = 100/δ2. Both g1, gst are flat. Therefore by Lemma 4.6
∇2Φ = ∂2Φ, the usual Hessian. But the usual Hessian of Φ is in fact constant
as one can see by inspection (all entries are polynomials in z, ξ, η of at
most second degree). Therefore, ∇2Φ and IIC/C

4
are uniformly bounded on

C\Bδ(0). �

Since C = 100/δ2 −→
δ→∞

0 the second fundamental form is not just bounded,

it is asymptotically 0. This means that the conifold C is asymptotically
locally flat just like the usual cone.

We now want to extend this conclusion to the resolved conifold ̂C. Recall
that ̂C\0(̂C) can be obtained from C\{0} by applying the biholomorphism
π−1

2 . To be able to use second fundamental forms in C
4 and CP

1 × C
4, we

need to extend π−1
2 to C

4. Unfortunately this is impossible, but we can
partially extend π−1

2 into a neighborhood in C
4 of every point w ∈ C\{0}.

Namely,

π−1
2 (w) :=

{

([w1 : w2], w) if |w1|2 + |w2|2 �= 0,

([w3 : w4], w) if |w3|2 + |w4|2 �= 0.

If |w|2 > δ2 then either |w1|2 + |w2|2 > (δ2/2) or |w3|2 + |w4|2 > (δ2/2) so
one of the conditions is always satisfied and at least one of the extensions is
defined around any point. Boundedness of IÎC/(CP

1×C
4) follows from that of

IIC/C
4

by Corollary 4.5 and the next Lemma.

Lemma 4.10. For any δ > 0, the extension π−1
2 is uniformly bi-Lipschitz

and has bounded covariant Hessian along C\Bδ(0).

Proof. Due to symmetry it suffices to consider the case |w1|2 + |w2|2 >

(δ2/2) and π−1
2 (w) = ([w1 : w2], w) ∈ CP

1 × C
4. Introduce the standard

coordinate charts on CP
1 with coordinate maps ϕ : [u : v] �→ (u/v) ∈ 2D and

�→ (v/u) ∈ 2D. Again due to symmetry it suffices to consider just one. In



620 SERGIY KOSHKIN

coordinates we have

(ϕ, id) ◦ π−1
2 : C

4 → 2D × C
4

w �→
(

w1
w2

, w
) .

Just as in Lemma 3.10 one gets

gst ≤ (ϕ ◦ π−1
2 )∗ĝ ≤

(

1 +
2

|w1|2 + |w2|2

)

gst ≤
(

1 +
4
δ2

)

gst.

Now we take a look at the covariant Hessian. By Lemma 4.6

∇2Φ(X, Y ) = ∂2Φ(X, Y ) + ˜Γ(∂Φ(X), ∂Φ(Y )) − ∂Φ(Γ(X, Y )).

In our case Φ = (ϕ, id) ◦ π−1
2 and Γ = 0 since C

4 is flat. ˜Γ only depends on
z ∈ 2D since ĝ = π∗

1gFS + π∗
2gst and the second term is flat. Since 2D is com-

pact and ˜Γ extends smoothly to C, it is uniformly bounded on 2D. Finally,
since Φ is holomorphic we may consider just holomorphic derivatives.

Φ is linear in C
4 variables, hence first derivatives are constant and second

ones are 0. So the only part that matters is Φ1(w) := ϕ ◦ π−1
2 (w) = (w1/w2).

By a direct computation:

∂Φ1 =
(

1
w2

,−w1

w2
2

)

=
(

1
w2

,− z

w2

)

,

where z = w1
w2

and

∂2Φ1 =

⎛

⎜

⎝

0 − 1
w2

2

− 1
w2

2

2w1

w3
2

⎞

⎟

⎠ =

⎛

⎜

⎝

0 − 1
w2

2

− 1
w2

2

2z

w2
2

⎞

⎟

⎠ .

Now recall that by our choice of coordinates |z| < 2 so |w2| > (|w1|/2),
5|w2|2 > |w1|2 + |w2|2 > (δ2/2) and hence |w2|> δ/

√
10. Therefore, both

∂Φ1, ∂2Φ1 and therefore ∂Φ, ∂2Φ are uniformly bounded. Together with
the previous remarks this implies the same for ∇2Φ. �

Corollary 4.11. The resolved conifold ̂C has bounded sectional curvature.

Proof. Note that π−1
2 (C

⋂

Bδ(0)) is a compact subset in ̂C. Its complement
in ̂C is the image under π−1

2 of C\Bδ(0). By Corollary 4.9 IIC/C
4

is uniformly
bounded on C\Bδ(0). Every point in C\Bδ(0) has a neighborhood in C

4 such
that π−1

2 extends to it and by Lemma 4.10 these extensions are uniformly
bi-Lipschitz with bounded covariant Hessian. Therefore, by Corollary 4.5,
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IÎC/(CP
1×C

4) is uniformly bounded on π−1
2 (C \ Bδ(0)). Since its complement

has compact closure IÎC/(CP
1×C

4) is bounded on the whole ̂C. Since CP
1 × C

4

is a product of a closed manifold and a flat manifold with the product metric
secCP

1×C
4

is bounded. Finally, by the Gauss equation (4.2):

seĉC(X, Y ) = secCP
1×C

4
(X, Y ) + ĝ(IÎC(X, X), IÎC(Y, Y )) − | IÎC(X, Y )|2ĝ

and all the terms on the right are bounded. Therefore so is seĉC . �

Now we want to establish that the injectivity radius i(̂C) is strictly
positive. It is convenient to use the following criterion.

Proposition 4.12 (Proposition 3.19 of [1]). Let (M, g) be a Riemannian
manifold with complete metric and bounded sectional curvature. Then three
conditions are equivalent:

(i) i(M) > 0 (i(M) is the injectivity radius).
(ii) there exist numbers δ, C > 0 such that every loop γ in M of length

�(γ) ≤ δ bounds a disc D in M of diam(D) ≤ C · �(γ).
(iii) every point in M has a neighborhood uniformly bi-Lipschitz to the flat

unit ball.

In particular, it follows directly from (iii) that.

Corollary 4.13. Let Φ : (M, g) → (˜M, g̃) be a bi-Lipschitz diffeomorphism
between complete Riemannian manifolds with bounded sectional curvatures.
Then i(M) > 0 if and only if i(˜M) > 0.

̂C is obviously complete, since it is properly embedded in CP
1 × C

4 and
it has bounded sectional curvature by Corollary 4.11.

Theorem 4.14. The resolved conifold ̂C has bounded geometry.

Proof. Due to Corollary 4.11 it only remains to prove that i(̂C) > 0. From
Lemma 4.7 and the definition of ̂C we have ̂C covered by the parametrizations:

2D × C
2 Φ−→ ̂C ↪→ CP

1 × C
4

(z, ξ, η) �−→ ([1 : z], ξ, zξ, η, zη);

2D × C
2 Φ−→ ̂C ↪→ CP

1 × C
4

(z, ξ, η) �−→ ([z : 1], zξ, ξ, zη, η);
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By Lemma 4.8 Φ∗ĝ is bi-Lipschitz to

Φ∗π∗
1gFS + g =

1
2

dz � dz

(1 + |z|2) +
1
2
(

(|ξ|2 + |η|2)dz � dz

+ dξ � dξ + dη � dη
)

and also to g̃ :=
1
2
(

(1 + |ξ|2 + |η|2)dz � dz + dξ � dξ + dη � dη
)

.

Let (z0, ξ0, η0) ∈ 2D × C
2. We may assume |(ξ0, η0)| :=

√

|ξ0|2 + |η0|2 ≥ 3,
since the complement has compact closure. Consider the map

C
3 ⊃ B1(0)

f−→ C × C
2

(λ, α, β) �−→
(

z0 +
λ

√

1 + |ξ0|2 + |η0|2
, ξ0 + α, η0 + β

)

.

We claim that f is uniformly bi-Lipschitz. Indeed,

f∗g̃ =
1
2

(

1 + |ξ|2 + |η|2
1 + |ξ0|2 + |η0|2

dλ � dλ + dα � dα + dβ � dβ

)

.

To prove that f∗g̃ is equivalent to gst, we need uniform estimates from above
and below. Note that by definition of f , |(ξ, η) − (ξ0, η0)| ≤ 1. Therefore,

1 + |ξ|2 + |η|2
1 + |ξ0|2 + |η0|2

=
1 + |(ξ, η)|2

1 + |(ξ0, η0)|2
≤ 1 + (|ξ0, η0)| + |(ξ, η) − (ξ0, η0)|)2

1 + |(ξ0, η0)|2

≤ (1 + |(ξ0, η0)|2) + 2|(ξ0, η0)| + 1
1 + |(ξ0, η0)|2

≤ 4.

On the other hand,

1 + |ξ|2 + |η|2
1 + |ξ0, η0|2

≥ (1 + |(ξ0, η0)|2) − 2|(ξ0, η0)|) + 1
1 + |(ξ0, η0)|2

= 1 − 2|(ξ0, η0)| − 1
1 + |(ξ0, η0)|2

≥ 1
2

when |(ξ0, η0)| ≥ 3.

Therefore regardless of the chosen point

C−1gst ≤ f∗g̃ ≤ Cgst

with C = 4. By Proposition 4.12, we now have i(̂C) > 0 and ̂C has bounded
geometry. �

This proof is not very illuminating as to why i(̂C) > 0. It is useful to have
in mind the analogy between the conifold and the usual cone in R

3 described
after Lemma 4.8. Let Cδ = C\Bδ(0) and ̂Cδ = ̂C\π−1

2 (Bδ(0)). Asymptotically
geometries of Cδ and ̂Cδ are the same as one can see from expressions for
g and g̃ in the theorem because the Fubini-Study term becomes negligible
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as |ξ|2 + |η|2 → ∞. More precisely, π−1
2 : Cδ → ̂Cδ is bi-Lipschitz with the

constant C(δ) −→
δ→∞

1. Therefore “horizontal” sections of ̂C are copies of CP
1

with Kähler volume −→
δ→∞

∞ just as horizontal sections of the cone are circles

of increasing diameters (see Figure 5). This means that cut points for points
in ̂Cδ that are on the “other side” of the conifold are further and further away
from them as δ → ∞. Thus not only is i(̂Cδ) bounded from below but in fact
i(̂Cδ) −→

δ→∞
∞. Similarly as was noted after Corollary 4.9, sec(Cδ) −→

δ→∞
0 and

sec(̂Cδ) behaves the same way by the Gauss equation since π−1
2 has bounded

covariant Hessian. Summarizing, not only does ̂C have bounded geometry,
but it is in fact asymptotically globally flat.

5 Compactness of the moduli

In this section, we prove the main result of this paper on moduli compact-
ness of open pseudoholomorphic curves ending on the conifold transited
perturbed conormal bundles. After briefly recalling the notions of open
stable maps and their Gromov convergence we state the Sikorav compactness
theorem (Theorem 5.4) and proceed to verify its assumtions in our case.

Let (M, J, g) be an almost Kähler manifold, L ↪→ M be its totally real
submanifold and Σ be a Riemann surface with boundary ∂Σ and a complex
structure j. A smooth open pseudoholomorphic curve in M ending on L
(or with the boundary on L) is a map f : (Σ, ∂Σ) → (M, L) such that f∗j =
Jf∗. If instead of smooth Riemann surfaces one considers complex one-
dimensional varieties with at most nodal singularities (i.e., stable curves with
boundary) then f is called an open stable map [16]. As is common in the
literature, we often call stable maps pseudoholomorphic curves as well. Let
∂Σj be the boundary components of Σ, ∂Σ = ∪i∂Σi and let α ∈ H2(M, L)
and βi ∈ H1(L) be integral homology classes.

Definition 5.1. The moduli space of open genus g curves with h boundary
components is

Mg,h(M, L | α, β1, . . . , βn) : = {f open stable map | genus (Σ) = g, #{∂Σi}
= h, f∗[Σ] = α, f∗[∂Σi] = βi}. (5.1)

The appropriate topology on the moduli can be defined using the Gromov
convergence. Since the domain of the limit curve may differ from that of
the prelimit ones, one needs some kind of smooth resolution of nodes to pull
back the maps to the same domain. For open curves, the definition of a
resolution is worked out in [16], where the interested reader is directed.
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Definition 5.2 (Gromov convergence). One says that a sequence of stable
maps (Σn, fn) Gromov converges to a map (Σ, f) if there is a sequence of
resolutions κn : Σn → Σ such that for any neighborhood V of the union of
all nodes in Σ:

1) fn ◦ κ−1
n −→

n→∞
f in C∞(Σ\V );

2) (κ−1
n )∗jn −→

n→∞
j in C∞(Σ\V ), where jn, j are complex structures on

Σn, Σ, respectively;
3) Area(fn(Σn)) −→

n→∞
Area(f(Σ)).

These moduli spaces have been used to define open Gromov–Witten
invariants in [13, 16]. However, for such definitions to work Mg,h at least has
to be compact. Proving compactness in the case M = ̂C and L = CT(N∗

k,ε)
will be our goal in this section.

Compactness theorems for curves with boundary were considered by
several authors [23, 27]. For our purposes, the most suitable result is due to
Sikorav [23]. We restate it here in a form consistent with the terminology
used throughout the paper.

Definition 5.3. L ↪→ (M, J, g) satisfies the 2-point estimate if there exist
constants C, ρ > 0 such that for any two points x, y ∈ L with distM (x, y) < ρ
one has distL(x, y) ≤ C distM (x, y).

Theorem 5.4 (Proposition 5.1.2 and Theorem 5.2.3 of [23]). Assume that
(M, J, g) has bounded geometry and L ↪→ M is a uniformly tame Lagrangian
submanifold that satisfies the 2-point estimate. Let fn : (Σn, ∂Σn) → (M, L)
be a sequence of open curves with uniformly bounded areas such that f(Σn) ∩
K �= ∅ for some compact subset K ⊂ M . Then there exists a subsequence
fnk

that Gromov-converges to an open curve.

We will now verify the assumptions of the Sikorav theorem in the order
they are listed. Note that we already proved in Section 4 that ̂C is geomet-
rically bounded and in Section 3 that L = CT(N∗

k,ε) is a tame Lagrangian
in it.

The 2-point estimate is preserved under bi-Lipschitz maps, i.e., if L ↪→ M

satisfies it and f : M → ˜M is bi-Lipschitz, then so does f(L) ↪→ ˜M . More-
over, locally any submanifold satisfies it.

Lemma 5.5. Let L ↪→ (M, g). Then every point of L has a neighborhood
in L such that distL(q, q′) ≤ C distM (q, q′) for q, q′ in this neighborhood for
some constant C.
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Proof. Let q0 ∈ L. Choose a neighborhood Uq0 of q0 in M with coordi-
nate function ϕ such that ϕ(q0) = 0, ϕ(L ∩ Uq0) = {x ∈ R

m | x
+1 = · · · =
xm = 0}, where m := dim M , � := dim L. For any ball BR ⊂ R

m, the map
ϕ : ϕ−1(BR) → (Rm, gst) is bi-Lipschitz by a compactness argument. Fix R
and let C be the corresponding bi-Lipschitz constant. Then

distL(q, q′) ≤ C1/2 distRl(ϕ(q), ϕ(q′)) = C1/2 distRm(ϕ(q), ϕ(q′))

≤ C1/2 · C1/2 distM (q, q′) = C distM (q, q′) �

This implies of course that any compact submanifold satisfies the 2-point
estimate. An example of a submanifold that does not satisfy it is given by the
graph of sin(πex) in R

2. This graph is the graph of sine that gets more and
more compressed as x → ∞ (see Figure 6). The distance in R

2 between two
consecutive zeros is ln(n + 1) − ln(n) → 0. However, the distance between
them along the graph is ≥ 2, since one has to go along the arc of sine to get
from one to the next.

Recall that CT(N∗
k,ε) = π−1

2 ◦ Φε(Fε(N∗
k )), where Φε(x, p) = (x, p +εξ(x))

and Fε(x, p) = (x
√

|p|2 + ε2, p). Since both Φε and π−1
2 are uniformly

bi-Lipschitz on the relevant sets it suffices to prove the 2-point estimate for
Fε(N∗

k ) = {(k(t)
√

|p|2 + ε2, p) ∈ R
4 × R

4 | p · k(t) = p · k̇(t) = 0, t ∈ S1}.

Lemma 5.6. Fε(N∗
k ) ↪→ R

4 × R
4 and therefore CT(N∗

k,ε) ↪→ CP
1 × C

4 sat-
isfy the 2-point estimate.

Proof. Despite the length this proof reduces to multiple applications of the
triangle inequality. For convenience, it is split into three steps corresponding
to pairs of points at a fixed distance from the zero-section, at a distance
greater than 1 from it and finally in the general position.

Step 1. Let Sr := {(x, p) ∈ Fε(N∗
k ) | |p| = r}. In this step, we will prove

that they satisfy the 2-point estimate in R
4 × R

4 with constants C, ρ inde-
pendent of r ≥ 1.

Figure 6: Submanifold in R
2 that does not satisfy the 2-point estimate.
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Since S1 is compact in R
4 × R

4, by Lemma 5.5 it satisfies the estimate
with some C1, ρ1 > 0. We claim that the same ρ1 and C1

√
1 + ε2 work for all

r ≥ 1. Indeed, let q = (x, p), q′ = (x′, p′) ∈ Sr. Then q1 := ((x/
√

r2 + ε2),
(p/r)), q′

1 := ((x′/
√

r2 + ε2), (p′/r)) ∈ S1. Since

distM (q1, q
′
1) =

√

1
r2 + ε2 |x − x′|2 +

1
r2 |p − p′|2 ≤ distM (q1, q

′
1) < ρ1,

where M = R
4 × R

4, we have distS1(q1, q) ≤ C · distM (q1, q
′
1).

Let γ = (γx, γp) be any path in S1 connecting q1 and q′
1. Then γr :=

(γx

√
r2 + ε2, rγp) is a path in Sr connecting q and q′. Moreover, r�(γ) ≤

�(γr) ≤
√

r2 + ε2 �(γ). Minimizing over all such paths one gets

r distS1(q1, q
′
1) ≤ distSr(q, q′) ≤

√

r2 + ε2 distS1(q1, q
′
1)

Also obviously r distM (q1, q
′
1) ≤ distM (q, q′) ≤

√
r2 + ε2 distM (q1, q

′
1).

Thus

distSr(q, q′) ≤
√

r2 + ε2 distS1(q1, q
′
1) ≤ C

√

r2 + ε2 distM (q1, q
′
1)

≤ C
√

r2 + ε2

r
distM (q, q′) ≤ C1

√

1 + ε2 distM (q, q′)

and C1
√

1 + ε2, ρ1 work for all r ≥ 1.

Step 2. Let q := (x
√

|p|2 + ε2, p), q′ := (x′√|p′|2 + ε2, p′) ∈ Fε(N∗
k ) and

1 ≤ |p| ≤ |p′|. Then the 2-point estimate holds with ˜C1 =
√

2 + 3C1
√

1 + ε2,
ρ̃1 = ρ1/3. A proof follows.

Define q′′ := (x′√|p|2 + ε2, |p|(p′/|p′|)), then q, q′′ ∈ S|p| (see Figure 7).
Consider the following path:

γ(t) = (x′√t2|p′|2 + ε2, tp′),

Figure 7: The 2-point estimate.
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then γ(1) = q′, γ(|p|/|p′|) = q′′ and γ([|p|/|p′|, 1]) ⊂ Fε(N∗
k ). Essentially,

q′, q′′ are on the same radial line and γ is the segment of the line connecting
them.

γ̇(t) =

(

tx′
√

t2|p′|2 + ε2
, p′
)

�(γ) =
∫ 1

|p|/|p′|

√

gst(γ̇, γ̇)dt =
∫ 1

|p|/|p′|

√

t2

t2|p′|2 + ε2 + |p′|2 dt

≤
∫ 1

|p|/|p′|

√

1 + |p′|2 dt ≤
√

2|p′||1 − |p|
|p|′ |

≤
√

2|p − p′| ≤
√

2 distM (q, q′).

Now we want to estimate distM (q, q′′) in terms of distM (q, q′).

distM (q, q′′) =

√

(|p|2 + ε2)|x − x′|2 + |p − |p| p′

|p′| |
2.

Let us consider separately each term under the square root:

|x − x′|
√

|p|2 + ε2 ≤ |x
√

|p|2 + ε2 − x′√|p′|2 + ε2| + |x
√

|p′|2 + ε2

− x′√|p|2 + ε2|

≤ distM (q, q′) +
|(|p| + |p′|)(|p| − |p′|)
√

|p′|2 + ε2 +
√

|p|2 + ε

≤ distM (q, q′) + |p − p′| ≤ 2 distM (q, q′);

|p − |p| p′

|p′| | ≤ |p|p′| − |p|p′|
|p′| +

||p′|(p − p′) + p′(|p′| − |p|)|
|p′|

≤ 2|p′||p − p′|
|p′| ≤ 2 distM (q, q′).

Therefore, distM (q, q′′) ≤
√

4 + 4 distM (q, q′) ≤ 3 distM (q, q′).

Finally, let distM (q, q′) < ρ1/3, then distM (q, q′′) < ρ1 and by the triangle
inequality and Step 1 (L = Fε(N∗

k )):

distL(q, q′) ≤ distL(q, q′′) + distL(q′′, q′)

≤ C1

√

1 + ε2 distM (q, q′′) + �(γ)

≤ 3C1

√

1 + ε2 distM (q, q′) +
√

2 distM (q, q′)

= (3C1

√

1 + ε2 +
√

2) distM (q, q′).
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Step 3. Now let q, q′ ∈ Fε(N∗
k ) be two arbitrary points with distM (q, q′) <

ρ1/3. If |p|, |p′| ≥ 1 they are covered by Step 2. Otherwise, both are con-
tained in {(x, p) ∈ Fε(N∗

k ) | |p| ≤ 1 + ρ1/3}. This set is compact and can
be covered by a finite number of neighborhoods as in Lemma 5.5. So there
are C2, ρ2 that realize the 2-point estimate there. Set ρ := min(ρ2, ρ1/3),
C := max(C2, 3C1

√
1 + ε2 +

√
2). The entire Fε(N∗

k ) now satisfies the
2-point estimate with these C, ρ. �

Corollary 5.7 (2-point estimate). CT(N∗
k,ε) in ̂C satisfies the 2-point

estimate.

Proof. By Lemma 5.6 this is true for CT(N∗
k,ε) in CP

1 × C
4. Let C, ρ be

the constants. If dist̂C(q, q′) < ρ, then distCP
1×C

4
(q, q′) < ρ and distCT(N∗

k,ε)

(q, q′) ≤ C distCP
1×C

4
(q, q′) ≤ C dist̂C(q, q′) so the same constants work. �

The next step in meeting the assumptions of Theorem 5.4 is to establish an
area bound for curves in the moduli space. When the submanifold they are
ending on, is Lagrangian with respect to a Kähler form on the ambient
manifold any two curves in the same relative homology class have the same
area. Indeed, let S be a chain realizing the relative homology. Then ∂S =
Σ1 − Σ2 + ∂S ∩ L and

0 =
∫

S
dω =

∫

∂S
ω =

∫

Σ1

ω −
∫

Σ2

ω +
∫

∂S∩L
ω =

∫

Σ1

ω −
∫

Σ2

ω

as ω|L = 0. But for pseudoholomorphic curves, Area(Σ) =
∫

Σ ω so Area(Σ1) =
Area(Σ2). In our case, we only have a symplectic form ω̃ := ω̃ε defined on
̂C \ 0(̂C) and uniformly tame on every ̂Cδ := ̂C \ π−1

2 (C ∩ Bδ(0)) that vanishes
on CT(N∗

k,ε) (Theorem 3.12).

Lemma 5.8 (Area Bound). Let L = CT(N∗
k,ε), β ∈ H2(̂C, L). There exists

a constant Aβ such that if Σ is an open curve ending on L with [Σ] = β,
then Area(Σ) ≤ Aβ.

Proof. Define g̃(X, Y ) := 1/2(ω̃(X, JY ) + ω̃(Y, JX)). Then it follows from
the tameness condition for ω̃ that g̃ is a metric on ̂C \ 0(̂C) equivalent to ĝ

on every ̂Cδ. Let Ãrea denote the area with respect to this metric. Then
C(δ)−1Area ≤ Ãrea ≤ C(δ)Area by equivalence of metrics for surfaces in ̂Cδ.
Just as in the case of compatible forms, one proves that if Σ is pseudoholo-
morphic then Ãrea(Σ) =

∫

Σ ω̃ (see, e.g., [17]).

Recall from the discussion after Corollary 3.6 that L = CT(N∗
k,ε) ⊂ ̂C2ε.

Let Σ1, Σ2 be two open curves ending on L with [Σ1] = [Σ2] = β and let
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S realize the relative homology, i.e., [∂S] = [Σ1] − [Σ2] modL. Since S is
three-dimensional, 0(̂C) � CP

1 is two-dimensional, and ̂C is six-dimensional
we can push S out of the 2ε-neighborhood of 0(̂C) by transversality. In other
words, without loss of generality S ⊂ ̂C2ε. Since ω̃|L = 0 just as above:

0 =
∫

S
dω̃ =

∫

∂S
ω̃ =

∫

Σ1

ω̃ −
∫

Σ2

ω̃ = Ãrea(Σ1) − Ãrea(Σ2),

and Ãrea(β) := Ãrea(Σ), [Σ] = β only depends on the homology class. But
by equivalence of metrics, Area(Σ) ≤ C(2ε)Ãrea(β) =: Aβ for any [Σ] = β.

�

For pseudoholomorphic curves, an area bound also implies a diameter
bound due to the monotonicity lemma. In particular, we have the following
property.

Lemma 5.9 (Area-diameter estimate, Proposition 4.4.1 of [23]). Let
(M, J, g) have bounded geometry, L ↪→ M be uniformly tame Lagrangian
with taming constant C1 and satisfy the 2-point estimate with constants
C2, ρ. Let K ⊂ M be a compact subset and Σ a pseudoholomorphic curve,
∂Σ ⊂ L, Σ ∩ K �= ∅. Then Σ ⊂ BR(K) with R = CArea(Σ), C := 8(C1+
C2 + 1)/(π min(i(M), ρ)). In particular, diam(Σ) ≤ C · Area(Σ).

Proof. Actually, in [23] this is proved for closed curves, but the same proof
works for open ones if one uses the monotonicity lemma of Proposition 4.7.2
instead of that of Proposition 4.3.1. As for the second statement, it suffices
to take K = {σ}, where σ ∈ Σ is any point. �

Geometrically, this estimate means that pseudoholomorphic curves cannot
be long and thin. But even when all assumptions of the last lemma are sat-
isfied it does not follow that any sequence of curves with bounded area has
a convergent subsequence.

Example 5.10. Let M = C
2, L = S1 × R ⊂ C × C = C

2, S1 := {z ∈ C |
|z| = 1}. One can easily check that L is a Lagrangian submanifold with
respect to the standard symplectic form on C

2 that satisfies the 2-point
estimate with ρ = ∞ and C = π/2. M of course has bounded geometry
with secM = 0, i(M) = ∞. Let Σ = D = {z ∈ C | |z| ≤ 1} and fn : Σ → M ,
fn(z) = (z, n). Area(fn) = π for all n, ∂fn(Σ) ⊂ L, but fn clearly does not
have Gromov convergent subsequences (Figure 8).

The additional property which is missing here is some kind of convexity
of L at ∞ that would force pseudoholomorphic curves to be anchored to a



630 SERGIY KOSHKIN

Figure 8: A sequence of holomorphic disks without Gromov-convergent
subsequences.

compact subset. In terms of Theorem 5.4, there is no compact subset in C
2

that all fn(Σ) meet.

In our case, anchoring to a compact subset follows from a simple obser-
vation below that generalizes the vanishing theorem of Witten (see Remark
1.5). Despite the simplicity it implies that all relevant pseudoholomorphic
curves in the resolved conifold must intersect its zero-section.

Lemma 5.11 (Anchoring). Let M be a manifold with an almost complex
structure J and an exact 2-form ω = dλ which is symplectic and tames J
on M\Z. If L ⊂ M\Z is an exact Lagrangian submanifold, then any non-
constant pseudoholomorphic curve, closed or ending on L, intersects Z.

Proof. Suppose not, then f(Σ) ⊂ M\Z. Let g be the metric on M\Z deter-
mined by ω and J as in Lemma 5.8 and consider the corresponding area.
Then as in Remark 1.5

Area(f) =
∫

Σ
f∗ω =

∫

Σ
d(f∗λ) =

∫

∂Σ
f∗λ = [λ |L](f∗[∂Σ]) = 0 (5.2)

and we arrive at a contradiction with non-constancy of f . �

Note that if Z = ∅, i.e., M is exact symplectic, the lemma implies that
it has no non-constant pseudoholomorphic curves as observed by Witten
for M a cotangent bundle [26]. In our case, M = ̂C, Z = 0(̂C) is the zero-
section, L = CT(N∗

k,ε) and ω = ω̃ε is supplied by Theorem 3.12. Note that
here Z � CP

1 and f(Σ) are two-dimensional and ̂C is six-dimensional. Thus
the non-empty intersection granted by Lemma 5.11 is a purely symplectic
phenomenon that does not follow from a dimension count in differential
topology. Now we are ready to prove the main result.

Theorem 5.12. Moduli spaces Mg,h(̂C, CT(N∗
k,ε) | α, β1, . . . , βn) are com-

pact for α �= 0 ∈ H2(̂C, CT(N∗
k,ε)) (α = 0 corresponds to constant maps).
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Proof. Let fn be a sequence of open curves in the above moduli space. By
Lemma 5.6 CT(N∗

k,ε) satisfies the 2-point estimate, by Lemma 5.8 Area(fn)
≤ Aα < ∞ and by Lemma 5.11 all fn intersect 0(̂C) � CP

1 which is
compact. Therefore, by Theorem 5.4 there exists a Gromov convergent
subsequence. �

As a bonus, Lemma 5.9 yields that for any pseudoholomorphic curve in the
above moduli space diam(f) ≤ C · Aα and we have them all contained in
the ball BC · Aα(0(̂C)).

Conclusions

Whether the submanifolds constructed in this paper are suitable for the
Gopakumar–Vafa conjecture remains to be seen. In addition to compactness,
one also needs the open curves moduli to have virtual dimension zero [13].
For open curves ending on a Lagrangian submanifold, this is traditionally
ensured by the special Lagrangian condition [12]: the imaginary part of
the holomorphic volume form vanishes along the submanifold. Since the
holomorphic volume form on a Calabi-Yau is nowhere zero this means, in
particular, that its real part does not vanish along the submanifold. The
special Lagrangian condition is far from being necessary. It suffices to have
it satisfied only cohomologically: the Maslov class [2] of the submanifold
should be trivial.

The last condition makes sense for totally real submanifolds as well as for
Lagrangian ones. It holds, for example, if the real part of the holomorphic
volume form does not vanish. Away from the zero-section, the holomorphic
volume form for the resolved conifold can be obtained by deforming the
one on the cotangent bundle. One can see that the real part of the latter is
uniformly separated from zero along the conormal bundles to knots. For this
reason, we beleive that non-vanishing along their conifold transitions can be
proved by a perturbation argument akin to the one used for the symplectic
form in Section 3.

Assuming that the Maslov class is zero one still needs to compare the
Gromov–Witten invariants to the Chern–Simons knot invariants. A com-
putational approach used so successfully for comparing the closed invari-
ants [8, 9] does not seem to be feasible beyond the case of the unknot
[13]. The problem is that the circle symmetry of the unknot is lacking
in general and the standard localization techniques do not apply. It seems
more likely that a proof will come from a deformation argument relating
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the Gromov–Witten theory on the resolved conifold to a degenerate string
theory on the cotangent bundle postulated by Witten [26]. The recent work
on contact knot homology [18] is an interesting step in this direction.
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Geometry’, Birkhäuser, Basel, 1994, 271–321.

[4] R. Bott and L. Tu, Differential forms in algebraic topology, Graduate
Texts in Mathematics, 82, Springer-Verlag, New York, Berlin,
1982.

[5] P. Candelas, and X. de la Ossa, Comments on conifolds, Nucl. Phys. B
342(1) (1990), 246–268.

[6] C.H. Clemens, Double solids, Adv. Math. 47(2) (1983), 107–230.
[7] J. Eells and L. Lemaire, Selected topics in harmonic maps, AMS, Prov-

idence, 1983.
[8] C. Faber and R. Pandharipande, Hodge integrals and Gromov–Witten

theory, Invent. Math. 139(1)(2000), 173–199.



CONORMAL BUNDLES TO KNOTS 633

[9] A. Grassi and M. Rossi, Large N dualities and transitions in geometry,
in Geometry and Physics of Branes (Como, 2001); Ser. High Energy
Phys. Cosmol. Gravit., Bristol, 2003, 210–278, math.AG/0209044.

[10] R. Gopakumar and C. Vafa, On the gauge theory/geometry correspon-
dence, Adv. Theor. Math. Phys. 3 (1999), 1415-1443.

[11] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent.
Math. 82 (1985), 307–347.

[12] D. Joyce, Riemannian holonomy groups and calibrated geometry, in
‘Lectures from the Summer School held in Nordfjordeid, June 2001’
Springer-Verlag, Berlin, 2003, 1–68.

[13] S. Katz and M. Liu, Enumerative geometry of stable maps with
Lagrangian boundary conditions, Adv. Theor. Math. Phys. 5(1) (2001),
1–49.

[14] J.M. Labastida, M. Mariño and C. Vafa, Knots, links and branes at
large N , JHEP, 5(11) (2000), paper 7, 49 pp. hep-th/0010102.

[15] J. Li and Y.S. Song, Open string instantons and relative stable mor-
phisms, Adv. Theor. Math. Phys. 5(1) (2001), 67–91.

[16] M. Liu, Moduli of J-Holomorphic Curves with Lagrangian Boundary
Conditions and Open Gromov–Witten Invariants for an S1-Equivariant
Pair, Harvard University, 2002, Preprint, math.SG/0210257.

[17] D. McDuff and D. Salomon, Introduction to symplectic topology,
Clarendon Press, Oxford, 1998.

[18] L. Ng, Conormal bundles, contact homology, and knot invariants, Pro-
ceedings of the BIRS workshop Interaction of Finite-Type and Gromov–
Witten Invariants, to appear, math.SG/0412330.

[19] Y.-G. Oh, Fredholm theory of holomorphic disks under the perturbation
of boundary conditions, Math. Z. 222 (1996), 505–520.

[20] Y.-G. Oh, Floer homology and its continuity for non-compact
Lagrangian submanifolds, Turkish J. Math. 25(1) (2001),
103–124.

[21] H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl.
Phys. B 577 (2000), 419.

[22] M. Perdigao do Carmo, Riemannian geometry, Birkhäuser, Basel,
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