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F-STABILITY FOR SELF-SHRINKING SOLUTIONS TO MEAN

CURVATURE FLOW∗

BEN ANDREWS† , HAIZHONG LI‡ , AND YONG WEI§

Abstract. In this paper, we formulate the notion of the F-stability of self-shrinking solutions to
mean curvature flow in arbitrary codimension. Then we give some classifications of the F-stable self-
shrinkers in arbitrary codimension. We show that the only F-stable self-shrinking solution which is a
closed minimal submanifold in a sphere must be the shrinking sphere. We also prove that the spheres
and planes are the only F-stable self-shrinkers with parallel principal normal. In the codimension
one case, our results reduce to those of Colding and Minicozzi [6].
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1. Introduction. Self-shrinking solutions often arise as tangent flows at singu-
larities of the mean curvature flow, and so are very important in the study of mean
curvature flow. A ‘self-shrinker’ is a time-slice of a self-shrinking solution, which is
then an n-dimensional submanifold in the Euclidean space R

n+p satisfying

(1.1) H = − (x− x0)
⊥

2t0
, x0 ∈ R

n+p, 0 < t0 ∈ R.

We refer the readers to [6, 7, 8, 9, 10, 18] and the references therein for more infor-
mation on mean curvature flow and its self-shrinking solutions.

There are many interesting works about the classification of self-shrinkers in recent
years. Most recently, in the paper [6], Colding and Minicozzi studied the entropy
stability of self-shrinkers in the mean curvature flow (in the case p = 1). Given
x0 ∈ R

n+p and t0 > 0, the functional Fx0,t0 is defined by

Fx0,t0(M) = (4πt0)
−n

2

∫

M

e−
|x−x0|2

4t0 dµ,(1.2)

which can be traced back to Huisken’s Monotonicity formula [8]. The critical points
of Fx0,t0 are the surfaces shrinking to x0 at time t0. The entropy functional λ = λ(M)
is the supremum of the F functional over x0 and t0:

λ(M) = sup
x0∈Rn+p,t0>0

Fx0,t0(M).(1.3)

The entropy is non-increasing in t along the mean curvature flow, and its critical
points are precisely given by self-shrinkers.
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A self-shrinker is called entropy-stable if it is a local minimum for the entropy
functional. One is more interested in the stable self-shrinkers since the unstable ones
could be perturbed away, thus may not represent generic singularities. Colding and
Minicozzi [6] showed that the shrinking spheres, cylinders and planes are the only
entropy-stable self-shrinkers under the mean curvature flow. Their proof involves
three main steps:

1. Show that entropy-stable self-shrinkers that do not split off a line must be
F -stable;

2. Show that F -stability implies mean convexity (i.e. H ≥ 0);
3. Classify the mean convex self-shrinkers.

See the definition of F -stable in section 5.
In higher codimension case, the key step in the classification of entropy stable

self-shrinkers is also classifying the F -stable self-shrinkers. In this paper, we first
formulate the notion of the F -stability for self-shrinkers in arbitrary codimension.
In section 3 and 4, we will calculate the full first and second variation formulae of
the F -functional. The F -stability of a self-shrinker is related to the eigenvalues of a
bilinear symmetric form I on the space of cross-sections in the normal bundle NM .
In section 5, we first show that the mean curvature vector H of a self-shrinker and the
normal part of any constant vector field in R

n+p are eigenvector fields of the bilinear
symmetric form I corresponding eigenvalues −2 and −1. Then we give an necessary
condition for closed F -stable self-shrinkers, that is {−2,−1} are the only negative
eigenvalues of the bilinear symmetric form I.

In section 6 and 7, we classify the F -stable self-shrinkers in higher codimension.
As the codimension increases, the situation becomes more complicated. In section 6,
we prove that the sphere S

n(
√
n) in R

n+p is the only F -stable one of the minimal
submanifolds in spheres, and our proof is inspired in part by the work of J. Simons
[15, Theorem 5.1.1] on the instability of minimal submanifolds of spheres.

Theorem 1.1. Let Mn be a closed minimal submanifold of Sn+p−1(
√
n) ⊂ R

n+p.

If M is F-stable, then M is congruent to the n-sphere S
n(
√
n).

Next we consider the special case of “self-shrinkers with parallel principal normal”,
i.e, ∇⊥ν = 0, where ν is a unit length normal vector field parallel to the mean
curvature vector field H . While the parallel principal normal condition may seem
artificial and is not preserved under the mean curvature flow, it does include the
important examples of minimal submanifolds of the sphere Sn+p−1. Using the results
of Smoczyk [16] and Li-Wei [14], we show that any F -stable self-shrinker with parallel
principal normal must be the sphere S

n(
√
n) or the plane R

n:

Theorem 1.2. Let x : Mn → R
n+p be a closed F-stable self-shrinker with parallel

principal normal. Then Mn is congruent to the sphere S
n(
√
n).

Theorem 1.3. Let x : Mn → R
n+p be a complete noncompact embedded F-

stable self-shrinker with parallel principal normal, with polynomial volume growth and

without boundary. Suppose further |A|2−|Aν |2 ≤ c for some constant c, where Aν =<
ν,A > is the principal second fundamental form. Then M must be the plane R

n.

We remark that in codimension one case, our results reduce to Colding-Minicozzi’s
results in [6].

In the last section, we relate the entropy-stability to the F -stability for self-
shrinkers in arbitrary codimension. We show that Colding-Minicozzi’s result that
an entropy-stable self-shrinker which does not split off a line is F -stable also holds



F-STABILITY FOR SELF-SHRINKERS 759

for higher codimension. Then as Corollaries of Theorem 1.2 and 1.3, we obtain two
classification results of the entropy-stable self-shrinkers.

Remark 1.1. After we submitted the preprint of this paper to arXiv, we learned
that Yng-Ing Lee and Yang-Kai Lue [11] also obtained the second variation formula
“Theorem 4.1” of the F -functional independently. Moreover, they showed that the
closed Lagrangian self-shrinkers given by Anciaux are F -unstable.

Acknowledgment. The authors would like to thank the referee for helpful com-
ments.

2. F-functional and self-shrinking solutions to mean curvature flow. In
this section, we recall the F -functional, Huisken’s monotonicity formula, self-shrinking
solutions and singularities of the mean curvature flow. Most of the material here is
stated in Huisken and Colding-Minicozzi’s paper for the hypersurface case, but it also
holds for arbitrary codimension without any change in the proof.

Let x : Mn × [0, T ) → R
n+p be a one-parameter family of submanifolds in R

n+p,
which is called a mean curvature flow if the position vector x evolves in the direction
of the mean curvature vector H , i.e.,

(2.1)
∂x

∂t
= H.

Define Φ(x0,t0)(x, t) = (4π(t0 − t))−
n
2 exp(− |x−x0|

2

4(t0−t) ). Huisken proved the following

monotonicity formula for the mean curvature flow [8]:

d

dt

∫

Mt

Φ(x0,t0)(x, t)dµt =−
∫

Mt

∣

∣

∣

∣

H +
(x− x0)

⊥

2(t0 − t)

∣

∣

∣

∣

2

Φ(x0,t0)(x, t)dµt.(2.2)

A solution of (2.1) is called self-shrinking about (x0, t0) if it satisfies

H = − (x− x0)
⊥

2(t0 − t)
.(2.3)

A submanifold is said to be a self-shrinker if it is the time t = 0 slice of a solution
which is self-shrinking about (x0, t0). That is, we call a submanifold x : Mn → R

n+p

satisfying

H = − (x− x0)
⊥

2t0
,(2.4)

a self-shrinker. The F -functional is defined as

Fx0,t0(Mt) =(4πt0)
−n

2

∫

Mt

e
−

|x−x0|2

4t0 dµt

=

∫

Mt

Φ(x0,t0)(x, 0)dµt

=

∫

Mt

Φ(x0,t0+t)(x, t)dµt.

It is easy to see that F -functional is invariant under scalings, i.e., for any α > 0, we
have

Fαx0,α2t0(αMt) = Fx0,t0(Mt).
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Moreover, Huisken’s monotonicity formula (2.2) implies for t > s,

Fx0,t0(Mt) =

∫

Mt

Φ(x0,t0+t)(x, t)dµt

≤
∫

Ms

Φ(x0,t0+t)(x, s)dµs

=

∫

Ms

Φ(x0,t0+t−s)(x, 0)dµs

=Fx0,t0+t−s(Ms).

The entropy of a submanifold is defined as the supremum of the F -functional

λ(Mt) = sup
x0∈Rn+p,t0>0

Fx0,t0(Mt).(2.5)

Then for any small positive constant ǫ, there exists a pair (x0, t0) such that

λ(Mt)− ǫ ≤ Fx0,t0(Mt),

and therefore,

λ(Mt)− ǫ ≤ Fx0,t0(Mt) ≤ Fx0,t0+t−s(Ms) ≤ λ(Ms).

Since ǫ is arbitrary, we have

λ(Mt) ≤ λ(Ms), (t > s).

We summarize the result in the following proposition.

Proposition 2.1 (Lemma 1.11 in [6]). The entropy λ(Mt) defined in (2.5) is

non-increasing in t under the mean curvature flow.

Self-shrinkers play an important role in the study of mean curvature flow, since
they describe all the possible tangent flows at a given singularity of a mean curvature
flow. Huisken [8] first used the monotonicity formula to prove that the flow is asymp-
totically self-similar near type-I singularities. Later Ilmanen and White extended
Huisken’s formula to weak solutions and proved asymptotic self-similarity for tangent
flows at all singularities (see [10]), in the following sense:

At a given singularity (x0, t0) of the mean curvature flow, we can blow up by
setting M j

t = cj(Mc
−2

j
t+t0

− x0). That is, by first translating Mt in space-time to

move (x0, t0) to (0, 0) and then taking a sequence of parabolic dilations (x, t) →
(cjx, c

2
j t) with cj → ∞. By using Huisken’s monotonicity formula and the standard

compactness theorem, we can extract a subsequence of M j
t ’s converging weakly to

a limiting flow, which will be called a tangent flow at (x0, t0). A tangent flow will
achieve equality in the monotonicity formula, and will be a self-shrinking solution to
the mean curvature flow.

By using Huisken’s monotonicity formula, Colding-Minicozzi proved that

Proposition 2.2 ([6]). Any time-slice of a tangent flow at a given singularity

has polynomial volume growth.

We say that a submanifold Mn in R
n+p has polynomial volume growth if there

exist constants C and d such that for all r ≥ 1, there holds

Vol(B(r) ∩M) ≤ Crd,
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where Br denotes an Euclidean ball with radius r. The proposition says that any
self-shrinker which arises as the blow up at a given singularity in the mean curvature
flow must have polynomial volume growth.

3. The first variation of F-functional. In this section, we will give a varia-
tional characterization of self-shrinkers. Let Mn be a submanifold in R

n+p. In the
following computations we will often work with a smooth local orthonormal frame
field {ei, eα} for R

n+p along M such that ei ∈ TM and eα ∈ NM . Throughout the
paper, we adopt the convention that latin indices range from 1 to n and greek ones
from n+ 1 to n+ p.

We say Ms ⊂ R
n+p is a variation of M if it is given by a one parameter family

of immersions Xs : M → R
n+p with X0 equal to the identity. The vector field

∂
∂s

|s=0 Xs = V is called the variation vector field. We only consider the normal
variation vector field V , which can be expressed as V =

∑

α

V αeα.

For the functional Fx0,t0 defined in the introduction, we say that M is a critical
point for Fx0,t0 if it is critical with respect to all normal variations in M and all
variations in x0 and t0. Let xs and ts be variations of x0 and t0 with x′

0 = y and
t′0 = h. Recall that the volume element of Ms ⊂ R

n+p is given by

dµs =
√

det g(x, s)dx =

√

det g(x, s)
√

det g(x, 0)
dµ0.

We define the function

J(x, s) =

√

det g(x, s)
√

det g(x, 0)
,

and denote hα
ij the components of the second fundamental form of M in R

n+p in a

given frame. Let H be the mean curvature of M ⊂ R
n+p, and write σαβ =

∑

i,j

hα
ijh

β
ij ,

then we have (cf. [13])

J ′(x, 0) =− 〈V,H〉,(3.1)

J ′′(x, 0) =|∇⊥V |2 −
∑

α,β

σαβV
αV β + 〈V,H〉2(3.2)

+ div(∇̄V V )T − 〈∇̄V V,H〉,

where ∇⊥, div, ∇̄ denote the normal connection of the normal bundle, the divergence
on M and connection on R

n+p, respectively.

Next, we denote the integrand of the functional Fxs,ts(Ms) by

I(s) = (4πts)
−n

2 e−
|x−xs|2

4ts ,
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then by a direct calculation, we get

I ′(0) =I(0)

(

−
〈

x− x0

2t0
, V − y

〉

+ h

( |x− x0|2
4t20

− n

2t0

))

.(3.3)

I ′′(0) =I(0)

[

(

−〈x− x0

2t0
, V − y〉+ h(

|x− x0|2
4t20

− n

2t0
)

)2

−〈(x− x0

2t0
)′, V − y〉 − 〈x− x0

2t0
, (V − y)′〉(3.4)

h′(
|x − x0|2

4t20
− n

2t0
) + h(

|x − x0|2
4t20

− n

2t0
)′
]

.

From (3.1) and (3.3), we obtain the following first variation formula:

Lemma 3.1. Let Ms ⊂ R
n+p be a variation of M with normal variation vector

field M ′
0 = V . If xs and ts are variations of x0 and t0 with x′

0 = y and t′0 = h, then
the first variation of F is equal to

F ′ =
∂

∂s

∣

∣

∣

∣

s=0

Fxs,ts(Ms)

= (4πt0)
− n

2

∫

M

[

−
〈

H +
(x− x0)

⊥

2t0
, V

〉

+h

( |x− x0|2
4t20

− n

2t0

)

+
〈x− x0, y〉

2t0

]

e
−

|x−x0|2

4t0 dµ.(3.5)

Proof. From (3.1) and (3.3), we have

F ′ =

∫

M

(I ′J + IJ ′)dµ0

=(4πt0)
−n

2

∫

M

[

−
〈

H +
(x− x0)

⊥

2t0
, V

〉

+ h

( |x− x0|2
4t20

− n

2t0

)

+
〈x− x0, y〉

2t0

]

e−
|x−x0|2

4t0 dµ0.

Equations (3.2) and (3.4) will be used in the next section to calculate the second
variation.

From the first variation formula (3.5), we can see that if M is a critical point of
F , then it must satisfy

H = − (x− x0)
⊥

2t0
.

We will show that the converse is also true, that is a self-shrinker must be a critical
point of the functional F . For simplicity, we only consider x0 = 0 and t0 = 1

2 , i.e.,
the self-shrinker equation is

(3.6) H = −x⊥.
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In the study of self-shrinkers, the following elliptic operator was first introduced
by Colding-Minicozzi1 (see (3.7) in [6]):

(3.7) L = ∆− 〈x,∇(·)〉 = e
|x|2

2 div(e−
|x|2

2 ∇·),

where ∆, ∇ and div denote the Laplacian, gradient and divergent operator on the
self-shrinker respectively, and 〈·, ·〉 denotes the standard inner product in R

n+p. We
apply the operator L on some natural geometric quantities and obtain the following
basic equations. (cf. [3, 6, 14])

Lemma 3.2. Let x : Mn → R
n+p be an n-dimensional complete self-shrinker,

then

L〈x, ω〉 =− 〈x, ω〉,(3.8)

1

2
L|x|2 =n− |x|2,(3.9)

where x is the position vector and ω is any constant vector.

The operator L is self-adjoint in a weighted L2 space. The next two results were
proved by Colding-Minicozzi [6] for hypersurface self-shrinkers but can be stated in
the same way for self-shrinkers in arbitrary codimension.

Lemma 3.3. If Mn ⊂ R
n+p is a submanifold, u is a C1 function with compact

support, and v is a C2 function, then

(3.10)

∫

M

u(Lv)e−
|x|2

2 = −
∫

M

〈∇v,∇u〉e−
|x|2

2 .

Corollary 3.4. Suppose that Mn ⊂ R
n+p is a complete submanifold without

boundary. If u and v are C2 functions with

∫

M

(|u∇v|+ |∇u||∇v|+ |uLv|)e−
|x|2

2 < +∞,

then we get

(3.11)

∫

M

u(Lv)e−
|x|2

2 = −
∫

M

〈∇v,∇u〉e−
|x|2

2 .

We apply the self-adjointness of L to obtain the following two results. The proof is
simple and similar to that in Colding-Minicozzi’s paper (see Lemma 3.25 and Corollary
3.34 in [6]).

Lemma 3.5. Let x : Mn → R
n+p be an n-dimensional complete submanifold

satisfying the self-shrinker equation (3.6), with polynomial volume growth. Let ω ∈

1Note that our notation differs from Colding-Minicozzi’s. The difference is due to the different
normalization of the self-shrinker equation (3.6), which is not essential.
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R
n+p be a constant vector. Then

∫

M

(

|x|2 − n
)

e−
|x|2

2 = 0,(3.12)

∫

M

xe−
|x|2

2 = 0 =

∫

M

x|x|2e−
|x|2

2 ,(3.13)

∫

M

(

|x|4 − n(n+ 2) + 2|H |2
)

e−
|x|2

2 = 0.(3.14)

∫

M

〈x, ω〉2e−
|x|2

2 =

∫

M

|wT |2e−
|x|2

2 .(3.15)

Corollary 3.6. Let M be as in Lemma 3.5, then

∫

M

[

(|x|2 − n)2 − 2n
]

e−
|x|2

2 = −2

∫

M

|H |2e−
|x|2

2 .(3.16)

Now we are in the position to show that (M,x0, t0) is a critical point of F if and
only if M is a critical point of Fx0,t0 .

Theorem 3.7. M is a critical point for F if and only if H = − (x−x0)
⊥

2t0
for some

x0 ∈ R
n+p and t0 > 0.

Proof. Without loss of generality, we only show this for x0 = 0 and t0 = 1
2 . When

x0 = 0 and t0 = 1
2 , the first variation formula (3.5) becomes

F ′ =(2π)−
n
2

∫

M

(

−〈H + x⊥, V 〉+ h(|x|2 − n) + 〈x, y〉
)

e−
|x|2

2 dµ.(3.17)

If M is a critical point for F , then it is obvious that M satisfiesH = −x⊥. Conversely,
if M satisfies H = −x⊥, then equations (3.12) and (3.13) imply the last two terms in
(3.17) vanish for every h and every y. Therefore M is a critical point of F .

The equations (3.14), (3.15) and Corollary 3.6 will be used in the next section
when we compute the second variation of the functional F at a critical point.

4. The second variation of F-functional. In this section, we calculate the
second variation formula for the functional Fx0,t0 when M is a critical point.

Theorem 4.1. Suppose M is a critical point of the functional F , and M is

complete with polynomial volume growth. If Ms ⊂ R
n+p is a normal variation of M ,

xs,ts are variations of x0 and t0 with

M ′
0 = V, x′

0 = y, t′0 = h,

then for x0 = 0 and t0 = 1
2 , we have the second variation formula

F ′′ =
∂2

∂s2

∣

∣

∣

∣

s=0

Fxs,ts(Ms)

= (2π)−
n
2

∫

M

[

|∇⊥V |2 −
∑

α,β

σαβV
αV β − |V |2

−2h2|H |2 − 4h〈H,V 〉+ 2〈y, V 〉 − |y⊥|2
]

e−
|x|2

2 dµ.(4.1)
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Remark 4.1. For normal vector field V =
∑

α

V αeα, we define the operator L⊥

by

(4.2) (L⊥V )α = ∆⊥V α − 〈x, ek〉V α
,k +

∑

αβ

σαβV
β + V α,

where ∆⊥V α and V α
,k denote the component of ∆⊥V and ∇⊥V for the normal vector

field V on M (cf. [2, 3, 12, 14]). Then the second variation formula (4.1) can be
rewritten as

F ′′ =(2π)−
n
2

∫

M

[

−〈V, L⊥V 〉 − 2h2|H |2 − 4h〈H,V 〉

+ 2〈y, V 〉 − |y⊥|2
]

e−
|x|2

2 dµ.(4.1′)

Proof of Theorem 4.1. Since M is a critical point of Fx0,t0 , it follows from the
first variation formula that

H +
(x− x0)

⊥

2t0
= 0,

∫

M

( |x− x0|2
4t20

− n

2t0

)

e−
|x−x0|2

4t0 dµ = 0

∫

M

x− x0

2t0
e−

|x−x0|2

4t0 dµ = 0.

Then from the equations (3.1) - (3.4), we have the second variation of Fx0,t0 at the
critical point M as following:

F ′′ =

∫

M

(I ′′J + 2I ′J ′ + IJ ′′)dµ

= (4πt0)
− n

2

∫

M



|∇⊥V |2 −
∑

α,β

σαβV
αV β + div (∇̄V V )T − 〈∇̄V V,H〉

+ h

( |x− x0|2
4t20

− n

2t0

)′

− 〈
(

x− x0

2t0

)′

, V − y〉 − 〈x − x0

2t0
, ∇̄V V 〉(4.3)

+

(

h

( |x− x0|2
4t20

− n

2t0

)

+ 〈x− x0

2t0
, y〉
)2
]

e
−

|x−x0|2

4t0 dµ.

The third and fourth integrals on the right hand side of (4.3) can be rewritten as

(4πt0)
−n

2

∫

M

(

div (∇̄V V )T − 〈∇̄V V,H〉
)

e−
|x−x0|2

4t0 dµ

= (4πt0)
−n

2

∫

M

(

∑

i

∇ei〈∇̄V V, ei〉+ 〈∇̄V V,
(x− x0)

⊥

2t0
〉
)

e−
|x−x0|2

4t0 dµ

= (4πt0)
−n

2

∫

M

(

〈∇̄V V,
(x − x0)

T

2t0
〉+ 〈∇̄V V,

(x− x0)
⊥

2t0
〉
)

e−
|x−x0|2

4t0 dµ

= (4πt0)
−n

2

∫

M

〈∇̄V V,
x− x0

2t0
〉dµ,
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and can be canceled with the seventh integral of (4.3). The fifth term is given by

( |x− x0|2
4t20

− n

2t0

)′

=
〈x− x0, V − y〉

2t20
− h

( |x− x0|2 − nt0
2t30

)

.

For the sixth term, we have

(

x− x0

2t0

)′

=
V − y

2t0
− h

x− x0

2t20
.

Then for x0 = 0 and t0 = 1
2 , the second variation formula (4.3) becomes

F ′′ = (2π)−
n
2

∫

M

(

|∇⊥V |2 −
∑

α,β

σαβV
αV β

+ 4h〈x, V − y〉 − 4h2(|x|2 − n

2
)− |V − y|2

+ h2(|x|2 − n)2 + 〈x, y〉2 + 2h
(

|x|2 − n
)

〈x, y〉
)

e−
|x|2

2 dµ.

Using the equations (3.12) - (3.15), and Corollary 3.6, we get

F ′′ = (2π)−
n
2

∫

M

[

|∇⊥V |2 −
∑

α,β

σαβV
αV β − |V |2 − 2h2|H |2

− 4h〈H,V 〉+ 2〈y, V 〉 − |y⊥|2
]

e−
|x|2

2 dµ.

When p = 1, that is for hypersurface case, we have the following immediate
corollary,

Corollary 4.2 (Theorem 4.14 in [6]). Suppose M is a critical point of the

functional F , and M is complete, with polynomial volume growth. If Ms ⊂ R
n+1 is a

normal variation of M , xs,ts are variations of x0 and t0 with

M ′
0 = fen+1, x′

0 = y, t′0 = h,

then for x0 = 0 and t0 = 1
2 , we have the second variation formula

F ′′ =(2π)−
n
2

∫

M

[

−fLf − 2h2|H |2 − 4fh|H |+ 2f〈y, en+1〉 − |y⊥|2
]

e−
|x|2

2 dµ,

where L is the stability operator defined as

Lf = ∆f − 〈x,∇f〉+ |A|2f + f

for smooth function f on M .
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5. F-stability and eigenvalues of I. In this section, we give the definition of
F -stability for the critical point of the F functional, then consider two eigenvector
fields corresponding to the bilinear symmetric form I on the cross-sections in the nor-
mal bundle NM and give a characterization of F -stability in terms of the eigenvalues
of I.

Definition 5.1. A critical point M for Fx0,t0 is F -stable if for every compactly
supported normal variation V of M , there exist variations xs of x0 and ts of t0 that
make F ′′ ≥ 0 at s = 0.

In the remaining of this paper, without loss of generality, we only consider the
case x0 = 0, t0 = 1

2 . The self-shrinker equation (2.4) is equivalent to

(5.1) H = −x⊥,

or in terms of the components

(5.2) Hα = −〈x, eα〉, n+ 1 ≤ α ≤ n+ p.

The first and second covariant derivatives of H have the following components (cf.
[3, 14]):

Hα
,i =

∑

j

hα
ij〈x, ej〉,(5.3)

Hα
,ij =

∑

k

hα
ijk〈x, ek〉+ hα

ij −
∑

β,k

hα
ikh

β
kjH

β,(5.4)

∆⊥Hα =
∑

k

〈x, ek〉Hα
,k +Hα −

∑

β

σαβH
β.(5.5)

Let x : Mn → R
n+p be a closed self-shrinker. For two normal vector fields

V,W ∈ Γ(NM), we set

I(V,W ) =

∫

M

(

〈∇⊥V,∇⊥W 〉 −
∑

αβ

σαβV
αW β − 〈V,W 〉

)

e−
1
2
|x|2dµ

=−
∫

M

〈V, L⊥W 〉e− 1
2
|x|2dµ.

From standard facts about elliptic differential operators, we see that I is a symmetric
bilinear form on the space of cross-sections in NM , which may be diagonalized with
respect to the weighted L2 inner product

〈V,W 〉w =

∫

M

〈V,W 〉e− 1
2
|x|2dµ,

and has distinct real eigenvalues {µi} such that µ1 < µ2 < µ3 < · · · → +∞. Moreover,
the dimension of each eigenspace is finite. In the sequel, we denote Wµi

the eigenspace
corresponding to the eigenvalue µi.

Proposition 5.1. Let x : Mn → R
n+p be a closed self-shrinker. Then the mean

curvature vector H =
∑

α

Hαeα and the normal part y⊥ =
∑

α

〈y, eα〉eα of a constant

vector field y ∈ R
n+p satisfy

L⊥H = 2H, L⊥y⊥ = y⊥,
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where the operator L⊥ defined in (4.2). Therefore H and y⊥ are eigenvector fields of

I, and H ∈ W−2, y
⊥ ∈ W−1.

Proof. By the definition of L⊥, the equation (5.5) implies

(L⊥H)α = 2Hα, n+ 1 ≤ α ≤ n+ p.

So we have L⊥H = 2H . For a constant vector field y ∈ R
n+p, set yα = 〈y, eα〉. We

have yα,i = −hα
ij〈y, ej〉 and

∆⊥yα = −Hα
,j〈y, ej〉 −

∑

αβ

σαβ〈y, eβ〉

= −
∑

k

〈x, ek〉hα
jk〈y, ej〉 −

∑

αβ

σαβy
β

=
∑

k

〈x, ek〉yα,k −
∑

αβ

σαβy
β .

It follows that (L⊥y⊥)α = yα and then L⊥y⊥ = y⊥. Therefore

I(H,H) = −2〈H,H〉w,
I(y⊥, y⊥) = −〈y⊥, y⊥〉w.

i.e., H ∈ W−2, y
⊥ ∈ W−1.

Now we derive the following necessary condition for closed F -stable self-shrinkers:

Proposition 5.2. Suppose x : Mn → R
n+p is a closed F-stable self-shrinker,

then {−2,−1} are the only negative eigenvalues of the bilinear symmetric form I.

Proof. We prove the theorem by a contradiction. Suppose there exists another
eigenvector field V ∈ NM of I corresponding to the eigenvalue µ < 0 and µ 6= −2,−1.
Since the eigenvector fields corresponding to different eigenvalues are orthogonal with
respect to the weighted L2 inner product, we have

∫

M

〈H,V 〉e− 1
2
|x|2dµ = 0,

∫

M

〈y⊥, V 〉e− 1
2
|x|2dµ = 0,

for any constant vector field y ∈ R
n+p. Then put V into the second variation formula

(4.1′), we have

F ′′ = (2π)−
n
2

∫

M

[

−〈V, L⊥V 〉 − 2h2|H |2

−4h〈H,V 〉+ 2〈y, V 〉 − |y⊥|2
]

e−
1
2
|x|2dµ

= (2π)−
n
2

∫

M

[

−〈V, L⊥V 〉 − 2h2|H |2 − |y⊥|2
]

e−
1
2
|x|2dµ

≤ (2π)−
n
2 I(V, V )

< 0

for any choice of h ∈ R and y ∈ R
n+p. This implies Mn is F -unstable.
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6. F-stability for closed self-shrinkers. In higher codimension, the study of
F -stability of self-shrinkers becomes complicated as the codimension increases. First
we will prove the n-sphere S

n(
√
n) in R

n+p is F -stable.

Proposition 6.1. The n-sphere x : S
n(
√
n) → R

n+p is F-stable as a self-

shrinker.

Proof. Choose orthonormal basis {en+1, · · · , en+p−1, en+p} of the normal bun-
dle of S

n(
√
n) such that en+p is parallel to the mean curvature vector H , and

en+1, · · · , en+p−1 are constant vector fields in R
n+p. en+p is parallel in the normal

bundle, i.e., ∇⊥en+p = 0. The second fundamental form satisfies |A|2 =
∑

i,j

(hn+p
ij )2 =

1, and hα
ij = 0 for α 6= n + p. The position vector x and the mean curvature vector

H satisfy H = −x and |H |2 = |x|2 = n.

For any variation vector field V =
∑

V αeα. Since the position vector x in normal
on S

n(
√
n), we have 〈x, ek〉=0 for all 1 ≤ k ≤ n. It follows that the second variation

formula (4.1) becomes

F ′′ =(2π)−
n
2 e−

n
2

∫

M

[

−V n+pLνV
n+p − 2nh2 − 4

√
nhV n+p

+ 2V n+p〈y, en+p〉 − 〈y, en+p〉2 +
∑

α6=n+p

(

|∇V α|2 − |V α|2

+ 2〈y, V αeα〉 − 〈y, eα〉2
)]

dµ,

where ∇ denotes the gradient of functions on S
n(
√
n), the operator Lν = ∆+ 2 acts

on smooth functions on S
n(
√
n).

Recall that the eigenvalues of ∆ on the sphere S
n(
√
n) are given by (see [5])

µk =
k2 + (n− 1)k

n
.

Clearly, the constant functions are eigenfunctions corresponding to the zero eigenvalue
µ0 = 0. Note that the position vector x satisfies ∆x = H = −x, so for any constant
vector z ∈ R

n+p, we have

−∆〈z, en+p〉 = ∆〈z, x√
n
〉 = 〈z, en+p〉,

i.e., 〈z, en+p〉 are eigenfunction of ∆ corresponding to the first eigenvalue µ1 = 1.
Now we choose a ∈ R a constant real number and z ∈ R

n+p a constant vector such
that

V n+p = f0 + a+ 〈z, en+p〉,

with f0 in the space spanned by all the eigenfunctions for µk(k ≥ 2) of ∆ on S
n(
√
n).
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By the orthogonality of the different eigenspaces, we have

∫

M

(

−V n+pLνV
n+p − 2nh2 − 4

√
nhV n+p

+ 2V n+p〈y, en+p〉 − 〈y, en+p〉2
)

dµ

=

∫

M

(

−f0(∆f0 + 2f0)− 2(a+
√
nh)2 − 〈z + y, en+p〉2

)

dµ

≥
∫

M

(

2

n
f2
0 − 2(a+

√
nh)2 − 〈z − y, en+p〉2

)

dµ,

which can be made nonnegative by choosing h = −a/
√
n and

y −
n+p−1
∑

α=n+1

〈y, eα〉eα = z −
n+p−1
∑

α=n+1

〈z, eα〉eα.

On the other hand, since eα, α = n+ 1, · · · , n+ p − 1 are constant vectors in R
n+p,

if for some α 6= n+ p, V α is constant function, then we can choose 〈y, eα〉 = V α such
that

∫

M

(

|∇V α|2 − |V α|2 + 2〈y, V αeα〉 − 〈y, eα〉2
)

dµ = 0.

If V α is not a constant, since the first eigenvalue of ∆ on sphere S
n(
√
n) is µ1 = 1,

by choosing 〈y, eα〉 = 0, we can obtain

∫

M

(

|∇V α|2 − |V α|2 + 2〈y, V αeα〉 − 〈y, eα〉2
)

dµ

=

∫

M

(

|∇V α|2 − |V α|2
)

dµ ≥ 0.

The vector y we chosen as above is a constant vector in R
n+p, because all of

z, en+1, · · · , en+p−1 are constant vectors in R
n+p. It follows that for any variation vec-

tor field V , we can choose constant real number h ∈ R and constant vector y ∈ R
n+p

such that F ′′ ≥ 0, this means that the sphere S
n(
√
n) is F -stable.

Conversely, we want to determine which closed self-shrinkers are F -stable. In
general, this is complicated in the higher codimension. In the following, we will
consider the special situation, “self-shrinkers with parallel principal normal”.

Theorem 6.2. Let x : Mn → R
n+p be a closed F-stable self-shrinker with parallel

principal normal. Then Mn is a minimal submanifold in the sphere S
n+p−1(

√
n).

Proof. If |H | 6= 0 on M , then by Smoczyk’s classification theorem [16] on closed
self-shrinker with parallel principal normal,Mn is a minimal submanifold in the sphere
S
n+p−1(

√
n).

If H vanishes somewhere on M , we will show that M is F -unstable, and therefore
contradicts with the assumption. The F -unstable means that there exists a variation
V ∈ NM such that for any variation y of x0 = 0 and h of t0 = 1

2 , we always have
F ′′ < 0. To prove M is F -unstable, we choose the variation vector field V = fen+p

with f a smooth function on M with en+p parallel to the mean curvature vector H .
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Since ∇⊥en+p = 0, for this vector V = fen+p, the second variation formula (4.1)
becomes

F ′′ = (2π)−
n
2

∫

M

[

−fLνf − 2h2|H |2 − 4hf〈H, en+p〉

+2f〈y, en+p〉 − |y⊥|2
]

e−
1
2
|x|2dµ,(6.1)

where the operator Lν is defined as

Lνf = ∆f − 〈x,∇f〉+ |Z|2f + f,

with |Z|2 =
∑

i,j

(hn+p
ij )2. Since en+p is parallel to H , we can write H by

H =
∑

α

Hαeα = 〈H, en+p〉en+p,

i.e., Hα = 0 for α 6= n+p andHn+p = 〈H, en+p〉. Note that Hα are the components of
the tensor field H , and 〈H, en+p〉 is just a function on M . Recall that for submanifold
with parallel principal normal, we have (cf. [14])

Hα
,i = 0, Hα

,ij = 0, α 6= n+ p,

Hn+p
,i = 〈H, en+p〉,i, Hn+p

,ij = 〈H, en+p〉,ij .

Combing with equation (5.5) gives

Lν〈H, en+p〉 = 2〈H, en+p〉,(6.2)

Lν〈y, en+p〉 = 〈y, en+p〉, y ∈ R
n+p.(6.3)

The elliptic differential operator Lν is self-adjoint with respect to the weighted L2

inner product, then standard spectral theory gives that Lν has real eigenvalues
µ1 < µ2 ≤ · · · → +∞, and there are orthonormal basis {uk} for the weighted L2

space with Lνuk = −µkuk. The eigenfunctions corresponding to different eigenvalues
are orthogonal with respect to the weighted L2 inner product. Any eigenfunction cor-
responding to the smallest eigenvalue µ1 does not change sign. Therefore (6.2) and
(6.3) imply 〈H, en+p〉, 〈y, en+p〉 are eigenfunction of Lν corresponding to eigenvalues
−2 and −1 respectively.

Since 〈H, en+p〉 vanishes somewhere on M , then −2 is not the smallest eigenvalue
of the elliptic operator Lν . Thus there is a positive function f with −Lνf = µf
(µ < −2). Then f is orthogonal to 〈H, en+p〉 and 〈y, en+p〉 for y ∈ R

n+p, i.e.,

∫

M

f〈H, en+p〉e−
1
2
|x|2dµ = 0,

∫

M

f〈y, en+p〉e−
1
2
|x|2dµ = 0.

Substituting these into (6.1) gives

F ′′ =(2π)−
n
2

∫

M

(

µf2 − 2h2|H |2 − |y⊥|2
)

e−
1
2
|x|2dµ < 0

for any choice of h and y. This meansM is F -unstable, contradicts with the hypothesis
of the theorem.
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Remark 6.1. From the proof of Theorem 6.2, we can see that for closed self-
shrinker with parallel principal normal, if there is another negative eigenvalue µ 6=
−1,−2 of Lν, i.e.,

−Lνf = µf, µ 6= −1,−2, µ < 0

for some eigenfunction f , then M is F -unstable.

In general, not all the minimal submanifolds of spheres are F -stable self-shrinkers.
In the following, we will show that the only F -stable one is the sphere S

n(
√
n). The

key observation is that the F -stability is closely related to stability as a minimal
surface of the sphere, and our argument is related to the argument of Simons [15,
Theorem 5.1.1] on instability of minimal submanifolds of spheres.

Theorem 6.3. Let Mn be a closed minimal submanifold of Sn+p−1(
√
n) ⊂ R

n+p.

If M is F-stable, then M is the n-sphere S
n(
√
n).

Proof. Let x : Mn → S
n+p−1(

√
n) be a closed minimal submanifold, then H =

−x and |H |2 = |x|2 = n. Then at each point we have the orthogonal decomposition
R

n+p = Rx ⊕ TxM ⊕ NxM , where NxM is the normal bundle as a submanifold of
S
n+p−1.

We choose the variation vector field

V (x) = πNxM (z),(6.4)

where z ∈ R
n+p is a constant vector and πNxM is the orthogonal projection. From

the computation in Proposition 5.1, the second variation formula (4.1′) becomes (in a
local orthonormal frame eα where e1, . . . , en span TxM , en+1, . . . , en+p−1 span NxM ,
and en+p is proportional to x)

F ′′ =(2π)−
n
2 e−

n
2

∫

M

(

−
∑

α6=n+p

〈z, eα〉2 − 2nh2

+ 2
∑

α6=n+p

〈y, eα〉〈z, eα〉 − |y⊥|2
)

dµ

=− (2π)−
n
2 e−

n
2

∫

M

(

∑

α6=n+p

〈z − y, eα〉2 + 2nh2 + 〈y, en+p〉2
)

dµ

=− (2π)−
n
2 e−

n
2

∫

M

(

|πNxM (z − y)|2 + 2nh2 + 〈y, x

|x| 〉
2

)

dµ.

If M is F -stable, then for any such z there must exist some h ∈ R and constant vector
y ∈ R

n+p such that F ′′ ≥ 0. It follows from the above variation formula that h = 0,
and we necessarily have

(6.5) 〈y, x〉 = 0, and z − y ∈ Rx⊕ TxM,

for every x ∈ M .
Let V be the subspace of Rn+p defined by

V = {y ∈ R
n+p : 〈y, x〉 = 0, for all x ∈ M}.

For y ∈ V we also have 〈y, v〉 = 0 for any v ∈ TxM , by differentiating the equation
〈y, v〉 = 0. Therefore V is orthogonal to Rx⊕ TxM , and so V is a subspace of NxM .
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In particular V has dimension at most p− 1. Furthermore, if V has dimension p− 1
then we have M ⊂ S

n+p−1 ∩ V ⊥, which is an n-dimensional sphere. It then follows
by connectedness that M is itself a totally geodesic n-dimensional sphere in S

n+p−1.
Now fix x ∈ M . For any z ∈ R

n+p, equation (6.5) implies that there exists y ∈ V
with z − y ∈ Rx ⊕ TxM , so that z ∈ V ⊕ Rx ⊕ TxM . Since z is arbitrary, we have
R

n+p = V ⊕ Rx ⊕ TxM , from which it follows that V has dimension at least p − 1.
Therefore V has dimension exactly p− 1 and M is the n-sphere S

n+p−1 ∩ V ⊥. This
completes the proof.

Theorem 1.2 follows from Proposition 6.1 and Theorems 6.2, 6.3.

7. F-stability for complete noncompact self-shrinker. In this section, we
suppose x : Mn → R

n+p is a complete noncompact self-shrinker with parallel principal
normal and polynomial volume growth. We will show that the only F -stable one is
the plane R

n. First we have the following two lemmas.

Lemma 7.1. Let Nk be a closed minimal submanifold in S
k+p−1(

√
k), then x :

Mn = Nk × R
n−k → R

n+p is F-unstable as a self-shrinker.

Proof. We choose local orthonormal frame {eα} for the normal bundle of M
such that en+p is proportional to the mean curvature vector H . We set the variation
vector V = fen+p, we want to find some function f with compact support such that
the second variation F ′′ is negative for every choice of h and y. Since ∇⊥en+p = 0,
|H |2 = |x⊥|2 = k and |Z|2 =

∑

i,j

(hn+p
ij )2 = 1, as derived in the previous section, we

have the second variation formula

F ′′ =(2π)−
n
2

∫

M

[

−fLνf − 2kh2 − 4
√
khf

+ 2f〈y, en+p〉 − |y⊥|2
]

e−
1
2
|x|2dµ,(7.1)

where the operator Lν is defined as

Lνf = ∆f − 〈x,∇f〉+ 2f.

Let x1 be the coordinate function corresponding to the first coordinate in the
R

n−k, then Lemma 3.2 implies

Lx1 = −x1, Lνx1 = x1.(7.2)

Since M has polynomial volume growth, it follows from the self-adjointness of L in
the weighted L2 space that

0 =

∫

M

Lx1e
− 1

2
|x|2dµ = −

∫

M

x1e
− 1

2
|x|2dµ.(7.3)

For any constant vector y ∈ R
n+p, we know that 〈y, en+p〉 is an eigenfunction of ∆Nk

on the Nk factor (cf. [17]). Let x′ = (x1, · · · , xn−k) be the coordinates of Rn−k, then
〈y, en+p〉 is independent of x′. Moreover, it follows from the Fubini’s theorem that for
any bounded function φ(x′) on R

n−k,

∫

M

φ(x′)x1〈y, en+p〉e−
1
2
|x|2dµ = 0.(7.4)
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Now we suppose φj(x
′) is a cutoff function on R

n−k which is equal to one on Bj ,
and zero outside Bj+1, where Bj denotes the Euclidean ball in R

n−k with radius j.
Then we choose fj = φjx1 which has compact support in M , and set the variation
vector V = fjen+p, it follows from (7.1) and (7.4) that

F ′′ =(2π)−
n
2

∫

M

[

−fjLνfj − 2kh2 − 4
√
khfj − |y⊥|2

]

e−
1
2
|x|2dµ.

Let j → ∞, by using (7.2) and (7.3), the dominated convergence theorem gives

lim
j→∞

∫

M

−fjLνfje
− 1

2
|x|2dµ = −

∫

M

|x1|2e−
1
2
|x|2dµ

lim
j→∞

∫

M

fje
− 1

2
|x|2dµ = 0.

Therefore, for j sufficiently large, we have

F ′′ ≤ −1

2
(2π)−

n
2

∫

M

|x1|2e−
1
2
|x|2dµ,

which is negative no matter what values of y and h which we choose.

Remark 7.1. For the hypersurface case, lemma 7.1 says that Sk(
√
k)× R

n−k ⊂
R

n+1 is F -unstable, which was shown by Colding-Minicozzi (see [6, §11]).

Lemma 7.2. Let x : Mn → R
n+p be a complete noncompact self-shrinker with

parallel principal normal. If H vanishes somewhere but not identically, then M is

F-unstable.

Proof. We will follow the argument in Colding-Minicozzi II’s paper [6] closely to
show that there exists a variation such that F ′′ is negative for every choice of h and y.
Here we only give the outline, the reader can refer [6] for the details of the argument.

For a complete noncompact self-shrinker Mn in R
n+p with parallel principal nor-

mal, we have the second variation formula

F ′′ =(2π)−
n
2

∫

M

[

−fLνf − 2h2|H |2 − 4hf〈H, en+p〉

+ 2f〈y, en+p〉 − |y⊥|2
]

e−
1
2
|x|2dµ,

with the operator Lν defined by

Lνf = ∆f − 〈x,∇f〉+ |Z|2f + f.

Since M is noncompact, there may not be the first eigenvalue for Lν . However, we
can still define the bottom of the spectrum µ1 by

µ1 = inf
f

∫

M

(

|∇f |2 − |Z|2f2 − f2
)

e−
1
2
|x|2dµ

∫

M
f2e−

1
2
|x|2dµ

,

where the infimum is taken over all smooth functions with compact support. By
using the standard density arguments and the dominated convergence theorem, we
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can show that we get the same µ1 by taking the infimum over all Lipschitz functions
f satisfying

∫

M

(

f2 + |∇f |2 + |Z|2f2
)

e−
1
2
|x|2dµ < ∞.(7.5)

If µ1 6= −∞, it can be proved that there is a positive function u on M with
Lνu = −µ1u. And furthermore, if v is in the weighted W 1,2 space (that is both v and
∇v are in the weighted L2 space) and Lνv = −µ1v, then v = cu for some constant
c ∈ R.

Recall that 〈H, en+p〉 satisfies

Lν〈H, en+p〉 = 2〈H, en+p〉,

and it can be easily checked that 〈H, en+p〉 satisfies the condition (7.5), so we get
µ1 ≤ −2. But 〈H, en+p〉 vanishes somewhere by the assumption of our Lemma,
therefore µ1 < −2.

Then we can show that the lowest eigenfunction on a sufficiently large ball is
almost orthogonal to 〈H, en+p〉. By using this fact, we can construct a variation to
get the instability. Precisely, there exists a R̄ so that if R > R̄ and f is a Dirichlet
eigenfunction for the first eigenvalue µ1(BR), then for any h ∈ R and any y ∈ R

n+p

we have
∫

M∩BR

[

−fLνf − 2h2|H |2 − 4hf〈H, en+p〉

+ 2f〈y, en+p〉 − |y⊥|2
]

e−
1
2
|x|2dµ < 0.

If we fix a R ≥ R̄, f is a Dirichlet eigenfunction for the first eigenvalue µ1(BR) and
set V = fen+p. Then for this variation vector V , F ′′ is negative for every choice of h
and y and this completes the proof.

Now we are in the position to prove Theorem 1.3.

Proof of Theorem 1.3. If the mean curvature vector H does not vanish anywhere,
then the assumption of our theorem and Theorem 1.1 in [14] (see also [16, Theorem
1.3]) give that Mn = Nk × R

n−k. It follows from lemma 7.1 that Mn is F -unstable.
If the mean curvature vector H vanishes somewhere but not identically, then Lemma
7.2 also implies Mn is F -unstable. So H must vanish identically, and therefore Mn

is the plane R
n.

8. Entropy stable self-shrinkers. Finally, in the last section, we relate the
entropy-stability to the F -stability of self-shrinkers with higher codimension. We
note that in the previous two sections, we have added the condition “with parallel
principal normal” on the self-shrinker. The condition is not preserved by the mean
curvature flow and seems artificial, but it includes the important examples of minimal
submanifolds in the sphere.

In [6], Colding and Minicozzi proved that entropy stable self-shrinkers that do not
split off a line must be F -stable. In the higher codimension case, we also have the same
result. This follows from the same argument of Colding-Minicozzi, with some small
changes of notation in the first and second variation formulas of the F -functional. We
omit the details of the proof.
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Proposition 8.1. Suppose x : Mn → R
n+p is a smooth complete self-shrinker

without boundary, with polynomial volume growth, and does not split off a line iso-

metrically. If M is F-unstable, then there is a compactly supported variation Ms of

M such that the entropy satisfies λ(Ms) < λ(M) for s 6= 0.

Combining Theorem 1.2, 1.3 and Proposition 8.1 gives the following classifications
of entropy stable self-shrinkers.

Corollary 8.2. Suppose that Mn is an n-dimensional closed self-shrinker with

parallel principal normal in R
n+p, but not the n-sphere S

n(
√
n). Then M can be

perturbed to an arbitrarily close submanifold M̃n ⊂ R
n+p such that λ(M̃) < λ(M).

Proof. Since Mn is a closed self-shrinker with parallel principal normal in R
n+p,

but not the n-sphere S
n(
√
n). Theorem 1.2 implies M is F -unstable. On the other

hand, M clearly does not split off a line, so Proposition 8.1 gives that it is entropy
unstable.

Corollary 8.3. Suppose Mn is a complete noncompact self-shrinker in R
n+p

with parallel principal normal, with polynomial volume growth and without boundary.

If |A|2 − |Aν |2 ≤ c for some constant c on M and M is not equal to S
k(
√
k)×R

n−k,

then M can be perturbed to an arbitrarily close submanifold M̃n ⊂ R
n+p such that

λ(M̃ ) < λ(M).

Proof. To prove it, suppose that Mn = Nk × R
n−k ⊂ R

n+p, where Nk is a
self-shrinker in R

k+p with parallel principal normal and does not split off another
line isometrically. By the assumption, Nk is not the sphere S

k(
√
k). From Theorem

1.3, Proposition 8.1 and Corollary 8.2 we conclude that Nk can be perturbed to
an arbitrarily close Ñk such that λRk+p(Ñ ) < λRk+p(N). Note that by a direct
calculation, for Mn = Nk × R

n−k where Nk ⊂ R
k+p we have the following fact (see

[6, equation 11.10]):

FR
n+p

x,t0
(M) = FR

k+p

x′,t0
(N),

where x′ is the projection of x to R
k+p. Then the Corollary follows easily from the

definition of entropy.
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[8] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Diff. Geom.,

31:1 (1990), pp. 285–299.
[9] G. Huisken, Local and global behaviour of hypersurfaces moving by mean curvature, Proc.

Sympos. Pure Math., 54 (1993), pp. 175–191.



F-STABILITY FOR SELF-SHRINKERS 777

[10] T. Ilmanen, Singularities of mean curvature flow of surfaces, preprint, 1995, http://www.

math.ethz.ch/~ilmanen/papers/pub.html.
[11] Y.-I. Lee and Y.-K. Lue, The stability of self-shrinkers of mean curvature flow in higher

codimension, arXiv: 1204.6116v1.
[12] H. Li, Willmore submanifolds in a sphere, Math. Res. Lett., 9 (2002), pp. 771–790.
[13] P. Li, Lecture notes on geometric analysis, Lecture Notes Series, No. 6, Research Institute of

Mathematics and Global Analysis Research Center, Seoul National University, Seoul, 1993
[14] H Li and Y Wei, Classification and rigidity of self-shrinkers in the Mean curvature flow, J.

Math. Soc. Japan, 66:3 (2014), pp. 709–734.
[15] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math., 88:1 (1968), pp. 62–105.
[16] K. Smoczyk, Self-shrinkers of the mean curvature flow in arbitrary codimension, Int. Math.

Res. Not., 48 (2005), pp. 2983–3004.
[17] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18:4

(1966), pp. 380–385.
[18] B. White, Evolution of curves and surfaces by mean curvature, Proceedings of the International

Congress of Mathematicians, vol. I, pp. 525–538, 2002.



778 B. ANDREWS, H. LI, AND Y. WEI


