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1 Introduction

The aim of this paper is the quantisation of a Poisson structure which arises
in the study of Chern-Simons gauge theory with semidirect product gauge
group H = G x g*, where G is a Lie group, g* the dual of its Lie algebra
g viewed as a vector space and G acts on g* in the co-adjoint representa-
tion. Such gauge groups occur in the Chern-Simons formulation of (2+41)-
dimensional gravity [1], where the gauge group is the three-dimensional
Poincaré group or Euclidean group, depending on the signature of space-
time. Besides their mathematical interest, Chern-Simons gauge theories with
gauge groups of this type are therefore of physical relevance.

The Poisson algebra studied in this article, in the following referred to as
flower algebra, was first defined by Alekseev, Grosse and Schomerus [2, 3, 4]
in the context of an earlier work by Fock and Rosly [5]. Fock and Rosly
showed that it is possible to describe the Poisson structure of the phase
space of Chern-Simons theory with gauge group H, the moduli space of flat
H-connections, on an oriented, punctured surface in terms of a graph em-
bedded into this surface. By assigning a classical r-matrix for the gauge
group H to each vertex of the graph, they define a Poisson structure on the
space of graph connections. After Poisson reduction with respect to graph
gauge transformations, this Poisson structure agrees with the canonical Pois-
son structure on the moduli space [6, 7]. Alekseev, Grosse and Schomerus
specialised this description to a set of curves representing the generators of
the surface’s fundamental group as a particularly simple graph. They then
obtain a Poisson structure on the space of holonomies associated to these
generating curves, which - due to the resemblance of this set of curves to a
flower - we will call the flower algebra. Via Poisson reduction with respect
to simultaneous conjugation of the holonomies with elements of the gauge
group H, it induces the canonical Poisson structure on the moduli space.
Although the case of surfaces with a boundary is more involved due to ad-
ditional degrees of freedom arising at the boundary, the flower algebra still
remains an important ingredient.

The relevance of the flower algebra for the phase space of Chern-Simons
gauge theory on a punctured surface with a boundary makes its quantisation
an important task. For the case of compact, semisimple Lie groups this
has been achieved by Alekseev, Grosse and Schomerus [2, 3, 4] with their
formalism of combinatorial quantisation of Chern-Simons gauge theories.
However, the case of (non-compact and non-semisimple) Lie groups of type
H = G x g* such as the three-dimensional Poincaré group arising in (2+1)-
dimensional gravity is less well investigated. In addition to the need to
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establish a quantisation procedure, the physical relevance of this case also
calls for a more explicit description in terms of coordinates with a direct
physical meaning.

In this article we show that this can be achieved for groups of type
H = G x g*, where G is a finite-dimensional, simply connected and unimod-
ular Lie group. The assumptions of simply-connectedness and unimodularity
are made for convenience; dropping them would lead to technical modifica-
tions without affecting the essence of our results. By extending and adapting
the work of Alekseev and Malkin [8] to this case, we construct a bijective de-
coupling transformation which breaks up the Poisson structure of the flower
algebra into a set of Poisson-commuting building blocks, a copy of the dual
Poisson-Lie group H* for each puncture and a copy of its Heisenberg double
D, (H) for each handle. We quantise these building blocks and then de-
fine a quantum counterpart of the decoupling transformation to construct
the quantum algebra for the original Poisson structure and its irreducible
Hilbert space representations. After investigating the action of the quantum
symmetries on the representation spaces, we relate them to the quantum
double D(G) of the group G.

The article is structured as follows: in Sect. 2 we establish the relevant
definitions and notations and discuss various Poisson structures associated
to groups G X g* that are relevant for our description of the flower algebra.

Extending our treatment [9] of the universal cover SO(2,1) x R3 of the
Poincaré group in three dimensions, we introduce the flower algebra on a
genus g surface with n punctures as defined in [2, 3, 4] and give an explicit
description of its Poisson structure for groups of type H = G x g*. We define
a bijective decoupling transformation that maps this Poisson structure onto
the direct sum of n copies of the dual Poisson-Lie group H* and g copies
of the Heisenberg double D, (H). Finally, we show that elements of the
semidirect product group G x C°(G) act as Poisson isomorphisms on the
flower algebra and relate this group action to the action of the group H by
global conjugation.

Sect. 3 describes the quantisation of the flower algebra. Starting from
the decoupled Poisson structure, we construct the quantum algebra and its
irreducible representations for each of the building blocks. We then define a
quantum counterpart of the classical decoupling transformation to obtain a
quantisation of the original brackets of the flower algebra.

In Sect. 4 we discuss symmetries acting on the quantised flower alge-
bra. We determine how the group G x C*°(G) acts on the quantum algebra
and how this action can be implemented as an action on the representation
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spaces. We establish the relation between this quantum symmetry and the
quantum double D(G) of the Lie group G.

Sect. 5 contains our outlook and conclusions.

2 The classical Poisson structure

2.1 Poisson structures associated to G x g* as a Poisson Lie
group

We consider groups H = G x g* which are the semidirect product of a
simply connected, unimodular Lie group G and the dual g* of its Lie algebra
g = Lie G. All Lie algebras are considered over R unless stated otherwise.

We parametrise group elements h € H according to
(u,a) = (u, —Ad*(u™1)7) withu € G, a,j € g%, (2.1)
such that the group multiplication is given by
(u1,ay) - (ug,a2) = (ug - uz,a; + Ad*(u; Has). (2.2)
Let J,, P* a =1,...,dimG, denote the generators of the Lie algebra
h = Lie H = g X g*, such that the generators J,, a = 1,...,dim G, generate

g = LieG and P% a =1,...,dimG, generate g*. The commutator is then
given by

Jas o] = fup € Je  [Jay Pl =—f,." P°  [P*,P"]=0, (2.3)

where f ;¢ are the structure constants of g. The Lie algebra h admits the
non-degenerate bilinear form

(Joy Jy) =0 (P4, PY=0  (J,, P’ =" (2.4)

This allows us to view h as the classical double of the Lie bialgebra g with
standard commutator and trivial cocommutator, where the pairing between
g and g* is given by (2.4). It has a coboundary Lie bialgebra structure with
commutator (2.3) and cocommutator § : h — h® b

6(Ja)=0  &(PY=f, * P oP (2.5)
which arises from the classical r-matrix

r=P'@J,chah. (2.6)
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This Lie bialgebra structure on the space h = g @ g* is the infinitesimal
version, the tangent Lie bialgebra, of an associated Poisson-Lie structure on
the group H. If we denote by ]33,]5]%, jaL, jf, a=1,...,dimG, the right-
and left-invariant vector fields on H

P& f(u, —Ad*(u1)j) = %h:of ((u,—Ad*(u™1)j) - tP*)

= —ﬁ u, —Ad*(u™)g

= aja( ,—Ad*(u)j)
P, ~Ad (™)) = Tlof (~1P* - (u,—Ad* (™))

_ * aﬁ o * u” .

= Ad*(u), aj,,(“’ Ad*(u)4)
JEf(u, —Ad*(u™1)j) = %hzof ((u, —Ad* (u1)j) - )

= JRf(u, —Ad*(u™N) ) + £ € %(u, —Ad*(u™H7)je
Ty f(u, —Ad* (u™)g) = JF f(u, —Ad*(u™1)g), (2.7)

with j = j,P%, f € C*°(H) and the left-and right-invariant vector fields JZ,
JEon @
d d

Jof = gl=of (we™) Iy f = imof (€7ou) for f € C%(G), (28)

this Poisson-Lie structure is given by the Poisson bivector
By = PfANJE — PAAJE. (2.9)

Similarly, there is a Poisson-Lie group structure associated to the dual h* of
the Lie bialgebra h = g x g*, the dual H* of the Poisson-Lie group H. As
a group, it is the direct product G x g* with group multiplication (u1,7;) -
(u2,J9) = (uru2,j; + Jo). The global diffecomorphism H* — H, (u,j)
(u, —Ad*(u1)37) [10] allows us to describe its Poisson structure in terms of
the following Poisson bivector on H

1 ~ ~ . ~ ~ ~
By = (PgAJaLjLP}%AJf) + PR AJE. (2.10)

A more explicit formula in terms of the parametrisation (2.1) is given in
Sect. 2.3, (2.26). The symplectic leaves of this Poisson structure are the
conjugacy classes in H [11, 12]. As they play an important role in the
quantisation of the flower algebra, we need to introduce some additional
notation that will allow us to take a more geometric viewpoint and relate
them to the conjugacy classes in the group G. For an element u € G let
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N, = {n € G|nun~! = u} denote its stabiliser group with Lie algebra n,
and dimension v,,. Pick a basis {J,}, @« = 1,...,1, of n, and complete it
to a basis {J,}, a = 1,...,dimG, of g. If we denote the dual basis of g*
by {FP,}, a =1,...,dimG, as above and define n} = Span(P,...,P,,), we
have the decomposition

g" =Im(l — Ad*(u)) ®n,, for eachu € G. (2.11)

This decomposition gives rise to a convenient parametrisation of the con-
jugacy classes in the group H that clarifies their relation to the conjugacy
classes in G. From a fixed element (g, —Ad*(g7!)s) € H other elements
(u, —Ad*(u~1)7) in the same conjugacy class in H are obtained by conjuga-
tion with (v,x) € H and explicitly given by

u = wvgu ! (2.12)
Ad* (v Ns + (1 — Ad*(u))z.

Equations (2.11), (2.12) allow us to characterise a conjugacy class in H by
picking a group element g, € G and an element s € ng in the dual Lie
algebra of its stabiliser. After choosing g, € G, the remaining arbitrariness
in the choice of s is parametrised by elements n € Ny,. Under their action
s sweeps out a co-adjoint orbit Oy in nzu. Conjugacy classes C,s in H are
therefore uniquely characterised by G-conjugacy classes C, = {vg,v!|v €
G} and co-adjoint orbits Oy in ng,- With respect to fixed g, € G and
s € nzu, they are given as the image of the map

conj, : H — Cus (2.13)
(’U,SC) = (U,]) = (’U,:B)(gu,—S)(U,:B)il.
In geometric terms, this amounts to the following. The identification T,C,, =
Im(1 — Ad*(u)) allows us to write the H-conjugacy classes C,s locally as
the product of the cotangent bundle 7%C, and O,. With the projection
Ty 0 g% — g% /n ~Im(1 — Ad*(u)) we then have the bundle
Cus — T7C, (2.14)
(u, —Ad"(u™)j) = (u, (A" (u™))mu(4))
with typical fibre O;.

The third Poisson structure associated to the Lie bialgebra h that we
will be relevant in this article is the so-called Heisenberg double Dy (H) of
the Poisson-Lie group H. It is the Poisson structure on the direct product
H x H defined by the following Poisson bivector

1 /- - - - - - - -
B ) =5 (Phy N8 + PR, A2+ Py AR + PR AT (215)

+Pg ANJE 4 PEOA T2,
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where ]51%1,, pgi, jfi, jaLl denote the left-and right-invariant vector fields
on the two copies of H. It has been shown by [12, 13] that this Poisson
structure is symplectic; however, it is not a Poisson-Lie structure. We derive
an explicit formula for this Poisson structure in Sect. 2.3,(2.27) and show that
in suitable coordinates it is the canonical Poisson structure of the cotangent

bundle T*(G x G).

2.2 The flower algebra

After introducing the relevant concepts and definitions, we are now ready to
discuss the flower algebra for semidirect product gauge groups H = Gxg* on
a genus g surface Sy, with n punctures and, possibly, a connected boundary.

The phase space of Chern-Simons theory on the surface Sy, is the moduli
space of flat connections. It can be described in terms of a graph embedded
into the surface [5]. The moduli space as a space is then obtained as the
quotient of the space of flat graph connections modulo graph gauge trans-
formations. However, as the canonical Poisson structure of the underlying
Chern-Simons gauge theory does in general not induce a Poisson structure
on the space of graph connections, this description can a priori not pro-
vide a description of the canonical Poisson structure on the moduli space.
However, Fock and Rosly [5] succeeded in defining a (non-canonical) a Pois-
son structure on the space of graph connections that induces the canonical
Poisson structure on the moduli space. They assign a classical r-matrix for
the group H to each vertex of the graph, whose components with respect
to a given basis of h act as the structure constants of the resulting Poisson
structure, and then show that reduction of this structure with respect to
graph gauge transformations agrees with the canonical Poisson structure on
the moduli space. Alekseev, Grosse and Schomerus [2, 3, 4] specialised this
description to the simplest graph that can be used to describe the underly-
ing surface: a set of curves representing the generators of its fundamental
group. The space of graph connections is then simply the set of holonomies
along these curves, and graph gauge transformations act on the holonomies
via simultaneous conjugation. The resulting Poisson structure on the space
of holonomies is the flower algebra.

The case of surfaces with boundaries is more involved, as gauge transfor-
mations that are nontrivial at the boundary acquire a physical meaning and
are no longer divided out of the phase space. Depending on the boundary
conditions imposed, there are additional degrees of freedom associated to
the boundary which enter into the phase space. The Poisson structure then
contains a contribution of these boundary degrees of freedom as well as a
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bulk term representing the internal degrees of freedom, subject to constraints
relating the two contributions.

We can now define the flower algebra, summarising the results and defini-
tions of [2, 3, 4]. The first ingredient is a set of generators for the fundamental
group of the underlying Riemann surface. The fundamental group w1 (S, )
of a genus g surface S, with n punctures is generated by the equivalence
classes of a loop m;, i = 1,...,n, around each puncture and two curves a;,
bj, j =1,...,g for each handle, see Fig. 1.

Fig. 1

The generators of the fundamental group of the surface S5°, with a boundary (shaded)

For a closed surface, these generators are subject to a single, defining
relation

koo = [bg,agl] e byat  m o omy =11 (2.16)

with group commutator [bi,ajl] = biaflbflai. In the case of a surface
with connected boundary as shown in Fig. 1, they generate the fundamental
group freely. Whereas the holonomies of the curves for each handle are
general elements of the gauge group H, the holonomies corresponding to the
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punctures are restricted to fixed H-conjugacy classes C,,,s, C H. Therefore,
the space Ay, of graph connections, or holonomies, is given by

Agn ={(Mi,...,My, A1, B1,...,Ag, By) € Cpysy X ... X Cpyppsy X H? |
(2.17)
[Bg, A"l [BL AT - My - - My =1},

The moduli space M, , of flat H-connections on a closed surface S, is
obtained from this space by dividing out simultaneous conjugation of all
holonomies by the group H

Mg =Agn/ ~ (2.18)

where ~ denotes simultaneous conjugation by an element of the group H.
Following the work of Alekseev, Grosse and Schomerus [2, 3, 4], we then
have the following definition of the flower algebra (see Theorem 2 in [4]).

Definition 2.1. (Flower algebra)

The flower algebra for gauge group H on a genus g surface Sy, with n
punctures is the Poisson algebra C*(H"™29) defined by the following Poisson
bivector

n
1 i M L i M; i M;
Bpr=Y r*’ (ER%ARﬁ +§L§41AL[, + R AL ) (2.19)
=1
N as(1(pa A A A 7A B B
o i i i i B; i B; i
+> r <§ (Ra ARG+ Lyt AL + RE ARG + LY /\Lﬁ>
=1

+R§iA(R§Z‘+L§i+L§’i)+R§iA(L§i+L§i)+L§iAL§i>
+ > PR+ L) ARy + L)

+ Y rS(RA 4+ LA+ RE 4 LB A (RY + Ly + Ry + L)

n g
) ) Aj A; B;j B;
+ Y PR+ L) A (R + Ly’ + Ry’ + L),
i=1 j=1

where elements of H" 29 are denoted by (My, ..., M,, A1, By, ... Ay, By).
The coefficients r°P are the components of a classical r-matriz r € h ® b
for H with respect to a given basis Z,, o = 1,...,dimH of h and LS, RS,
X =M,...,M,, A1, Bu,..., Ay, By the right-and left invariant vector fields
corresponding to this basis.
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With an expression for the classical r-matrix and the right-and left
invariant vector fields on the different copies of H, formula (2.19) deter-
mines the Poisson brackets of two functions in C*°(H"29). However, in
the case of groups of type H = G x g*, there is an advantage in working
with a slightly different definition of the flower algebra. We expand the
vector j in (2.1) as j = j, P’ and denote by the same symbol the maps
Jo € C®(H) : (u,—Ad*(u=1)j) + j,. Instead of C>°(H) we then consider
the algebra generated by the functions in C*°(G) together with these maps
Ja- By inserting the r-matrix (2.6) into (2.19) together with the expressions
(2.7) for the left- and right invariant vector fields, we obtain the Poisson
brackets of these generating functions j, and functions F' € C®(G"+29),
resulting in the following alternative definition of the flower algebra.

Definition 2.2. (Flower algebra for groups G x g*)

The flower algebra F for gauge group H = G X g* on a genus g surface
Sgn with n punctures is the commutative Poisson algebra

n+2g
F=S5 (@ g> ® C® (G %), (2.20)

k=1

where S (EBZ:%Q g) 1s the symmetric envelope of the real Lie algebra @Zifg g,
i.e. the polynomials with real coefficients on the wvector space @?;129 g.
In terms of a fized basis B = {jé\/[i,jf’“,jfk, i=1,...,n, k=1,...,¢,

a=1,...,dimG}, its Poisson structure is given by

(X0l olt=—f, i ®1
X @150 @1} = —f3,° 58 ® (6,7 — Ad* (ux),%)

VX, Y € {My,...,By}, X <Y
il jlielt=—f,if o1

YVi=1,...,9

M Rar. L.
(Mi@1,10F}=-10 (J " + J " F

—1® (8,0 — Ad*(uag,),)) | Y (I + I F
Y>M;
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LA Ry, Ly, Rp. Lp.
(A ®1,10F=—-10 (J, "+ J,"VF -1 (J, % + J,%)F

-1® Ad*(ugiluAi)abeBi

—1® (8,0 — Ad*(ua),") | D (¥ +3)F
Y>A;

B ; Rz, Lg.
(B @lL1eF =-10JEF -1 (J, % + J,%)F

—1®(8," — Ad*(up,),)) | D (LY +J,)F | (2.21)
Y>B;

where F € C®(G"29), My < ... < M, < A1,By < ... < Ay, By and JEx,
JEX denote the right- and left invariant vector fields (2.8) on the different
copies of G.

2.3 The decoupling transformation

We will now show how the flower algebra for groups of type H = G X
g" can be broken down into a set of Poisson commuting building blocks.
In doing this, we follow closely the work of Alekseev and Malkin [8] who
treated the case of compact, semisimple Lie groups H. They give a bijective
transformation that maps the Poisson structure on the moduli space M,, 4
to the direct sum of n symplectic forms on H-conjugacy classes and g copies
of the Heisenberg double D, (H). While, in general, this transformation is
quite complicated, which makes it difficult to obtain an explicit expression
in terms of coordinates, the picture is a lot simpler in the case H = G x g*.
Not only can the transformation of Alekseev and Malkin be generalised to
this setting, but it is then possible to obtain an explicit expression in terms
of the generators defined in Def. 2.2. This allows us to verify the asserted
properties of this transformation by direct calculation.

Definition 2.3. (Decoupling transformation)

The decoupling transformation is the bijective transformation K : F — F
of the flower algebra

’ . A’ . B’
K: 10F—10®F jMele i, jfelej, i elej,
(2.22)

for F€C®(G"29),i=1,...,n and j =1,...,g. The transformed genera-
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tors are given by

M! M, ]
Ja' :]Zzwl - (5 — Ad"(unr,) ( Z Ad* uMk 1 'uMi+1)bc"7éWk
k=i+1

g
« c .H
+2Ad (uKk,l---UKl ’UMn"'uMiJrl)b “Je k>
k=1

AL A _ A .B;
Ja' = 32141 + Ad*(uAil)ab(Jl?Z _jégl)
+(Ad*(uA) Ad* UB UA ( Z Ad* uKk 1 'uKi+1)ijfk)
k=i+1
B B el 1\ b A B
Ja' =2+ Ad (uh) G - 3
+ (Ad*(up,) — Ad" (up, uA < Z Ad (ug, - 'uKiH)bcjfk),

k=i+1

where we write 52X for jX @1 and F for 1@ F. The expressions Ad*(ux),’

(untys-- - up,) — Ad*(ux),’ for X € {My,..., By} are to be interpreted as
functions in C°(G"29), and we set

UK, = UBiUZiIUE;Z.IUAi (2.24)
H, -1 - A, -1 - v b.B;
sz = (5ab_Ad*(uAi1uBiluAi)ab)]b +(Ad*(uAi1uBiluAi)_Ad (uBiluAi))a ]z? .

Its inverse is given by

M= a4 (8," — Ad(unr,) (Z i ) (8,° — Ad* (unr,),")- (2.25)

(kzg: (5bc _ Ad*(u;i)bc> iy (Ad*(u;li) - Ad*(u;iuAk)) Cf’)
= Jja i AT ()G = 30 + (0" — Ad*(ua),"):

(i — Ad(u31),) 3 + (A (ug)) - Ad(uptua,)) Cyf’)
= G0 = A D) PG = )+ (8,0 — Ad (up,),?)

g / c g
( > (8 - Ad@al©) il + (Ad (uz)) - Ad (wplua), ﬂ“) -

k=i+1

(1

With this definition, we can calculate the transformed bracket and verify
that the transformation does indeed decouple the mixed contributions in
(2.21) into Poisson-commuting building blocks.



C. MEUSBURGER AND B. J. SCHROERS 1015

Theorem 2.4. The decoupling transformation K maps the Poisson struc-
ture (2.21) to the direct sum of n Poisson structures on the dual H* and g
copies of the symplectic structure of the Heisenberg double Dy (H):

M M M/
{Ja gy '} = —0ijfap de ! (2.26)
GMile Ry = 10 U™ ¢+ JPF  wij=1,...n

AL AL A/
{Gatydy 'y = —6ijfup  Jo (2.27)
.B, B! i
{Ja'sdy "} = —6ijfap dc*
LAY B B/
{da*s3,7 = —6ijfup Je*
AL Ry, %/ —1 b Rp.
{ja" 1@ F}=-1®Jo "F—1® (1 + Ad (ug ua,))a J, ' F
P 1eF = 10005 F Vij=1,....

MDA .M! B . .
{ga gy’ Y =4da ",3,°} =0 Vi=1,...,n,5=1,...,9. (2.28)

Proof: The Poisson brackets (2.26), (2.27) of the transformed generators
j(]lw ’{, j(f ;, jf i can be calculated directly from the Poisson brackets (2.21) of
the flower algebra. We then insert the expressions (2.7) for the vector fields
on H in the Poisson bivectors (2.10) and (2.15) of the dual H* and the
Heisenberg double Dy (H) and apply them to the functions j, € C*(H) :
(u, —Ad*(u~1)5) + j, to verify that the result does agree with the decoupled

brackets (2.26) and (2.27). O

Note that K may also be viewed as the pullback of a map H"*%9 —
H"t29 which is the identity on G™29 and leaves each of the conjugacy
classes Cy;s, invariant. From (2.23) we see that these maps add to j,,,
respectively j; an element of @Zif‘q g ® C®(G"+29) preceded by a factor
(1—Ad*(upy,)). It follows from (2.12) that such transformations map a given
conjugacy class into itself.

The transformation K simplifies the Poisson structure of the flower alge-
bra considerably by decoupling the contributions of different punctures and
handles. However, it is still possible to simplify the resulting Poisson struc-
ture further by breaking up the Heisenberg double Poisson structure (2.27)
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associated to each handle. Defining a map L : H?91" — H?9+" via

(ua;,up;) — (Wi we) = (ua,,uplua,) (2.29)
Gandp) = (kuikei) =Ga —Jp-dp) i=1....9

up; UM,

JMZI — JMZ/ i=1,...,n,

we can transform each Heisenberg double into the cotangent bundle sym-
plectic structure T*(G x G) 2 T*(G) x T*(G)

(k' "y = S kT RLRT = —f R (MM =0
(2.30)

4 d
{ky', F} (w1, wa;) = — =0 (wig e )

) d _
(k2% F}(wy 4, wa,) = _&\t:oF(wl,z‘, e Mawy).

Combining the decoupling transformation K with the pull-back L* and using
the notation (2.13) then yields the following theorem

Theorem 2.5. The bijective map L* o K : F — F maps the Poisson
structure (2.21) of the flower algebra to the direct sum of n copies of the
dual Poisson-Lie group H* and 2g copies of the cotangent bundle Poisson
structure T*(G). The symplectic leaves of the Poisson manifold (H*)n X
(T*(G))Qg are of the form Cpy sy X ... X Cps, X H?9 and the pull-back of the
symplectic structure on each leaf via the map

. . - 29 . gn+2g 29
CONGpyy sy X oo X CONG, o X 0d™ 2 H — Cpysy X .. XCpps, x H*9(2.31)

1s the exterior derivative of the symplectic potential

n ! g .
O = > (doagvy}, ja PY+ > (wildwy, kYPY (2.32)
=1 =1
- <dw27lw2}1 s k‘g’ipa>.

Proof: The expression for the pull-back of the symplectic potential on

the symplectic leaves of H* was derived for the case G = SO(2,1) in [9],
but the derivation is valid for any Lie group G. The expression for the
symplectic potential on 7*(G x G) is standard and uses the identification of
T*G with G x g*. The identification can be made using either the left- or the
right-multiplication of G; our definition of ke and k2 is such that we use
right-multiplication for one copy and left-multiplication for the other copy
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of G in T*(G x G). The reasons for this choice are related to the natural
action of the quantum double of G in the quantum theory, and will become
clear in Sect. 4.2. U

This theorem provides us with an interpretation of the map L* o K. In
the decoupled coordinates j;/,uy, ko and we; the symplectic structure
on symplectic leaves has the canonical form (2.32). We shall see in Sect. 3
that the Poisson structure expressed in terms of the decoupled coordinates
is amenable to a rather straightforward quantisation procedure. The map
L* o K thus establishes a link between two important sets of coordinates,
the holonomy coordinates with a direct gauge-theoretical interpretation and
the decoupled coordinates which are convenient for quantisation.

2.4 Symmetries

As the flower algebra for the group H = G x g* is closely related to the
phase space of Chern-Simons gauge theory with gauge group H, the moduli
space of flat H-connections, it is to be expected that at least some of the
invariance transformations of the underlying Chern-Simons theory give rise
to symmetries of the flower algebra. We identify two such groups of symme-
tries of the flower algebra and show how they are related to the invariance
transformations of the underlying Chern-Simons gauge theory.

The first such group of symmetries of the flower algebra is the mapping
class group Map(Sg,) of the underlying surface S;,. As topological field
theories, Chern-Simons theories on a surface S, ,, are invariant under diffeo-
morphisms of this surface, in particular, under large diffeomorphisms, which
form its mapping class group Map(S, ). In [9] it was shown for the case

H = SO(2,1) x R? that elements of the mapping class group act on the
flower algebra as Poisson isomorphisms. The proof can be extended to gen-
eral H, but we will not give it here. Instead we defer a full discussion of the
mapping class group in classical and in particular quantised Chern-Simons
theories with gauge groups G x g* to a future paper.

The second type of symmetry acting on the flower algebra is related
to the other class of invariance transformations in Chern-Simons theory,
Chern-Simons gauge transformations. In the description of Chern-Simons
gauge theory by means of a set of curves representing the generators of the
fundamental group, Chern-Simons gauge transformations that are nontrivial
at the basepoint act on the associated holonomies by global conjugation
with an element of H. Via the identification of the holonomies with the
different copies of H in definitions Def. 2.1, Def. 2.2, this action on the
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holonomies induces transformations of the flower algebra. However, these
transformations are in general not Poisson isomorphisms unless we take into
account the nontrivial Poisson structure (2.9) of the group H. For semisimple
H, it was shown in [5] that, interpreted as maps H x H"T29 — H"29,
they are Poisson isomorphisms with respect to the flower algebra Poisson
structure on H"29 and the Poisson structure on H x H"t29 that is the
direct product of the Poisson structure (2.9) on H and the flower algebra
Poisson structure on H"t29. However, we will see that there is a much
larger group of Poisson symmetries of the flower algebra that generalises the
conjugation with elements of the group H. In particular, for the case where
the exponential map exp : g — G is bijective, these Poisson symmetries give
rise to a Poisson action of H on the flower algebra that can be interpreted
as a deformed conjugation.

Theorem 2.6. (Action of G x C*(G))

1. Consider the group G x C*°(G) with multiplication law

(h1, f1) - (ho, f2) = (hih, f1 + f2 0 Ady-1) (2.33)
Vhi,he € G, fi1, fa € C(G).

It acts on the flower algebra via

(h,f): ja @10 jy @ Ad*(h)," + 1@ (Ad* (W) {ji¥ ® 1,1 @ f o Doo})

1@ F—1®FoAd/*, (2.34)
where AdZHg : (umy, ... uB,) — (hupgh™t oo hup,h™t) denotes

the global conjugation by h € G , { , } the Poisson bracket (2.21) on
the flower algebra and ®o : G"T29 — G is the map

Do (ungy s - - - ,uBg) = Ugot = UK, *** UKy * UM, * " UM, (2.35)
with ug, given by (2.24).

2. This action is a Poisson action. The infinitesimal generators of the
action of G C G x C®(G) are the elements

n g
j(tLOt = Z]é\/fz ® Ad*(uMi—l T uM1)ab + Z 1® Ad*(uKi—l Tt uMl)ab ’ jlfiz
=1 =1
n M/ g Al
=N a Y 1@ (8,0 — Ad (uzh),b) - gy ¢
i=1 k=1

+1® (Ad*(u3)) — Ad* (g ua,))a’ - G0 (2.36)
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with 1 given by (2.24), and the action of C*(G) C G x C®(G) is
generated by functions 1 @ (f o ®), f € C®(G). We have for all
elements p € F

Limole™, 0)(9) = (1, 0} (2.37)

%\tzou, —t- f)p) = 1@ (f o Do), 0}

Proof: That (2.34) defines a group action of G x C*°(G) on the flower
algebra with infinitesimal generators (2.37) can be shown by direct compu-
tation using the Poisson brackets (2.21) or, alternatively, (2.26),(2.27) of the
flower algebra. That it is a Poisson action follows from the fact that it is in-
finitesimally generated via the Poisson brackets [14], but can also be verified
directly from (2.34) and the Poisson bracket of the flower algebra. O

Note that the map P : (uMl,...,uBg) — Ut as well as the alge-
bra elements j'° occurring in Theorem 2.6 have a geometric meaning [9].
If we parametrise the holonomies Mj, ..., B, associated to the generators

mi,...,bg of m(Syn) according to (2.1)
(ux, —Ad*(ux")ix) = (ux, —Ad*(uyx)jX P*) VX € {My,...,B,}(2.38)

and identify the parameters jX with generators j.X ®1, then the holonomy as-
sociated to the curve ko, defined in (2.16) is Hol(koo) = (uror , —Ad* (uppt)dsor)
with i and g, given by (2.35) and (2.36).

We will now relate this action of the group G x C*(G) on the flower
algebra to the transformations induced by simultaneous conjugation of the
holonomies with a fixed element of G x g*. From the group multiplication
law (2.2), it follows that (h, ) € G'x g* acts on elements of the flower algebra
by conjugation with the inverse (h~!, —Ad*(h)x) according to

1@ F— 1® (FoAd"?) (2.39)

X © 10 G @ Ad*(h),” — 1® (Ad"(h) — Ad" (uxh)), s,
This action is not a Poisson action. On the other hand, we can use (2.21)
together with the definition of the map ®,, to evaluate the bracket {jX , fo

® .} in the definition (2.34) of the G x C*°(G)-action on the flower algebra
and obtain the Poisson action

(hf): 1@ F 1@ (FoAdt) (2.40)
Ja ® 10 jf @ Ad*(h)," —1® ((Ad*(h) — Ad*(uxh)),"(Jy f) © Poo).

Comparing expressions (2.39) and (2.40), we see that the action of GXC*®(G)
on the flower algebra can be interpreted as a generalised conjugation: the



1020 THE QUANTISATION OF POISSON STRUCTURES. ..

action of G C G X C*°(@G) agrees with the action of G via global conjugation,
whereas the action of C*°(G) C G x C*°(G) mimics global conjugation with
g*, only that now the transformation vector € g* is replaced by a function
of the group element ;.

If the exponential map exp : g — G is bijective, group elements u € G
can be parametrised as u = exp(p®J,) and the relation between the action
of G x C*°(G) and the action of the group G x g* by global conjugation
becomes more explicit. Denoting the inverse of exp: g — G by log : G — g,
we can define an embedding ¢ : g* — C*(G) via

t(x)(u) = (x,log(u)) Ve e g*,u e G, (2.41)

where (, ) denotes the pairing (2.4). In particular, we have the coordinate
functions +(P?) : u = exp(p®Jy) +— p®. Then, the group multiplication (2.33)
restricted to G X ¢(g*) becomes simply the group multiplication of H, and
we obtain the following lemma

Lemma 2.7. If the exponential map exp : g — G is bijective, there is a
Poisson action of the group G x g* on the flower algebra given by

(hya): 19F  — 1@ (FoAd") (2.42)
iXo1 — e Ad(h), —1® (Ad(h) — Ad*(uxh)), .

where qy = T}, “(utor) T and

1 — Ad*(utot)

T (tgor) =
(Ut t) ad*(pgot‘]a)

(2.43)

1 a linear map depending on the total holonomy uy .

Proof: Apply the formula (2.40) for the Poisson action of G x C*°(G) to
the function f = ¢(x). The lemma then follows from the formula (Jfu(x)) o
@ =T}, “(utor) T, which can be found, for example, in [15], p. 179. O

3 Quantisation

By Theorem 2.5, we have reduced the task of quantising the flower algebra
to the quantisation of the symplectic structure on the cotangent bundle
T*(G) of the group G and the dual Poisson structure H*. Both of these
Poisson structures are relatively simple and special cases of the following
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general situation. We have a commutative Poisson algebra given as a tensor
product

Q = S(e) ®C®(R), (3.1)

where F is a finite dimensional, simply connected Lie group with Lie alge-
bra ¢ = Lie E and S(e) denotes the symmetric envelope of e. The Poisson
structure is that of a semidirect product: Poisson brackets of two elements
of S(e) are given by the derivative extension of the Lie bracket on e, Poisson
brackets of two functions in C*°(F) vanish and Poisson brackets of elements
of S(e) with functions in C*°(FE) are derived from a group action . of F on
itself

{1l,nel}=[¢n.o1 1eF19K}=0 (3.2)

d
{€®1,1® F}(d) = a|t:0F(e—tE )  Vé&nmee ueE, F,K cC®(E).

In the case of the cotangent bundle T*(G), we have E = G and the group
action is the inverse left multiplication or, alternatively, right multiplication
by G. For the dual Poisson structure H*, it is conjugation with G. We
proceed now to discuss the quantisation of a general Poisson algebra Q =
S(e) @C>®(E) of this type and then apply the results to the cotangent bundle
T*(G), the dual H* and the decoupled flower algebra in Sect. 3.2.

3.1 Quantisation of Poisson algebras Q = S(¢) ® C*(F)

Let @ = S(e) ® C*(F) be a Poisson algebra with a semidirect product
Poisson structure arising from an action . of the simply connected Lie group
E on itself as in (3.2). The Poisson algebra Q inherits a N-grading from the
canonical N-grading of the symmetric envelope

o) o) — S(k)(e) ® C®(E), (3.3)
0

[e.e]
Q =
k=
where S®*) () is the space of monomials of degree k in a basis B,={¢1,...,&aimE}
with real coefficients. The multiplication of homogeneous elements adds their

degrees, whereas the Poisson bracket (3.2) adds their degrees and subtracts
one

oM . Q) ¢ QK+ {o®, 00} ¢ Qk+H-1 (3.4)

In quantisation, the commutative Poisson algebra Q is to be replaced

by an associative *-algebra @, which depends on a deformation parameter
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h and has to exhibit certain structural properties relating it to the classical
algebra Q. Every element of the quantum algebra O must correspond to
a unique element in the complexified classical algebra Q¢ and conversely,
it must be possible to assign to every element of the complexified classical
algebra a quantum counterpart in Q. This is equivalent to the existence of
a vector space isomorphism @ : Q¢ — @ In order to obtain an algebra @
that merits the name quantisation, we must furthermore request that the
product of two of its elements is given as the quantum counterpart of the
product of the corresponding classical elements plus a quantum correction
of order O(h), and that their commutator is equal to ih times the quantum
counterpart of the Poisson bracket of the corresponding classical elements
plus a quantum correction of order O(h?):

QW) -Q(2) =QW - Z)+O(h) (3.5)
[QW),Q(Z)] =ihQU{W, Z}) + O(K*) ~ ¥YW,Z € Q. (3.6)

In general, the quantum corrections in (3.6) cannot be eliminated for all
elements W, Z € Q. (For the case of the Heisenberg algebra, this is a conse-
quence of the no-go theorem by Groenewold and van Hove [16, 17, 18].) But
there should be a Poisson subalgebra of the classical algebra Q containing
the generating elements £1 ® 1,...,&ime ® 1 and 1 ® F, for which this is
possible.

As our Poisson algebra Q is of a particularly simple type and related to
the symmetric envelope of a Lie algebra e, a framework for the construction
of the quantum algebra is provided by the theory of universal enveloping
algebras and the theorem of Poincaré-Birkhoff-Witt [19]. We obtain the
following theorem defining a quantum algebra with the requested properties

Theorem 3.1. (Construction of the quantum algebra @)

Let @ be the associative algebra @ = U(e)XC>®(E,C) with a semidirect
multiplication defined by

ERF)- MK)=¢(uyn@FK+ihn@ F{{®1,1® K} (3.7)
VeE,nee, FK € C*(E,C),

where U(e) denotes the universal enveloping algebra of the Lie algebra e with
Lie bracket multiplied by a factor ih, -y the multiplication in U(e) and {, }
the Poisson bracket (3.2). Then

1. Q has a *-structure given by (E@1)* =¢@1, 1@ F)* =18 F for
£€e, FeC>®E,CQC).
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2. The algebra Q inherits a filtration from the canonical filtration of the
universal enveloping algebra U (e)

0= G ok) ok =y (e) g ¢>(E,C) c Ok+Y Vk e N
= (3.8)
with OO = ¢>=(E,C) = 9, 0W/0k-1 =~ o) v > 1 and
Ok . 9 c g+l 1Ok O] c Q+=D k1 eN. (3.9)

In particular, the commutator [,] of @ defines a Lie bracket on the
space oW,

3. In terms of elements &1 < ... < &umE of an ordered basis of ¢, a vector
space isomorphism Q : Qc — Q is defined by

Q(§a1"'£am ®F) ::£a1 'U---‘Ugam(g’F
:Q(1®F)'Q(§a1 ®1)"'Q(§am®1)

Vay < ... < am, F € C*(E,C). (3.10)

It satisfies
¢ (QW) - Q(Z) —QWZ)) =0 (3.11)
=D (), Q(2)] - ih QUW, 2})) =0 (3.12)

YW € Q((Ck),Z € Q((Cl),
where TI®) 4s the canonical projection @(k) — @(k)/é(k_l). In partic-
ular, Q|(Q(0)@Q(1))<c : Q((CO) D Q((Cl) — OW s a Lie algebra isomorphism
with respect to the brackets {, }omaom). and [, llgn)-

Note that for general elements 0, x € U(e) of the universal enveloping
algebra U (e) the multiplication law defined by (3.7) can be written using
Sweedler notation

O F)-(x®K)=> (61 vx) @ (F - 04K), (3.13)

where Ay : U(e) — U(e)@U (e), Ay (0) = > 01)®0(9) is the co-multiplication
of the universal enveloping algebra defined inductively by Ay (€) = 1@£+£®1
for £ € e and AU(Q U X) = AU(Q) ‘U AU(X) for 0,y € U(e)

Proof:
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1. The canonical filtration of universal enveloping algebra U(e) =
U2 U™ (e), where U®)(e) is the space of non-commutative polyno-
mials of degree < k in the generators of the Lie algebra e, satisfies

UB(e) v U (e)cUFD (o), [UW(e), U (e)]y cUFHV(e) Wk, 1 € N
(3.14)

and U®) () /U*=1) (¢) =2 S (¢) for k > 1. This implies Q) / Qk=1) —
(UF(e) @ C>(E,C))/(U* D (e) @ C*(E, C)) = (UX () /U (e)) @
C®(E,C) = SW(e) @ ¢*(E,C) = O for k > 1. The identities (3.9)
then follow directly from (3.14) and the multiplication law (3.7). In
particular, [@(1), @(1)] C @(1), which makes the subspace O with the
commutator a Lie algebra.

2. According to the theorem of Poincaré-Birkhoff-Witt, see for example
[19], an ordered basis of the vector space U(e) is given by the ordered
monomials &, - ... &q,,, a1 < ... < @y, m € N, in the elements of an
ordered basis £1 < ... < &qim g of the Lie algebra e. Therefore, the map
@ in (3.10) defines a vector space isomorphism from Q¢ to Q. From the
multiplication law (3.7) and the definition (3.2) of the Poisson bracket
we have for the commutator of two Lie algebra elements £, € ¢ and
the commutator of a Lie algebra element with a function F' € C*°(E,C)

Eolnell=Euvn-—nuvil=ik{{®1,n®1} (3.15)

E®1,1®F|=ill® (—%\tOF(etﬁ. -)) —in{¢®1,1® F}.

For elements W € Q((Ck), VARS Q((Cl), the product Q(W) - Q(Z) dif-
fers from Q(WZ) only by factor ordering, which can be seen from
the multiplication law (3.7) and commutators (3.15) to give rise to
a quantum correction in Qk+i-1) preceded by a factor hA. The same
applies to the commutator [Q(W),Q(Z)] and ihQ({W, Z}), only that
now the quantum correction is an element of Qk+l=2) with a fac-
tor h2. This proves identities (3.11) and (3.12), in particular, that

Q’(Q(O)@Q(l))c : Q((CO)EBQ((CI) — @(1) is a Lie algebra isomorphism. O

Theorem 3.1 provides us with a way of constructing the quantum algebra
for Poisson algebras Q = U(e)&C>(E, C) with a semidirect product Poisson
structure (3.2). The next step is the study of their representation theory, i.e.
the classification of all irreducible Hilbert space representations. For this, we
must decide which representations we want to consider and which meaning
we want to give to the requirement of irreducibility. These questions arise
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in a similar way in the standard examples treated in textbooks on quan-
tum mechanics, for the case of T*R¥ see [20] and also the papers [21] for
a more detailed treatment. Physical requirements usually result in restric-
tions on the admissible representations, which are reflected in the concept
of integrability, and a specific interpretation of irreducibility.

The simplest case is that of a quantum algebra of observables that is the
universal enveloping algebra U (e) of a Lie algebra e. Via differentiation, rep-
resentations of the corresponding Lie group F on a Hilbert space give rise to
representations of the universal enveloping algebra U(e) on a dense, invari-
ant subspace, the Garding space or space of C*-vectors [22], [23]. However,
in general not all representations of the universal enveloping algebra arise
that way. Following [22] we call a representation II of U(e) integrable if it is
derived from a unitary Hilbert space representation 7 of E according to the
rule

(e = Sheorlep(-1O), €€, (3.16)

for all C*°-vectors 1. Because the elements of the Lie group F often cor-
respond to physically meaningful transformations on the phase space, it is
usually requested that the Lie group E be represented on the Hilbert space
and only integrable representations are considered. Similarly, irreducibility
is usually understood with respect to the representation of the Lie group
FE, i.e. one classifies integrable representations of the universal enveloping
algebra U(e) for which the corresponding representation of the Lie group E
is irreducible.

In our case, we want to impose analogous requirements for the represen-
tations of the subalgebra U(e) C @, but we need to combine the associated
representations of the group F with representations of the function algebra
C>(E,C). To do this, we recall that the product (3.7) in Q involves the
action (3.2) of e on C*°(FE,C) that is derived from the group action . of E
on C*(E,C). Thus we want to combine the group E with the functions
C*>*(FE,C) in such a way that the product of group elements and functions
involves the action g € E which sends F € C®(E,C) to (u — F(g~t.u)).
Tensoring group elements with the function algebra C*>°(E,C) only makes
sense at the level of the group algebra of E. If we realise the group alge-
bra of E as (a certain class of) functions on E with multiplication defined
by convolution, the combination with the function algebra C*>°(E, C) can be
achieved in the framework of transformation group algebras, initiated by
Dixmier [24] and continued by Glimm [25]. In the most general definition of
transformation group algebras one starts with a topological group E which
is Hausdorff, locally compact and second countable and acts on a space X.
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Here we only need to consider the case where X = FE, and E is a finite-
dimensional Lie group. We summarise the key results following the paper
[26], which gives a treatment that is closely related to our situation.

Definition 3.2. Let FE be a unimodular Lie group acting continuously on
itself via . : E x E — E. Then the space Co(E x E,C) of continuous
functions on E x E with compact support is a transformation group algebra
if it is equipped with the multiplication and x-operation given by

Fy e Fy(v,u) = /EFl(z,u)Fg(z_lv,z_l.u) dz (3.17)
F*(v,u) = Fv o la). (3.18)

With the norm ||F||1 = [5||F(2,")||lsc dz we have the inequality || Fy e F||; <
[ F2 -

We now define irreducible integrable representations of O to be those
which, in a sense to be specified below, are derived from irreducible uni-
tary and bounded representation of Cyo(E x E,C). The task of classifying
integrable and irreducible representations of O then reduces, by definition,
to the task of classifying irreducible unitary and bounded representations of
the transformation algebra Cy(E x E,C).

Following the study in [26], we make the technical but important as-
sumption that the orbit space of the F-action on itself is T in the quotient
topology (A topological space is Ty if for any two distinct points at least
one of the points has a neighbourhood to which the other does not belong).
Also, we assume for simplicity the existence of an invariant measure dm on
the orbits of the group action of E on itself. Then, the bounded irreducible
representations of a transformation group algebra are characterised by the
following theorem [26].

Theorem 3.3. Let E be as above and assume that the orbit space of the E-
action on itself is Ty in the quotient topology and that there exists invariant
measures dm on each orbit. Then the irreducible || - ||1-bounded unitary
representations of the transformation group algebra Co(E x E,C) are labelled
by orbits O, = {v.g.|v € E}, gu € E, of the action of E on itself and
irreducible unitary representations Il of the associated stabilisers N, = {n &
E|n.g, = g.} on Hilbert spaces Vs. The representation spaces Vs are, up
to equivalence, given by the following construction. Let Lis be the space

L2 = {: E— Vi | ¥(on) =Ts(n )p(v), ¥Vn € N,, Vo€ E,

us
and || = / [, dm(=N,)) < 0} (3.19)
E/N,
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with the positive semi-definite inner product
Wra)i= [ (@), dm(zN,), (3:20)
E/M,

Then one obtains a Hilbert space by taking the quotient space with respect to
the subspace of functions with norm zero:

Vis = Lis [ {o € Li | [I¥] = 0}, (3.21)
on which elements F' € Co(E x E,C) act via
(FuaF)0) (0) = [ Plevg, i) d. (3:22)

It remains to show that there is a dense invariant subspace of the Hilbert
space V), that carries a representation of the quantum algebra @ and to
specify how this representation is derived from that of Cy(E x E,C). For
this purpose, note that the group E acts unitarily (and reducibly) on V,
via

(m(9)¥) (v) = P(g~ ). (3.23)
Following [23], we define C*°-vectors in a representation of £ to be those for
which the map 1 — 7(g)v is infinitely often differentiable. The C*°-vectors
in Vs viewed as a representation of I are precisely those ¢ € V,, which
are smooth functions £ — V,. On these vectors the derived action of the
Lie algebra ¢ is then obtained by differentiation as in (3.16). In order to
obtain a subspace on which C*(E, C) acts we need to impose the additional
restriction that the map \WH%/S : E/N,, — C has compact support. We define

Vo = {1 € C(E,Vy)| (vn) =Ts(n")p(v) Vn e NyveE
and |||t € C°(E/N,)}  (3.24)
and have

Theorem 3.4. The space V7 is a dense subspace of the Hilbert space Vs

and carries the derived representation of the quantum algebra 8) defined by

HMS(§ ® 1)Y(v) = _ih%’t:mﬂ(eit& v) HMS(l ® F)y(v) = F(U-gu) “(v)
(3.25)
for§ €e, FeC®(E,C).

Proof: The density of V77 in V), follows from the density of C5°(M, C) in
L2(M, C) for any domain M [23]. To see that the action (3.25) of O on V2 is

us
well-defined and leaves V% invariant note that if ||¢|[3, has compact support
so does |F(gM)|2||¢||%/S Checking that (3.25) defines a representation is an

easy algebraic exercise. O
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3.2 Quantisation of the decoupled flower algebra

After constructing the quantum algebra and its representations for Poisson
algebras of type (3.1) with brackets (3.2) we can now apply these results to
the cotangent bundle symplectic structure 7%(G), the dual Poisson structure
H* and, finally, the decoupled flower algebra F. For the case of the cotangent
bundle 7%(G) with the Poisson brackets given by (2.30), the corresponding
group action is simply the inverse left multiplication or, alternatively, the
right multiplication with G. There is only a single orbit, the group G, and
its stabiliser group is trivial. We obtain the following quantum algebra

Theorem 3.5. (Quantum algebra for T*(QG))

1. The quantum algebra for the cotangent bundle Poisson structure T*(G)
is the associative algebra U(g)xC*™(G,C) with the multiplication de-
fined by

E@F) @ K)= (¢ vn)®(FK)—iine (E"K), (3.26)

where £,m € g, F, K € C®(G,C), ¢~ is the right-invariant vector field
associated to € and -y denotes the multiplication in the universal en-
veloping algebra U(g).

2. The corresponding transformation group algebra has a single irreducible
representation on the Hilbert space V. = L*(G,C). Elements of
U(g)&C>*(G,C) act on the dense invariant subspace C3° (G, C) accord-
ing to

(¢ @ Dep(u) = —ih& p(u)  TI(1 @ F)yp(u) = F(u) - ¢(u)  (3.27)
forue G,§e€g, FelC®G,QC).

Of course, we could just as well have G let act on itself via the right mul-
tiplication and simply exchanged left and right in Theorem 3.5. Combining
one copy of T*(G), where G acts by right multiplication, and one where it
acts by inverse left multiplication, we obtain the quantum algebra associated
to the Poisson structure (2.30) of each handle:

Definition 3.6. (Handle algebra ﬁ)

1. The handle algebra is the associative algebra H = U (gD g) KC®(G x
G, C) with generators kl, k2 € g for the two copies of g and multipli-
cation defined by

EQRF) MaK)=(Eun)@(FK)+ihn®{{®1,1@ K}, (3.28)
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where {,m € g@ g, F,K € C°(G x G,C), -y is the multiplication in
U(g @ g) and the bracket {, } is given by (2.30).

2. The corresponding transformation group algebra has a single irreducible
representation on the space L>(G x G,C) and elements of H act on the
dense subspace C3°(G x G,C) via

Iy (k2 k2) © 1)eb(uwn , ws) = —ih %]tzow(wle”“, ey, (3.29)
(1@ F)Y(wr, we) = Fwr, ws) - (w, we).

The case of the dual Poisson structure H* is slightly more complicated.
Here, the group action associated to the Poisson bracket is conjugation with
G. Consequently, its orbits are G-conjugacy classes, and its irreducible rep-
resentations are labelled by G-conjugacy classes and unitary irreducible rep-
resentations of the associated stabilisers.

Theorem 3.7. (Puncture algebra P)

1. The quantum algebra P associated to the Poisson structure (2.26) on
the dual Poisson-Lie group H*, in the following referred to as puncture
algebra, is the associative algebra P = U(g)&C>® (G, C) with multipli-
cation defined by

E@F) @ K)=(&vn e (FK)—itne (€ +EHEK), (3.30)
where £,m € g, F,K € C®(G,C), ¢&, ¢ are the right- and left-

invariant vector fields associated to £ and -y denotes the multiplication
in the universal enveloping algebra U(g).

2. The corresponding transformation group algebra is called the quan-
tum double of G and denoted D(G). Under the technical assumptions
of Theorem 8.8 its irreducible representations are labelled by the G-
conjugacy classes C,, = {v-g,-v~" |v € G} and irreducible unitary rep-
resentations Il of associated stabilisers N, = {n € G|n-g,-n~* = g,,}
on Hilbert spaces Vi. The representation spaces are

Vis={t: G — Vi |¢(wn) =Ts(n HY(v), ¥ne N, YveG,
and ||y|* = / [(2)|1}, dm(zN,,) < oo}/ ~(3.31)
G/N,

where ~ denotes division by zero-norm states and dm is an invariant

measure on G/N,. The algebra P acts on the dense subspace V3 via

I, (€ ® 1)1h(v) = —ih&"Y(v), (1 @ F)ib(v) = F(ogo™") - y(«(3.32)
for{eg, FeC®G,C).
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After quantising the Poisson algebras (2.26) and (2.30) associated to each
puncture and handle, we can now combine these building blocks to construct
the quantum algebra for the decoupled flower algebra and its irreducible
representations. By inverting transformation (2.29), we obtain the quantum
algebra F associated to the Poisson algebra (2.26),(2.27). Note that this
Poisson algebra is again of type (3.1) with Poisson brackets (3.2), where
now E = G"29 and the action of G"29 on itself given by combining n
copies of the group action associated to the puncture algebra P and g copies
of the group action for the handle algebra H:

(hMlv"'7th7hA17hBlv"'7hAg7th) '(uMla"' s UM, UA;, UBy s« - - ,UAQ,UBQ)
-1 -1 -1
= (hMluMthl,...,thuMnth,uAlhAl,uAlhAluAluBlhBl, coua hay,
-1
uAghAguAguthBg).

Theorem 3.8. (Quantisation of the decoupled flower algebra)

1.

The quantum algebra for the decoupled flower algebra in Theorem 2.4
is the associative algebra

n+2g
F=U <@ g) ®C=(G"¥,C), (3.33)

k=1

with the multiplication defined by
ERF) MeK)=¢un@FK+ihn@ F{{®1,10 K}, (3.34)

where ;1 € @Z?g g, F, K € C®°(G""29 C) and -y denotes the multi-
plication in U (@ZJrfg g) The bracket {, } is given by (2.26),(2.27)
via the zdentzﬁcatzon of the genemtors of the dzﬁerent copies of g with

the elementsga ,...,ja ,j;q —ja Lga . ..,ja —jf ,jf" mn The-

orem 2.4. The algebra F has a *-structure given by (jX ) = X,
1IF)*=1®F.

If the technical assumptions of Theorem 3.3 hold the irreducible repre-
sentations of the transformation group algebra corresponding to (3.33)
are labelled by n G-conjugacy classes C,,,...,C,, and irreducible uni-
tary representations Ilg, of stabilisers N, ,..., N, of chosen elements
Guis -+ - Gu, 0 those conjugacy classes on Hilbert spaces V,. Let

L? ={: G SV, ®...0V) |

[181-.fin Sn
Y(vihi, ..., vn b, uay, - uB,)
= (Hsl(hfl) @ ..., (b)) Y(var,, ... var, Ay, - - - ,UB,)
Vhi € Ny, |[¢]* < oo},



C. MEUSBURGER AND B. J. SCHROERS 1031

with norm || - || derived from the inner product

<w7¢> _/ (¢7¢)(UMlv"'v’UMnauAla"'uBg)
G/Nyuy X..xG [Ny, xG29
(3.35)

dmyi(va - N1) - - dmp(vng, - Na) - duga, -+~ dug,,

where (, ) is the canonical inner product on the tensor product of
Hilbert spaces Vs, ® ... ® Vs,,. The representation spaces are

=I?

VHlsl---NnSn ulsl...p,nsn/ ~ (336)

where ~ denotes division by zero-norm states. FElements 0f.7:" act on

00 ,
the dense subspace V<, s according to

O syepinsn (1@ F)Y(vary, o, UM,, UAy, - - -, UB,) (3.37)
:F(leng;/Ill,...,angunv]T/[i,uAl,...,uBg)
W(Ury s - UMy s UAys - - -5 UB,)
=((FoB) Y)W, UMy, YAy, - -+, UB,)
M!
Hﬂlsl---ﬂnsn(]a " ® 1)¢(UM17 e UM,y UALy - ,’LLBg)
L d _ija
= —zh%\tzow(w\/h,...,e tJ UMys - UMy WAy s - -5 UB,)
. L.
= —ihJ, M Y(UMy s UM, YA, -+, UB,)
VAL .B.
Hﬂlsl---ﬂnsn((jal _j(?l) @ V)b(vnrys -+, UMy, Ay, - - - 7uBg)
L d a a _
= —zha\tzow(le,...,uAie” ,uAie” uAiluBi,...,uBg)

= iR (Ja ™ 4 A (g ) T, )

(UMY - UM, YA, - UB,)
Hmsl___unsn(jfg ® )ab(varys -+ UMy, YAy, - - -, UB,)
= —ih%h:mﬁ(v}wl, e ,uAi,uBiet‘]a, e, UBy)
= —thfBi V(UM s -5 UM, YA, -+ UB, ),

with B : GPT29 — G™29 given by

5(’UM17---7’UMn7uA17---,UBg) (338)

__ —1 -1
= (UM Gy Vpgys -+ s UM Gpn Vng, s WAy s+ + + 5 UBy)-

3. With the induced inner product on the subspace V,7g ., o . the repre-
sentations (3.37) are x-representations with respect to the x-structure

given above and the operators ]'_‘[,U«ISI---Mnsn(jg(l)f sy pmsn (1@ F) are
Hermitian.
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3.3 The quantum decoupling transformation

We can now use the quantisation of the decoupled Poisson structure in The-
orem 3.8 to obtain the quantum version of the original, undecoupled Poisson
brackets (2.21) of the flower algebra. The idea is to define a quantum coun-
terpart of the inverse decoupling transformation K1 given by (2.25). In
trying to implement this idea one encounters ordering ambiguities in the
part of K~! that involves the generators jj;‘i, jBi associated to the handles,
such that the quantum versions of the brackets (2.21) associated to different
choices of ordering would differ by quantum corrections. However, a closer
look at the structure of the quantum algebra F provides us with a canonical
definition of the inverse quantum decoupling transformation. Note that the
classical decoupling transformation and its inverse are linear in the genera-
tors j~X and jX ". We can therefore interpret them as bijective maps on the
vector space F(© @ FM) and use the vector space isomorphism @ in Theorem
3.1 to define its quantum counterpart.

Theorem 3.9. (Quantum decoupling transformation)

Define the quantum decoupling transformation as
K :=QlooKoQ|y: FO 5 FO) (3.39)

where Qlo1 denotes the map Q| rw)grn)y. f(éo) @fg) — FO to simplify
notation, and transform the generators off'(l) with its inverse K1 = Qlo1o

K= 'o Q|611. Then the commutators of the transformed generators are given
by applying the map ih Q|o1 to the right-hand side of equations (2.21).

Note that, although this construction looks quite formal, it amounts to
the choice of an ordering in (2.23),(2.25), namely ordering all the generators
Jx, jj(/ that occur in these expressions to the right. The quantisation of
the Poisson brackets (2.21) obtained this way is canonical in the following
sense. Although the right-hand sides of (2.21) contain products of generators
¥ e @Zifgg with functions Ad*(ux),® € C>°(G™"29), these products do
not give rise to ordering ambiguities. This is due to the fact that X <Y in
all of them, for which the last three brackets in (2.21) imply that the factors
commute.
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4 Quantum symmetries and the quantum double
D(G)

4.1 Quantum action of G x C*(G)

With the definition of the quantum flower algebra F and its irreducible rep-
resentations in Theorems 3.8 and 3.9, we can now determine how the group
G x C*°(G) acts on this algebra. The crucial observation for constructing
the quantum action of this symmetry group is the fact that it induces lin-
ear transformations of the classical generators j.X, as explained in Theorem
2.6. This allows us to define their action on the generators of the quantum
algebra by means of the map @ in Theorem 3.1:

Theorem 4.1. (Action of G x C°(G) on F)

For an element (h, f) € G x C*(G), define its action m on the sub-
algebra FO) by

() = Qlot o (b, f) 0 Ql5- (4.1)

This map is a Lie algebra automorphism of]:'(l) and can be extended canon-
ically to an algebra isomorphism (h, f) : F — F of the quantised flower
algebra.

Proof: Let 7 be a Poisson isomorphism of the classical flower algebra

)@

that restricts to a Lie algebra automorphism of the linear subalgebra F 0

]-"(él) and therefore defines a Lie algebra automorphism 7 : FO L F (1) by

7= Qo OTOQ‘OI As Qo1 : )EB]:(l) FW is a Lie algebra isomorphism
and 7 a Poisson automorphlsm of F, we have
[7(6), 7001 = i Qlor ({7(Qlo7' (9)), 7(Qloy' () }) (4.2)

= ih Qlor o T({Qlo1 (6), Qlot' ()}
=Qlor oo Qo ([0,X]) = 7(0,x]) W0, x € FV.

Via the choice of an ordered basis of U (@ZJrfg g) for example the ordered

polynomials in the elements of the ordered basis j; M; < . < jé\j[mc < ji\/[
M/
< Jgima < jl . < jdlmG < jl . < jdlmG of the Lie algebra

@Z+lg g, and settlng

Hagd - jimy @1) == 20 @1)--- (0 @ 1) (4.3)
H1eF)-(0o1)=71c ><e®1>
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for elements # of this ordered basis, 7 can be extended to a vector space
isomorphism on F. Because 7 has been extended multiplicatively to the
ordered basis and [F(€ ® F),7(n® K)| = #([£ ® F,n® K]) for &, € Drg
and F, K € C*(G"*%9,C), 7 : : F — F is also an algebra isomorphism. [

The action of the group G x C*°(G) as an algebra isomorphism of the
quantised flower algebra raises the question if it can be implemented unitarily
in the representation spaces (3.36). The following theorems show that this
is indeed possible and give explicit formulae for the action of G x C*°(G) in
the representation spaces (3.36).

Theorem 4.2. (Representations of G x C*(G))

Let 11,6, p,s, be a representation of the flower algebra as defined in

2
Theorem 3.8. Let the maps 3, AdZ+ TGt L G2 e given by (3.38)

and

—~n+2 — -
Ad,, £ile,...,v]\/[n,uAl,...,uBg):(hv]\/fl,...,thn,huAlh 1,...,huth b,
(4.4)
Then T : G x C°(G) — End(Vyisy . punsn)
L(h, f)¥(var, - UMy, YAy, - - -, UB,) (4.5)
7 n+2
( FfoPooof \I/OAdh+1g)> (UMl,...,’I)Mn,’u,Al,...,uBg)
6% (utot) U(h~ le,...,h_lan,h_luAlhw--7h_1Uth)

with et given by by (2.35), defines a representation of the group G x C*(G)
on the representation space Vs, . u,s, that satisfies

Ws s pimsn (s ) Z) = T, £) 0 Ty pnsn(Z2) o TNy f) - VZ € F(4.6)

on the dense invariant subspace Vu151 tinsn- 1f the conditions in theorem 3.8

are fulfilled, this representation is unitary.

Proof: To simplify notation, we write V for V4  u.s, and II for

2
IL 61 pns, - Theidentity fo®, oﬂoAdh+1g = foAdj-10P,, 00 implies that

(4.5) defines a representation of G x C*°(G) on V. Since the group elements
corresponding to the punctures are left-multiplied by elements of G and the
elements corresponding to the handles conjugated in 4.4, the conditions on
the measures in Theorem 3.8 guarantee unitarity for the representations of
elements (h,0) € G x C*°(G). For elements (1, f) € G x C>°(G), which act
via multiplication by a phase, this is trivial.
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To prove identity 4.6, we calculate

—

H((h, Ha ®K)) o'(h, f)¥
—~ n-+2g )

—TI(1® (K 0 Adj—1)) (e#/°®=F . (W o Ady ")

— (K o Ady-1 0 §) - e# /o= (5 0 Ad 1)

=T(h,f)olI1® KW VYUV

(4.7)

and, with the Poisson bracket (2.26),(2.27) for the generators jX of the
decoupled flower algebra

((h, /)jX') o T(h, f) W

=TI((1 ® Ad*(h),") - ji* +1® Ad*(h), {5, f 0 ®oo}) (T(h, £) )

= Ad*(h)," (G f o Bac} o B) - i ™0 (woAdy 1) (4.8)

+ Ad*(h),b et foP (MY ) (W 0 Adj 7))
+EAdS () et o= (w0 Ay 1) - (G )(f 0 B 0 )
= e ool (1Y )W) 0 Ady ! = T(h, ) o HGEX)W VW €V,
where we used the identities
Ad* ()G ) 0 Ay ) = (MG )W) 0 Ady ! (49)
(G )(f 0 ®os 0 B) = ih {ji @1, f 0 Buo} 0 .

—

Therefore, we have II((h, f))0) = T'(h, f) o II(#) o T~ (h, f) for all § € F. O

4.2 The relation to the quantum double D(G)

In the combinatorial approach to quantising Chern-Simons theory [2, 3, 27,
28] quantum groups or, more precisely, ribbon-Hopf-*-algebras and associ-
ated structures play a central role. Since our approach to quantising Chern-
Simons theory with gauge group G X g* begins with a description of the
classical phase space which is analogous to that used in [2, 3] it is perhaps
surprising the we arrived at a quantisation without making explicit use of
quantum group theory so far.

In this section we discuss which role quantum groups, more precisely,
the quantum double D(G) of the Lie group G play in our formalism. We
already encountered D(G) as the transformation group algebra associated
with the puncture algebra in Theorem 3.7. Here we will exhibit its ribbon-
Hopf properties. We show that the quantum double D(G) also acts on the
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representation spaces of the handle algebra H given in Def. 3.6. Using this
action we obtain a representation of the quantum double on the represen-
tation spaces of the quantised flower algebra defined in Theorem 3.8. By
comparison with the quantum symmetries discussed in Sect. 4.1, it then be-
comes apparent that the quantum double can be viewed as a generalisation
of the symmetry group G x C*(G).

The quantum double of a Lie group G has been studied in various publi-
cations. We adopt the conventions used in [26] where the quantum double is
identified with continuous functions on G x G, except that we exchange the
roles played by the two copies of G in order to match our conventions for
the semidirect product group H. Thus we identify D(G) = Cy(G x G,C) as
a vector space. In order to exhibit the structure of D(G) as a ribbon-Hopf-
*_algebra, we need to include Dirac delta functions which are not strictly
in Cy(G x G,C). One can avoid this problem by modifying the definition
of D(G) as explained in [29] or by simply adjoining the singular elements.
In practice the latter approach is more convenient. Later we shall see that
it is precisely the singular elements d;, ® f (v,u) = d4(v) f(u) which have a
conceptually simple interpretation.

Thus we define multiplication e, identity 1, co-multiplication A, co-unit
€, antipode S and involution * via

(F1 @ Fy)(v,u) = : Fi(z,u) Fp(z v, 27 uz) dz,  (4.10)
L(v,u) = 0c(v), (4.11)
(AF)(Ul,’U,l,UQ, 2) = F(Ul,U1UQ) v1 (UQ). (412)
e(F) = /GF(v,e) dv, (4.13)

(SF)(v,u) = F v ul), (4.14)
F*(v,u) = F(v=1 v luw), (4.15)

so that we have for the singular elements

(6 ® f1) ® (89, ® fo2) = 0190 ® (f1 - fo 0 Ady1) (4.16)

A(bg @ f)(v1,u1;v2,u2) = 64(v1)dg(v2) f(urusz) (4.17)

€0y @ f) = f(e) (4.18)

Sy ® f) =8, ® (foAdyo () (4.19)

(0 ® f)" = dg-1 @ (f 0 Ady). (4.20)
The universal R-matrix of D(G) is

R(v1,u1;v2,u2) = 5e(v1)5e(u1112_1) (4.21)
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and the central ribbon element ¢
c(v,u) = dy(u). (4.22)
It satisfies the ribbon relation
Ac= Ry eR)e (c®c) (4.23)
with Raj(vi,u1;v2,us) := R(va, ug; v, up).

The irreducible representations of D(G) are given in Theorem 3.7. With
the notation introduced there, the singular elements have the simple action

Wus(8g @ f(v) = f(vguo™ (g™ v). (4.24)

There is a further representation of D(G) which will be relevant in the fol-
lowing, but which is not irreducible. It is obtained by letting D(G) act on
itself via the adjoint action. Using Sweedler notation as defined in (3.13) the
adjoint action of F' € D(G) on ¢ € D(G) is

ad(F)g(wi,wy) = Y Fuyye¢eSFpy

= / F (v, wiwy ' wi  wa)g(v™ wrv, v wan) di4.25)
G
implying

ad(0y @ k)p(wi, wa) = k(wiwy 'witwe)(g™ wig, g~ twag).  (4.26)

Now note that the same action can be used to let D(G) act on the
irreducible representation of the handle algebra H. Combining the represen-
tations (3.31) and (4.25) and using the co-multiplication of D(G) repeatedly
we obtain an action of D(G) on the representation spaces Vs, .. uns, Of the
flower algebra:

I(F)Y =My @ @1, ®ad® - ®ad)o (A®I®---®1)o...
(n+g9—2)x
o0(A®1®1) o (A®1)(F)Ws.27)

and for the singular elements

H((Sh & k)?,b(’l)Ml, ce ey UM, , W11, W21, - - -, W1 g, ’wzg) (4.28)
—~ n+2g
= (k o (I)oo o ﬁ) . (w o Adh*1 )(’UMl, <oy UM, W11, W21, - - - ,w17g,w27g)

= k(utor) (W opryy -, W oag, A oy 1hy bl wg 1y

hhwy ghy hlwg gh),
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~ n+2
where (3, AdZ:g are given by (3.38), (4.4) and ®o, and wuse by (2.35) with
the identification wi; = ua,, wo,; = ul_giluAi as in (2.29).

Comparing this representation of the quantum double D(G) on the rep-
resentation space Vs, u,s, With the quantum action (4.5) of the group
G x C*(G) in Theorem 4.2, we see that they are identical if we identify
h < &, and k < en/. Furthermore, with this identification, the multiplica-
tion law (4.16) of D(G) agrees with the multiplication (2.33) of the group
G x C*(@G) and the *-operation (4.20) maps each element of G x C*°(G) to
its inverse. In other words, the map

(h, f) = 6 @ eif (4.29)

is a group morphism from the symmetry group GxC*(G) into the semidirect
product G x C*°(G,U(1)) of G with smooth U(1)-valued functions on G, re-
alised as a group of (singular) elements in the quantum double D(G). In this
sense the quantum group D(G) generalises the symmetry group G x C*(G).
Moreover, the formula (4.27) shows that the action of this generalised sym-
metry on the Hilbert space V), ;.. 4,5, is naturally expressed in terms of the
co-multiplication of D(G).

This relation between the group G x C*°(G) and the quantum double
D(G) fits in nicely with the role quantum groups play in the formalism of
combinatorial quantisation of Chern-Simons gauge theories. In Sect. 2.2, we
explained how the phase space of Chern-Simons gauge theory with gauge
group H, the moduli space of flat H-connections, is related to the classical
flower algebra. It is obtained from the space of holonomies by dividing out
the residual gauge transformations that act on the holonomies by global
conjugation with H, i.e. by imposing the constraint arising from (2.16). In
the combinatorial quantisation scheme [2, 3, 4], the representation spaces
of the quantised moduli space are then constructed by imposing invariance
under the action of a corresponding quantum group on the representation
spaces of the quantum flower algebra.

In our formalism, the constraint (uor, —Ad(uwe)j) =~ 1 arising from
(2.16) appears as the infinitesimal generator of the classical action of the
symmetry group G X C*°(G) in Theorem 2.6. Its action on the flower algebra
can be interpreted as a generalised or deformed conjugation. Implementing
this constraint via the Dirac formalism [2, 3, 4] would then amount to se-
lecting the states on the representation spaces V.. u.s, of the quantum
flower algebra that are invariant under the action of the group G x C*(G).
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5 Outlook and conclusions

In this paper we quantised the flower algebra associated to Chern-Simons
gauge theories with semidirect product gauge groups H = G X g* on a punc-
tured surface. We showed how its Poisson structure can be broken up into a
set of Poisson commuting building blocks and discussed the Poisson action
of the group G x C*°(G). This allowed us to construct the corresponding
quantum algebra and its irreducible Hilbert space representations by means
of a rather straightforward quantisation procedure. After determining the
action of the group G x C*°(G) on the quantum algebra, we were then able
to relate this group action to the quantum double D(G) of the Lie group G.
This clarified how this quantum group arises as a quantum symmetry.

It is interesting to compare our approach to the formalism of combina-
torial quantisation of Chern-Simons gauge theories developed for compact,
semisimple gauge groups in [2, 3, 4] and its extension to the case of the
semisimple but non-compact group SL(2,C) in [27, 28]. Both start from the
classical flower algebra and in both cases quantum groups play an important
role. However, the generalisation of combinatorial quantisation scheme to
groups of the form H = G x g* is beset by technical difficulties. For this
reason, we did not use the combinatorial quantisation scheme as a guideline
for quantisation but based our approach on a detailed investigation of the
structure of the classical algebra.

We see explicitness and simplicity as an advantage of our approach. It
describes the classical flower algebra in terms of quantities that can easily be
related to the physical content of the underlying Chern-Simons gauge theory.
For instance, in the case of (2+1)-dimensional gravity in its formulation as
a Chern-Simons theory with the three-dimensional Poincaré group as gauge
group, our parameters represent momenta and angular momenta of handles
and massive particles with spin [9]. All of the structural properties of the
flower algebra, the action of the symmetry group G x C*(G) as well as the
transformation that decouples the contributions of different punctures and
handles, can be expressed in terms of these quantities. This allows us to
perform concrete calculations and to gain insight into their physical inter-
pretation. Similarly, the corresponding quantum algebra is given explicitly
as a semidirect product of an universal enveloping algebra and an Abelian
algebra of functions, rather than implicitly by a set of generating matrix
elements and relations as in the combinatorial quantisation formalism. This
facilitates the investigation of its structure and the study of its representation
theory.

We did not impose the constraint that the holonomies around punctures
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lie in fixed H-conjugacy classes either in the classical or in the quantised
flower algebra, mainly for technical reasons. Instead, we found that the ir-
reducible representations of the quantised flower algebra correspond to the
symplectic leaves of the classical flower algebra. Recall that the latter are of
the form Cp,s, X ... x Cp,s, X H?9, where u; label G-conjugacy classes and
s; co-adjoint orbits of associated stabiliser groups. The irreducible represen-
tations (3.36) of the quantised flower algebra are labelled by G-conjugacy
classes and irreducible representations of associated stabiliser groups. The
correspondence between symplectic leaves and irreducible representations is
thus the familiar correspondence between co-adjoint orbits and irreducible
representations [30] which typically holds for quantised values of the param-
eters labelling the co-adjoint orbits. Details depend on the group G and
seem worth investigating further. In particular, one should be able to obtain
the representation spaces Vs of the puncture algebra directly by geometric
quantisation of the conjugacy classes C,s. For an approach to the quantisa-
tion of closely related spaces (T#G)/N via C*-algebras see [31].

The quantisation of the flower algebra for Chern-Simons gauge theories
with gauge groups H = G x g* constitutes an important step towards the
quantisation of the moduli space of flat H-connections. To obtain a quanti-
sation of the moduli space from this quantisation of the flower algebra, one
would have to implement the constraint arising from (2.16) which acts as
the infinitesimal generator of the action of the group G x C*°(G). Doing
this via the Dirac quantisation procedure would amount to determining the
subspaces of the representation spaces of the flower algebra that are invari-
ant under the action of G x C*°(G) or the quantum double D(G). This
requires a Clebsch-Gordon analysis of tensor product representations of the
quantum double D(G). For compact groups G, a general framework for do-
ing this was developed in [32], but explicit calculations of Clebsch-Gordon
coefficients depend on the particular choice of G. The case G = SU(2) was

—_—~—

studied in [33]. For other groups such as the group G = SO(2, 1) occurring
in (241)-dimensional gravity, this remains an open question and possible
subject of further investigations.
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