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CM ELLIPTIC CURVES AND PRIMES CAPTURED BY

QUADRATIC POLYNOMIALS∗

QINGZHONG JI† AND HOURONG QIN†‡

Abstract. Let E be an elliptic curve defined over Q with complex multiplication. For a prime
p, some formulas for ap = p + 1 − ♯E(Fp) are given in terms of the binomial coefficients. We show
that the equality ap = r holds for some fixed integer r if and only if a certain quadratic polynomial
represents the prime p. In particular, for E : y2 = x3 + x, ap = 2 holding for an odd prime p if and
only if p is of the form n2 + 1 and for E : y2 = x3 − 11x + 14, ap = 2 holding for an odd prime p

if and only if p is of the form (4n)2 + 1; ap = −2 holding for an odd prime p if and only if p is of
the form (4n + 2)2 + 1. In some CM cases the Lang-Trotter conjecture and the Hardy-Littlewood
conjecture are equivalent.
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1. Introduction. Let E be an elliptic curve defined over a number field K and
let v be a prime of K, kv the residue field of K at v. We use Ẽv for the reductive
curve of E if E has good reduction at v. If the characteristic of kv divides |Ẽv(kv)|,
then v is called an anomalous prime for E ([6]). Hence v is an anomalous prime if
and only if E has good reduction at v and the trace of the Frobenius automorphism
associated to Ẽv is congruent to 1 mod p, where p is the characteristic of kv.

Assume that E has good ordinary reduction at all primes dividing p. Let L/K be
a Zp-extension with Galois group Γ = Gal(L/K) and with the sequence of subfields

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ K∞ = L =

∞
⋃

n=0

Kn.

Mazur ([6]) constructed a Γ-module H = H(L/K,E) for any admissible pair (L/K,E)
and established the following exact sequence (modulo finite groups whose orders are
bounded, independent of n):

0 −→ E(Kn)⊗Qp/Zp −→ HΓn −→ XE(Kn)(p
∞) −→ 0 (n ≥ 0)

where XE(Kn)(p
∞) is the p-primary component of the Shafarevich-Tate group of E

over Kn.
For the anomalous primes of E, Mazur ([6]) proved that the Γ-module H is

necessarily of infinite order. We refer to ([3], [6]) for extensive discussion of anomalous
primes. Denote by ΣE(K) the set of anomalous primes v for E over a number field
K. Mazur proved the following result.

Theorem 1.1. ([6]) (1) If E(Q) has nontrivial torsion points, then the set
∑

E(Q)
consists either of a single element, or none, or else is contained in the set {2, 3, 5}.
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(2) Given any finite set of primes P, there is an elliptic curve E defined over Q,
such that ΣE(Q) contains P.

Further, Mazur ([6]) asked the following question:

Q1: Can an elliptic curve possess an infinite number of anomalous primes?

Let D be a rational integer which is neither a square nor a cube in Q(
√
−3).

There is a good discussion of this question for the curve ED : y2 = x3 + D in
the introduction of [6]. Mazur conjectured that there are infinitely many anomalous
primes for the elliptic curve ED. More precisely, let A.P.D(N) denote the number of
primes less than N which are anomalous for the elliptic curve ED. Mazur proposed
the following conjecture.

Mazur Conjecture ([6])

A.P.D(N) ∼ c

√
N

logN
, as N −→ ∞,(1)

for some positive constant c.

Later, Lang and Trotter ([5]) generalized this conjecture. Let E be an elliptic
curve over Q and r ∈ Z a fixed integer. Define the prime-counting function

πE,r(x) :=
∑

p≤x,p∤∆E,ap=r

1.

If r = 0 then assume additionally that E has no complex multiplication.

Lang-Trotter Conjecture ([5])

πE,r(x) = CE,r ·
√
x

logx
+ o(

√
x

logx
)

as x −→ ∞, where CE,r is a specific non-negative constant. If the constant CE,r = 0,
we interpret the asymptotic to mean that there are only finitely many primes p for
which ap = r.

Note that both the Mazur conjecture and the Lang-Trotter conjecture have the
same asymptotic shape. The well-known Hardy-Littlewood Conjecture, below, pre-
dicts that the number of primes of the form ax2+bx+c also has the same asymptotic
shape.

Suppose that a, b, c are integers and a is positive; that (a, b, c) = 1; that a + b
and c are not both even; and that D = b2 − 4ac is not a square. Let P (n) denote the
number of primes less than n which are of the form ax2 + bx+ c.

Hardy-Littlewood Conjecture ([4])

P (n) ∼ δ

√
n

logn
, as n −→ ∞,

where δ = δ(a, b, c) is a positive constant. In particular, there are infinitely many
primes of the form ax2 + bx+ c.

The Hardy-Littlewood Conjecture has not been proved even for a single poly-
nomial. For example, at present, we do not know whether the polynomial x2 + 1
represents infinitely many primes. Qin[8] establishes a connection between the Mazur
conjecture and the Hardy-Littlewood conjecture.
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Let E be an elliptic curve defined over Q. As usual, for a prime p where E
has good reduction, we use ap for the trace of the Frobenius automorphism φp, i.e.,

ap = 1 + p− ♯Ẽp(Fp). Then φp satisfies the equation

x2 − apx+ p = 0.(2)

The polynomial Lp(E/Q, T ) = 1 − apT + pT 2 is called the local L-series of E at p.
By the Hasse inequality, |ap| ≤ 2

√
p.

In the complex multiplication case, the distribution of
ap

2
√
p ∈ (−1, 1) is described

by Deuring ([2] ), and in the non-complex multiplication case, it is described by the
Sato-Tate Conjecture which is proved by L. Clozel, M. Harris, N. Shepherd-Barron
and R. Taylor.

We find that in some CM cases the Lang-Trotter conjecture and the Hardy-
Littlewood conjecture are equivalent.

Let E be an elliptic curve defined over a number field K and let 0 6= r ∈ Z be

an integer. Denote by Σ
(r)
E (K) the set of all primes v where E has good reduction

such that av(E/K) ≡ r (mod p), where p is the characteristic of kv. We may ask the
following question:

Q2: Let r be any nonzero integer. Is there an elliptic curve E defined over Q

such that the set Σ
(r)
E (Q) is an infinite set?

In this paper we consider this question for elliptic curves over Q with complex
multiplication by an order R = Z+fRK of conductor f in a quadratic imaginary field
K = Q(

√
D) of discriminant D. For a given CM elliptic curve E/Q, we obtain some

formulas for ap in terms of the binomial coefficients, which enable us to prove the
equality ap(E/Q) = r holds if and only if a certain quadratic polynomial represents
the prime p. In particular, for E : y2 = x3 + x, ap = 2 holds for an odd prime p if
and only if p is of the form n2 + 1. Obviously, for an odd prime p = n2 + 1, then n
is even, which we may characterize as being exactly divisible by 2. More precisely, we
show that for E : y2 = x3 − 11x+ 14, ap = 2 holds for an odd prime p if and only if
p is of the form (4n)2 + 1; ap = −2 holds for an odd prime p if and only if p is of the
form (4n+ 2)2 + 1.

2. Twist elliptic curves. Let E be an elliptic curve defined over Q and choose
a model of E of the form:

y2 = f(x)(3)

with a monic cubic polynomial f(x) ∈ Z[x]. Then the (quadratic) twist of E by a
nonzero rational number d is

E(d) : y2 = d3f(x/d).

For a discussion on the twist of elliptic curves defined over an arbitrary perfect field,
see [16].

The following two lemmas are useful for us to compute ap.

Lemma 2.1. ([14] Proposition 3.21) Let E be an ordinary elliptic curve defined
over a finite field Fq with q elements and let E′ be a twist of E. Then

♯E(Fq) + ♯E′(Fq) = 2q + 2.(4)
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Lemma 2.2. ([2]) Let E/Q be an elliptic curve with complex multiplication by an
imaginary quadratic field K. Let p be a prime where E has good reduction. Then

ap =

{

0, if p is not a norm,
π + π̄, if p = ππ̄ is a norm,

where the endomorphism [π] has the same effect as does the Frobenius automorphism

φp : (x, y) −→ (xp, yp) (mod p).

The foregoing results allow us to give a preliminary criterion to determine Σ
(r)
E (K).

Lemma 2.3. Let E be an elliptic curve defined over Q. For a square-free integer
d, let p be a prime of K = Q(

√
d) where E has good ordinary reduction. Assume that

p|p and p ≥ 3. Then for a given integer r ∈ Z, p ∈ Σ
(r)
E (K) if and only if one of the

following conditions holds:

(1) p|d and p ∈ Σ
(r)
E (Q);

(2) (dp ) = 1 and p ∈ Σ
(r)
E (Q);

(3) (dp ) = −1 and a2p ≡ r (mod p).

Proof. (i) Assume that p|d or (dp ) = 1. Then OK/p = Fp. Hence Ẽ(Fp) =

Ẽ(OK/p), and

p ∈ Σ
(r)
E (Q) ⇔ p ∈ Σ

(r)
E (K).

(ii) Assume that (dp ) = −1. Then p is inertia in K. Hence p = pOK is a prime

and OK/p ∼= Fp2 .
Let α and β be the roots of the equation (2). Then

ap = ap(E/Q) = 1 + p− ♯Ẽ(Fp) = α+ β, p = αβ.

Hence

ap = ap(E/K) = α2 + β2 = a2p − 2p.

Therefore

p ∈ Σ
(r)
E (K) ⇔ ap ≡ r (mod p) ⇔ a2p ≡ r (mod p).

Corollary 2.4. Under assumptions in Lemma 2.3, p ∈ ΣE(K) if and only if
one of the following conditions holds:

(1) p ∈ ΣE(Q);
(2) (dp ) = −1 and

ap = ap(E/Q) =

{

−1, if p ≥ 7;
−1 or p− 1, if p = 3, 5.

Proof. Note that

a2p ≡ 1 (mod p) ⇔ ap ≡ ±1 (mod p).
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Hence p ∈ ΣE(Q) if ap ≡ 1 (mod p).
On the other hand, since |ap| ≤ 2

√
p,

ap ≡ −1 (mod p) ⇔ ap =

{

−1, if p ≥ 7;
−1 or p− 1, if p = 3, 5.

This completes the proof.

Lemma 2.5. Let E be an elliptic curve defined over Q of the form (3), E(d) the
twist curve of E by a square-free integer d. Let p be an odd prime where both E and
E(d) have good ordinary reduction. Then

(1) ap(E(d)) ≡ (dp )ap(E) (mod p), i.e., for any r ∈ Z, we have p ∈ Σ
(r)
E(d)

(Q) if

and only if one of the following conditions holds:

(i) (dp ) = 1 and p ∈ Σ
(r)
E (Q).

(ii) (dp ) = −1 and p ∈ Σ
(−r)
E (Q).

(2) Assume that E has complex multiplication by K = Q(
√
d). Then

ap(E(d)) ≡ ap(E) (mod p),

i.e., for any r ∈ Z, we have

Σ
(r)
E (Q) = Σ

(r)
E(d)

(Q).

Proof. (1) (i) If (dp ) = 1, then Ẽ ∼= Ẽ(d) over Fp. Hence ap(E/Q) = r if and only

if ap(E(d)/Q) = r.

(ii) If (dp ) = −1, then Ẽ(d) is a twist of Ẽ over Fp. By Lemma 2.1, we have

ap(E/Q) + ap(E(d)/Q) = 0.

Hence

ap(E(d)/Q) ≡ r (mod p) ⇐⇒ ap(E/Q) ≡ −r (mod p).

(2) Both E and E(d) have complex multiplication by K = Q(
√
d), hence ap(E) =

ap(E(d)) = 0 for all primes p with (dp ) = −1. Therefore the result Σ
(r)
E (Q) = Σ

(r)
E(d)

(Q)

follows from (1).

Corollary 2.6. Assume that ΣE(Q) is finite and ΣE(Q(
√
d)) is infinite for

some square-free integer d. Then ΣE(d)
(Q) is infinite.

Proof. By the assumption and Corollary 2.4,

{p is an odd prime | (d
p
) = −1 and ap(E/Q) ≡ −1 (mod p)}

is infinite. Hence ΣE(d)
(Q) is infinite by Lemma 2.5.

Theorem 2.7. The following statements are equivalent:
(1) There is an elliptic curve E defined over Q such that the set ΣE(Q) is infinite.
(2) There is an elliptic curve E defined over Q such that the set ΣE(Q(

√
d)) is

infinite for some nonzero rational number d.

Proof. Indeed, that (1) implies (2) is trivial. By Corollary 2.4 and Lemma 2.5,
(2) also implies (1).
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3. Main results. Let E/C be an elliptic curve with complex multiplication.
Write R = End(E). Then R is an order of some imaginary quadratic field K. The
theory of complex multiplication tells us that the j-invariant j(E) is in Q if and only
if K has class number 1. It is well known that there are nine imaginary quadratic
fields with class number 1. Let RK be the ring of integers of K. Then the orders of
K are precisely the rings Z + fRK for integers f > 0. The integer f is called the
conductor of the order. The following lemma describes all elliptic curves defined over
Q with complex multiplication up to isomorphism over Q̄.

Lemma 3.1. ([15], [16]) There are exactly thirteen isomorphism classes of elliptic
curves over Q̄ with complex multiplication and with the j-invariant j(E) in Q. The
following table 3.1 gives the j-invariant and a representative elliptic curve E over Q
for each isomorphism class, together with the minimal discriminant ∆E and conductor
NE of E.

Discriminant conductor j-invariant Minimal Weierstrass
−D of K f of R of E equation of E over Q

∆E NE

1 0 y2 + y = x3 −33 33

2 243353 y2 = x3 − 15x + 22 2833 2233−3
3 −2153 · 53 y2 + y = x3 − 30x + 63 −35 33

1 2633 y2 = x3 + x 26 26−4
2 2333113 y2 = x3 − 11x + 14 29 25

1 −3353 y2 + xy = x3 − x2 − 2x − 1 73 72−7
2 3353173 y2 = x3 − 595x + 5586 21273 2472

−8 1 2653 y2 = x3 + 4x2 + 2x 29 28

−11 1 −215 y2 + y = x3 − x2 − 7x + 10 113 112

−19 1 −21533 y2 + y = x3 − 38x + 90 193 192

−43 1 −2183353 y2 + y = x3 − 860x + 9707 433 432

−67 1 −2153353113 y2 + y = x3 − 7370x + 243528 673 672

−163 1 −2183353233293 y2 + y = x3 − 2174420x + 1234136692 1633 1632

Table 3.1

It is easy to see that E : y2 + y = x3 is isomorphic to E′ : y2 = x3 + 1
4 and the

twist of E′ by 2 will be E′′ : y2 = x3 + 2. Mazur’s conjecture suggests a formulation
for anomalous primes of E′′ (See [8]). In the rest of the paper, we shall discuss the
remaining twelve elliptic curves listed in the above table. For convenience, we label
these as follows.

E1 : y2 = x3 + x (Theorem 3.11, Corollary 3.12, Corollary 3.13),
E2 : y2 = x3 − 11x+ 14 (Theorem 3.14, Corollary 3.15),
E3 : y2 = x3 + 4x2 + 2x (Theorem 3.18, Corollary 3.19),
E4 : y2 = x3 − 15x+ 22 (Theorem 3.21, Corollary 3.22),
E5 : y2 + xy = x3 − x2 − 2x− 1 (Theorem 3.25, Corollary 3.26, Corollary 3.27),
E6 : y2 = x3 − 595x+ 5586 (Theorem 3.28, Corollary 3.29, Corollary 3.30),

E(1) : y2 + y = x3 − 30x+ 63 (Theorem 3.2, Corollary 3.3),
E(2) : y2 + y = x3 − x2 − 7x+ 10 (Theorem 3.4, Corollary 3.5),

E(3) : y2 + y = x3 − 38x+ 90 (Theorem 3.6, Corollary 3.7),
E(4) : y2 + y = x3 − 860x+ 9707 (Theorem 3.6, Corollary 3.7),

E(5) : y2 + y = x3 − 7370x+ 243528 (Theorem 3.6, Corollary 3.7),

E(6) : y2 + y = x3 − 2174420x+ 1234136692 (Theorem 3.6, Corollary 3.7).

We consider the anomalous primes for the twist of E(i)(1 ≤ i ≤ 6), and look for all
possible values of ap of Ei(1 ≤ i ≤ 6). Some formulas for ap in terms of the binomial
coefficients are given.
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We introduce the following notation.

q1(x) = 27x2 + 27x+ 7,
q2(x) = 11x2 + 11x+ 3,
q3(x) = 19x2 + 19x+ 5,
q4(x) = 43x2 + 43x+ 11,
q5(x) = 67x2 + 67x+ 17,
q6(x) = 163x2 + 163x+ 41,
d1 = 27, d2 = 11, d3 = 19, d4 = 43, d5 = 67, d6 = 163.

Theorem 3.2. Let p be a prime. Then
(i)

∑

E(1)(Q) = ∅, i.e., E(1) has no anomalous primes.
(ii) ap(E

(1)) = −1 if and only if p = q1(x) for some x ∈ Z. In particular, the
polynomial 27x2 + 27x+ 7 represents infinitely many primes if and only if there are
infinitely many primes p such that ap(E

(1)) = −1.

Proof. Since E(1)(Q)tors is a cyclic group of order 3 and a2 = a3 = a5 = 0, by
Theorem 1.1, we have

∑

E(1)(Q) = ∅. Hence, we see that

ap(E
(1)) = −1 ⇔ ap(E

(1))2 = 1 ⇔ p = q1(h) for some h ∈ Z.

This completes the proof of Theorem 3.2.

Corollary 3.3. Let d be a square-free integer. Then a prime p is an anomalous

prime for E
(1)
(d) (the twist of E(1) by d) if and only if (dp ) = −1 and p = q1(x) for some

x ∈ Z.

Theorem 3.4. Let p be a prime. Then
(i)

∑

E(2)(Q) = ∅, i.e., E(2) has no anomalous primes.
(ii) ap(E

(2)) = −1 if and only if p = q2(x) for some x ∈ Z. In particular, the
polynomial 11x2 + 11x+ 3 represents infinitely many primes if and only if there are
infinitely many primes p such that ap(E

(2)) = −1.

Proof. Consider the following two elliptic curves:

C1 : y2 = x3 − 22
3 x+ 847

108 ,
C2 : y2 = x3 − 8 · 33x+ 14 · 112.

One can check that the morphism E −→ C1, (x, y) −→ (x − 1
3 , y + 1

2 ) is an isomor-
phism and C2 is the twist of C1 by d = 6. Let p ≥ 7. By the Hasse inequality and
(1) of Lemma 2.5, we have ap(E

(2)) = ap(C1) = ( 6p )ap(C2). On the other hand, by

Theorem 1 of [13]

∑

x mod p

(

x3 − 8 · 33x+ 14 · 112
p

)

=







0, if p ≡ 2, 6, 7, 8, 10 (mod 11),
c, otherwise, where 4p = c2 + 11d2 with

c determined uniquely by ( c
11 ) = ( 6p ).

Hence we obtain that p = q2(x) = 11x2 + 11x+ 3 for some x ∈ Z if and only if

ap(E
(2)) = ap(C1) = (

6

p
)ap(C2) = −(

6

p
)c = −1.
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Note that a5(E
(2)) = −3, a3(E

(2)) = −1, a2(E
(2)) = 0 and 3 = q2(0). This completes

the proof.

Corollary 3.5. Let d be a square-free integer. Then a prime p is an anomalous

prime for E
(2)
(d) (the twist of E(2) by d) if and only if (dp ) = −1 and p = q2(x) for some

x ∈ Z.

Theorem 3.6. Let p be a prime and E = E(i), i = 3, 4, 5, 6. Then we have
(i)

∑

E(Q) = ∅, i.e., E has no anomalous primes.
(ii) For i = 3, 4, 5, 6, ap(E

(i)) = −1 if and only if p = qi(x) for some x ∈ Z. In
particular, the polynomial qi(x) represents infinitely many primes if and only if there
are infinitely many primes p such that ap(E

(i)) = −1.

Proof. Assume 3 ≤ i ≤ 6. Let Ci and C′
i be the elliptic curves defined as follows:

Ci : y2 =















x3 − 38x+ 90 + 1
4 , if i = 3,

x3 − 860x+ 9707 + 1
4 , if i = 4,

x3 − 7370x+ 243528 + 1
4 , if i = 5,

x3 − 2174420x+ 1234136692+ 1
4 , if i = 6,

C′
i : y2 = gi(x) =















x3 − 23 · 19x+ 2 · 192, if i = 3,
x3 − 24 · 5 · 43x+ 2 · 3 · 7 · 432, if i = 4,
x3 − 23 · 5 · 11 · 67x+ 2 · 7 · 31 · 672, if i = 5,
x3 − 24 · 5 · 23 · 29 · 163x+ 2 · 7 · 11 · 19 · 127 · 1632, if i = 6.

It is clear that the morphism E(i) −→ Ci, (x, y) −→ (x, y+ 1
2 ) is an isomorphism and

C′
i is the twist of Ci by d = 2. By [7], we have

∑

x mod p

(

gi(x)

p

)

=

{

0, if (di

p ) = −1,

c, if 4p = c2 + did
2 with ( c

di
) = ( 2p ).

Let p ≥ 7 be a prime. By the Hasse inequality and (1) of Lemma 2.5, we obtain that
p = qi(x) for some x ∈ Z if and only if

ap(E
(i)) = (

2

p
)ap(C

′
i) = −(

2

p
)c = −1.

Note that

a2(E
(3)) = a3(E

(3)) = 0, a5(E
(3)) = −1 and 5 = q3(0),

a2(E
(4)) = a3(E

(4)) = a5(E
(4)) = 0,

a2(E
(5)) = a3(E

(5)) = a5(E
(5)) = 0,

a2(E
(6)) = a3(E

(6)) = a5(E
(6)) = 0.

This completes the proof.

Corollary 3.7. Assume 3 ≤ i ≤ 6. Let d be a square-free integer. Then a prime

p is an anomalous prime for E
(i)
(d) (the twist of E(i) by d) if and only if (dp ) = −1 and

p = qi(x) for some x ∈ Z.

Lemma 3.8. Let p be a prime. The following assertions hold:
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(1) ([15], Exercises 2.33) E1 (resp. E2) has good ordinary reduction at p if and
only if p ≡ 1 (mod 4). Factor p in Z[i] as

p = ππ̄, with π ≡ 1 (mod 2 + 2i).

Then ap(E1) = π + π̄. Hence ap(E1) is even and
ap(E1)

2 is odd.
(2) E3 has good ordinary reduction at p if and only if p ≡ 1, 3 (mod 8).
(3) E4 has good ordinary reduction at p if and only if p ≡ 1 (mod 3).
(4) E5 (resp. E6) has good ordinary reduction at p if and only if p ≡

1, 2, 4 (mod 7).

Proof. It follows easily from the criterion of supersingular primes for elliptic curves
with complex multiplication ([2]) or Lemma 2.2.

The following criterion to determine the good ordinary reduction primes of Ej(1 ≤
j ≤ 6) is an immediate consequence of [2] and Lemma 2.2.

Proposition 3.9. Let r > 0 be an integer and let p be a prime where E =
Ej(1 ≤ j ≤ 6) has good reduction. The following assertions hold:

(1) The integer ap happens to be odd only when E = E5, p = 2, where a2 = 1.
(2) If r = 2k > 0 is an even integer, then |ap| = r if and only if one of the

following conditions holds:
(i) E = E1 (or E2) and the prime p is of the form k2 + n2 with k being odd.
(ii) E = E3 and the prime p is of the form k2 + 2n2.
(iii) E = E4 and the prime p is of the form k2 + 3n2.
(iv) E = E5 or E6 and the prime p is of the form k2 + 7n2.

Proof. (1) Let p ≥ 7 be a prime where the elliptic curve E has good ordinary
reduction. Note that the Frobenius automorphism φp satisfies the equation (2). Hence
we have:

(a) a2p − 4p = −4h2 for some h ∈ Z if End(E) = Z[i].
(b) a2p − 4p = −16h2 for some h ∈ Z if End(E) = Z+ 2Z[i].

(c) a2p − 4p = −8h2 for some h ∈ Z if End(E) = Z[
√
−2].

(d) a2p − 4p = −12h2 for some h ∈ Z if End(E) = Z[
√
−3].

(e) a2p − 4p = −28h2 for some h ∈ Z if End(E) = Z[
√
−7].

(f) a2p − 4p = −7h2 for some h ∈ Z if End(E) = Z+ Z1+
√
−7

2 .
It is clear that ap is always even in each case.
For p ∈ {2, 3, 5}, one can verify easily that ap is odd if and only if E = E5,

p = 2, a2 = 1.

(2) (i) Assume that E = E1. Then End(E) = Z[i]. Let p ∈ ∑(2k)
E (Q) or p ∈

∑(−2k)
E (Q). By (1) of Lemma 3.8, the equality |ap| = 2k implies that p = k2 +m2 for

some m ∈ Z and k is odd. Conversely, let p = k2 + m2 ≥ 7 be a prime with k > 0
being odd. Then E has good ordinary reduction at p by (1) of Lemma 3.8. Hence
4p = a2p + n2 for some n ∈ Z. By (1) of Lemma 3.8, we have that ap is even and
ap

2 is odd. Hence p = (
ap

2 )2 + (n2 )
2 = k2 +m2. Since Z[i] is a UFD, we obtain that

|ap| = 2k.
Assume that E = E2. Then End(E) = Z + 2Z[i]. Let p be a prime where E2

has good ordinary reduction and |ap| = 2k. Then p = k2 + 4m2 for some integer m.
Conversely, let p = k2 + 4m2 ≥ 7 be a prime. Then E has good ordinary reduction
at p by (1) of Lemma 3.8. Hence 4p = a2p + 16n2 for some n ∈ Z. It follows that
p = k2 + 4m2 = (

ap

2 )2 + 4n2. Therefore |ap| = 2k.
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The proofs of (ii), (iii), (iv) are analogous.

Lemma 3.10. (Gauss) Let p = 4n+ 1 be a prime. Hence the prime p is of the
form p = k2 +m2 with k ≡ 1 (mod 4). Then

( p−1
2

p−1
4

)

≡ 2k (mod p),

where

(

p−1
2

p−1
4

)

is the binomial coefficient.

Theorem 3.11. Let p be an odd prime. The following assertions hold:
(1) ap(E1) = 0 if and only if p ≡ 3 (mod 4).

(2) ap(E1) ≡
(

p−1
2

p−1
4

)

(mod p) if p ≡ 1 (mod 4).

(3) Let p ≡ 1 (mod 4). Write p = m2+k2 with k ≡ 1 (mod 4). Then ap(E1) = 2k.

Proof. The discriminant ∆(E1) = −26, hence E1 has bad reduction at prime 2.
(1) and (2). See [16], Example 4.5.
(3) Assume the prime p ≡ 1 (mod 4). Then there exist integers m, k with k ≡

1 (mod 4) such that p = m2 + k2. By (2) and Lemma 3.10, ap(E1) ≡ 2k (mod p).
Hence, for any prime p ≥ 17, we have ap(E1) = 2k since |k| < √

p. On the other hand,
for p = 5 and 13, we have a computation:

a13(E1) = −6 : 13 = (−3)2 + 22(k = −3),

a5(E1) = 2 : 5 = 12 + 22(k = 1).

This completes the proof of (3).

Corollary 3.12. (1) Let 0 6= r ∈ Z. If there exists a prime p such that
ap(E1) = r, then, for any prime q, aq(E1) 6= −r.

(2) For a prime p, ap(E1) = 2 if and only if p = x2 + 1 for some x ∈ Z. In
particular, the polynomial x2+1 represents infinitely many primes if and only if there
are infinitely many primes p such that ap(E1) = 2. Similarly, ap(E1) = −6 if and only
if p = x2+9 for some x ∈ Z. The polynomial x2+9 represents infinitely many primes
if and only if there are infinitely many primes p such that ap(E1) = −6.

Remark. By computing the (1 + i)n division points for n = 1, 2, 3, 4, 5 on the
elliptic curve ED : y2 = x3 −Dx, Rajwade ([9]) obtained ap(ED) as follows:

ap(ED) =

{

0, if p ≡ 3 (mod 4),
(

D
π

)

4
π̄ +

(

D
π̄

)

4
π, if p ≡ 1 (mod 4),

where p = ππ̄ is the decomposition of p in Z[i], where π and π̄ are normalized so that
each is congruent to 1 (mod 2+2i) and where (÷)4 is the biquadratic residue symbol.

Let f(x) ∈ Z[x] be a cubic polynomial with distinct roots in Q̄. Then E : y2 =
f(x) is an elliptic curve defined over Q. Let p be a prime where E has good reduction.
We have

♯Ẽ(Fp) = 1 +

p−1
∑

x=0

(1 +

(

f(x)

p

)

) = 1 + p+

p−1
∑

x=0

(

f(x)

p

)

,
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i.e., ap(E) = −∑p−1
x=0

(

f(x)
p

)

. Hence we have

Corollary 3.13. Let p be an odd prime. Then

p−1
∑

x=0

(

x3 + x

p

)

=

{

0, if p ≡ 3 (mod 4),
2k, if p ≡ 1 (mod 4),

where p = m2 + k2 with k ≡ 3 (mod 4).

Theorem 3.14. Let p be an odd prime. The following assertions hold:
(1) ap(E2) = 0 if and only if p ≡ 3 (mod 4).

(2) ap(E2) ≡ (−1)
p−1
4

( p−1
2

p−1
4

)

(mod p) if p ≡ 1 (mod 4).

(3) Let p ≡ 1 (mod 4) be a prime. Write p = (2n)2 + k2, and fix the sign of k by
the following congruence:

k ≡
{

1 (mod 4) if n is even;
3 (mod 4) if n is odd.

(5)

Then ap(E2) = 2k.
(4) Let k ≡ 1 (mod 4). Then the Hardy-Littlewood Conjecture holds for 16x2+k2

with the constant δ = δ(16, 0, k2) > 0 if and only if the Lang-Trotter Conjecture holds
for πE2,2k(x) with the constant CE2,2k = δ > 0.

(5) Let k ≡ 3 (mod 4). Then the Hardy-Littlewood Conjecture holds for 16x2 +
16x+4+k2 with the constant δ = δ(16, 16, 4+k2) > 0 if and only if the Lang-Trotter
Conjecture holds for πE2,2k(x) with the constant CE2,2k = δ > 0.

Proof. Since the discriminant ∆(E2) = 29, E2 has bad reduction at prime 2.
(1) The assertion is a consequence of Lemma 2.2.
(2) Set

E(2,1) : y2 = x3 − x,
E(2,2) : y2 = x3 + 3x2 + 2x,
E(2,3) : y2 = x3 − 3x2 + 2x,
E(2,4) : y2 = x3 + 6x2 + x.

Then one may check that

φ1 : E(2,1) −→ E(2,2), (x, y) −→ (x− 1, y), is an isomorphism;
E(2,3) is the twist of E(2,2) by d = −1;

φ2 : E(2,3) −→ E(2,4), (x, y) −→ ( y
2

x2 ,
y(2−x2)

x2 ), is an isogeny of degree 2;
φ3 : E2 −→ E(2,4), (x, y) −→ (x− 2, y), is an isomorphism.

Since E(2,2) and E(2,3) have complex multiplication by Q(
√
−1), by (2) of Lemma 2.5,

we have ap(E(2,3)) = ap(E(2,2)). Hence we obtain

ap(E2) = ap(E(2,4)) = ap(E(2,3)) = ap(E(2,2)) = ap(E(2,1)).

Note that

ap(E2) = ap(E(2,1)) ≡ (−1)
p−1
4

( p−1
2

p−1
4

)

(mod p), if p ≡ 1 (mod 4).
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Therefore, we complete the proof of (2).
(3) Let p ≡ 1 (mod 4). If p = (4n)2 + k2 with k ≡ 1 (mod 4), then, by (2) and

Lemma 3.10, we have

ap(E2) ≡ (−1)
p−1
4

( p−1
2

p−1
4

)

≡ 2k (mod p).

If p = (4n+ 2)2 + k2 with k ≡ 3 (mod 4), then, by (2) and Lemma 3.10, we have

ap(E2) ≡ (−1)
p−1
4

( p−1
2

p−1
4

)

≡ −(−1)
p−1
4 2k = 2k (mod p).

In both cases, we have ap(E2) ≡ 2k (mod p). Hence, for any prime p ≥ 17, we have
ap(E2) = 2k since |k| < √

p. On the other hand,

a13(E2) = 6 : 13 = 32 + 22(k = 3),

a5(E2) = −2 : 5 = (−1)2 + 22(k = −1).

This completes the proof of (3).
The assertions (4) and (5) are consequences of (3).

Corollary 3.15. Let p be an odd prime. The following assertions hold.
(1) For a prime p, ap(E2) = 2 if and only if p = (4x)2 + 1 for some x ∈ Z. In

particular, the polynomial (4x)2 + 1 represents infinitely many primes if and only if
there are infinitely many primes p such that ap(E2) = 2. Similarly, ap(E2) = −2 if
and only if p = (4x+2)2 +1 for some x ∈ Z. The polynomial (4x+2)2 +1 represents
infinitely many primes if and only if there are infinitely many primes p such that
ap(E2) = −2.

(2)
∑p−1

x=0

(

x3−11x+14
p

)

=

{

0, if p ≡ 3 (mod 4),
−2k, if p ≡ 1 (mod 4),

where the integer k is

determined by (5).

(3)
∑

p−1
3 ≤i≤ p−1

2 ,i even

(

p−1
2
i

)(

i
p−1−i

2

)

(−11)
3i−(p−1)

2 14
p−1−2i

2

≡







(−1)
p−1
4

( p−1
2

p−1
4

)

(mod p), if p ≡ 1 (mod 4),

0 (mod p), if p ≡ 3 (mod 4).

Remark. The assertion (1) of Corollary 3.15 extends the assertion in Corollary
3.12. When x2 + 1 is an odd prime, x is necessarily even. We may ask when x is
exactly divisible by 2. The assertion (1) of Corollary 3.15 gives a criterion for this.

Lemma 3.16. (1) ( [1], Theorem 9.2.8 ) Let p ≡ 1 (mod 8) be a prime. Write
p = α2

8 + 2β2
8 with α8 ≡ −1 (mod 4). Then

( p−1
2

p−1
8

)

≡ (−1)
p+7
8 2α8 (mod p).

(2) ([1], Theorem 12.9.7) Let p ≡ 3 (mod 8) be a prime. Write p = α2
8+2β2

8 with

α8 ≡ (−1)
p−3
8 (mod 4). Then

( p−1
2

p−3
8

)

≡ −2α8 (mod p).
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Lemma 3.17. ( [10]) Let E : y2 = x(x2 − 4Dx + 2D2), (D ∈ Z) be an elliptic
curve. Then

ap(E) =

{

0, if p ≡ −1,−3 (mod 8),
π + π̄, if p ≡ 1, 3 (mod 8),

where p = ππ̄ and π(π̄) can be determined uniquely by the following congruence

π(π̄) ≡
(

D

p

)

λ (mod 4
√
−2)

with λ ∈ Λ, where

Λ = {1, 3, 1 +
√
−2, 3 +

√
−2, 1 + 3

√
−2, 3 + 3

√
−2, 5 + 2

√
−2, 7 + 2

√
−2}.

Theorem 3.18. Let p be an odd prime. The following assertions hold:
(1) ap(E3) = 0 if and only if p ≡ −1,−3 (mod 8).

(2) ap(E3) ≡















(

p−1
2

p−1
8

)

(mod p), if p ≡ 1 (mod 8),
( p−1

2
p−3
8

)

(mod p), if p ≡ 3 (mod 8).

(3) Let p ≡ 1, 3 (mod 8). Write p = 2n2+k2, and fix the sign of k by the following
congruence:

k ≡
{

1, 3 (mod 8), if 4|n,
−1, −3 (mod 8), if 4 ∤ n.

(6)

Then ap(E3) = 2k.
(4) Let k ≡ 1, 3 (mod 8). Then the Hardy-Littlewood Conjecture holds for 32x2+

k2 with the constant δ = δ(32, 0, k2) > 0 if and only if the Lang-Trotter Conjecture
holds for πE3,2k(x) with the constant CE3,2k = δ > 0.

Proof. Since the discriminant ∆(E3) = 29, E3 has bad reduction at prime 2.
The assertion (1) is a consequence of Lemma 2.2. We first prove the assertion

(3). Taking D = −1 in Lemma 3.17, we have ap(E3) = π+ π̄, where p = ππ̄ and π(π̄)
can be determined uniquely by the following congruence

π(π̄) ≡
(−1

p

)

λ (mod 4
√
−2)

with λ ∈ {1, 3, 1 +
√
−2, 3 +

√
−2, 1 + 3

√
−2, 3 + 3

√
−2, 5 + 2

√
−2, 7 + 2

√
−2}.

Assume that p ≡ 1 or 3 (mod 8). Then

p = 2n2 + k2 = (k + n
√
−2)(k − n

√
−2) = (−k + n

√
−2)(−k − n

√
−2).

If 2|n, then p ≡ 1 (mod 8) and so
(

−1
p

)

= 1.

If 4|n, then π ≡ π̄ ≡ 1 or 3 (mod 4
√
−2); if 2||n, then π ≡ π̄ ≡ 5 + 2

√
−2 or 7 +

2
√
−2 (mod 4

√
−2). In both cases, by our choice of k we have ap(E3) = π + π̄ = 2k.

If n is odd, then p ≡ 3 (mod 8) and so
(

−1
p

)

= −1. Hence

−π ≡ 1 +
√
−2 or 3 +

√
−2 or 1 + 3

√
−2 or 3 + 3

√
−2 (mod 4

√
−2)
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and correspondingly,

−π̄ ≡ 1 + 3
√
−2 or 3 + 3

√
−2 or 1 +

√
−2 or 3 +

√
−2 (mod 4

√
−2).

Therefore, by our choice, k ≡ −1,−3 (mod 8), we have ap(E3) = π + π̄ = 2k. This
completes the proof of assertion (3).

Now we prove the assertion (2). From (1), we get that ap(E3) 6= 0 if and only
if p = 2n2 + k2 ≡ 1, 3 (mod 8). Assume that p ≡ 3 (mod 8). Then n is odd. If

k ≡ −1 (mod 8), then −k ≡ 1 ≡ (−1)
p−3
8 (mod 4). If k ≡ −3 (mod 8), then −k ≡

−1 ≡ (−1)
p−3
8 (mod 4). In both cases, we have α8 = −k ≡ (−1)

p−3
8 (mod 4). By the

assertion (3) and Lemma 3.16, we have

ap(E3) = 2k = −2α8 ≡
(

p−1
2

p−3
8

)

(mod p).

Assume that p ≡ 1 (mod 8). Then n is even. By the choice of k and α8, one can

check that k = (−1)
p+7
8 α8. Hence, by the assertion (3) and Lemma 3.16, we have

ap(E3) = 2k = (−1)
p+7
8 2α8 ≡

( p−1
2

p−1
8

)

(mod p).

The assertion (4) is a consequence of (3).

Corollary 3.19. Let the notation be the same as in Theorem 3.18.
(1) For a prime p, ap(E3) = 2 if and only if p = 32x2 + 1 for some x ∈ Z. In

particular, the polynomial 32x2 + 1 represents infinitely many primes if and only if
there are infinitely many primes p such that ap(E3) = 2. Similarly, ap(E3) = 6 if and
only if p = 32x2 + 9 for some x ∈ Z. The polynomial 32x2 + 9 represents infinitely
many primes if and only if there are infinitely many primes p such that ap(E3) = 6.

(2)
∑p−1

x=0

(

x3+4x2+2x
p

)

=

{

0, if p ≡ −1,−3 (mod 8),
−2k, if p ≡ 1, 3 (mod 8),

where k is defined

by (6).

(3)
∑

p−1
4 ≤k≤ p−1

2
23k−

p−1
2

(

p−1
2
k

)(

k
p−1
2 − k

)

≡























( p−1
2

p−1
8

)

(mod p), if p ≡ 1 (mod 8),
(

p−1
2

p−3
8

)

(mod p), if p ≡ 3 (mod 8),

0, otherwise.

Lemma 3.20. ([1], Theorem 6.4.3) Let p ≡ 1 (mod 3) be a prime. Write p =
α2
3 + 3β2

3 with α3 ≡ −1 (mod 3). Then

2α3 ≡ −
( p−1

2
p−1
6

)

(mod p).

Theorem 3.21. Let p be an odd prime. The following assertions hold.
(1) ap(E4) = 0 if and only if p ≡ 2 (mod 3).

(2) ap(E4) ≡
( p−1

2
p−1
3

)

(mod p) if p ≡ 1 (mod 3).
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(3) Let p ≡ 1 (mod 3). Write p = k2 + 3m2 with k ≡ 1 (mod 3). Then ap(E4) =
2k.

(4) Let k ≡ 1 (mod 3). Then the Hardy-Littlewood conjecture holds for 3x2 + k2

with the constant δ = δ(3, 0, k2) > 0 if and only if the Lang-Trotter conjecture holds
for πE4,2k(x) with the constant CE4,2k = δ > 0.

Proof. Since the discriminant ∆(E4) = 2833, E4 has bad reduction at primes 2
and 3.

(1) By Lemma 2.2, ap(E4) = 0 if and only if p ≡ 2 (mod 3).
(2) Set E : y2 = x3 + 1. We see that

φ : E4 −→ E, (x, y) −→
(

y2 − 4(x− 2)2

4(x− 2)2
,−y(x2 − 4x+ 7)

8(x− 2)2

)

is an isogeny. Hence for any odd prime p,

ap(E4) = ap(E) ≡ coefficient of xp−1 in (x3 + 1)
p−1
2 (mod p).

Therefore we obtain

ap(E4) ≡
( p−1

2
p−1
3

)

(mod p), if p ≡ 1 (mod 3).

(3) Assume that p ≡ 1 (mod 3) is a prime. Write p = k2 + 3m2 with k ≡ 1
(mod 3). Then, by (2) and Lemma 3.20, we have

ap(E4) ≡
(

p−1
2

p−1
3

)

≡
(

p−1
2

p−1
6

)

≡ 2k (mod p).

Hence, for any prime p ≥ 17, ap(E4) = 2k. On the other hand, for p < 17, we have

a13(E4) = 2 : 13 = 12 + 3 · 22(k = 1),

a7(E4) = −4 : 7 = (−2)2 + 3 · 12(k = −2).

This proves (3).
(4) is a consequence of (3).

Corollary 3.22. (1) Let 0 6= r ∈ Z. If there exists a prime p such that
ap(E4) = r, then, for any prime q, aq(E4) 6= −r.

(2) For a prime p, ap = 2 if and only if p = 3x2+1 for some x ∈ Z. In particular,
the polynomial 3x2 + 1 represents infinitely many primes if and only if there are
infinitely many primes p such that ap = 2. Similarly, ap = −4 if and only if p = 3x2+4
for some x ∈ Z. The polynomial 3x2+4 represents infinitely many primes if and only
if there are infinitely many primes p such that ap = −4.

(3)
∑

p−1
3 ≤i≤ p−1

2 ,i even

(

p−1
2
i

)(

i
p−1−i

2

)

(−15)
3i−(p−1)

2 22
p−1−2i

2

≡







( p−1
2

p−1
3

)

(mod p), if p ≡ 1 (mod 3),

0 (mod p), if p ≡ 2 (mod 3).

(4)
∑p−1

x=0

(

x3−15x+22
p

)

=

{

0, if p ≡ 2 (mod 3),
2k, if p ≡ 1 (mod 3),where p = k2 + 3m2 with k ≡ 2 (mod 3).
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Lemma 3.23. Let p be an odd prime with
(

p
7

)

= 1. Write p = α2
7 + 2β2

7 with
(

α7

7

)

= 1.
(1) ([1], Theorems 9.2.6) If p ≡ 1 (mod 7), then

(

3(p−1)
7

p−1
7

)

≡ 2α7 (mod p).

(2) ([1], Theorems 12.9.8) If p ≡ 2 (mod 7), then

(

3(p−2)
7

p−2
7

)

≡ −2α7 (mod p).

(3) ([1], Theorems 12.9.9) If p ≡ 4 (mod 7), then

(

3(p−4)
7

p−4
7

)

≡ 2α7 (mod p).

Lemma 3.24. ([12]) Let K = Q(
√
−7) and let E : y2 = x3 + 21Dx2 + 112D2x

(x ∈ Z) be an elliptic curve. Then

ap(E) =

{

0, if p ≡ 3, 5, 13 (mod 14),
π + π̄, if p ≡ 1, 9, 11 (mod 14),

where p = ππ̄ and π(π̄) can be determined uniquely by the following congruence

π(π̄) ≡
(

D

p

)

λ (mod
√
−7), λ ∈ {1, 2, 4}.

We now consider the elliptic curve E5 : y2 + xy = x3 − x2 − 2x− 1.

Theorem 3.25. Let p be an odd prime. The following assertions hold.
(1) ap(E5) = 0 if and only if p ≡ 3, 5, 6 (mod 7).

(2) ap(E5) ≡



































(

3(p−1)
7

p−1
7

)

(mod p), if p ≡ 1 (mod 7),

−
(

3(p−2)
7

p−2
7

)

(mod p), if p ≡ 2 (mod 7),
(

3(p+3)
7

p+3
7

)

(mod p), if p ≡ 4 (mod 7).

(3) Let p ≡ 1, 2, 4 (mod 7). Write p = 7n2 + k2. We fix the sign of k by
(

k
7

)

= 1,
i.e.,







k ≡ 1 (mod 7), if p ≡ 1 (mod 7),
k ≡ 4 (mod 7), if p ≡ 2 (mod 7),
k ≡ 2 (mod 7), if p ≡ 4 (mod 7).

Then ap(E5) = 2k.
(4) Let k be an integer such that

(

k
7

)

= 1. Then the Hardy-Littlewood Conjecture
holds for 7x2+ k2 with the constant δ = δ(7, 0, k2) > 0 if and only if the Lang-Trotter
Conjecture holds for πE5,2k(x) with the constant CE5,2k = δ > 0.
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Proof. Since the discriminant ∆(E5) = −73, E5 has bad reduction at prime 7.
(1) By Lemma 2.2, ap(E5) = 0 if and only if p ≡ 3, 5, 6 (mod 7).
(2) It is a consequence of Lemma 3.23 and (3). Hence it suffices to prove the

assertion (3).
(3) Take D = 1 in Lemma 3.24. Set E : Y 2 = X3 + 21X2 + 112X. Then

φ : E5 −→ E, (x, y) −→ (4(x− 2), 4(x+ 2y))

is an isomorphism defined over Q. For any odd prime p, we have

ap(E5) = ap(E) =

{

0, if p ≡ 3, 5, 13 (mod 14),
π + π̄, if p ≡ 1, 9, 11 (mod 14),

where p = ππ̄ and π(π̄) can be determined by the following congruence

π(π̄) ≡ 1, 2, 4 (mod
√
−7).

Note that

p ≡ 1, 2, 4 (mod 7) if and only if p ≡ 1, 9, 11 (mod 14).

And

p ≡ 3, 5, 6 (mod 7) if and only if p ≡ 3, 5, 13 (mod 14).

By our choices of k, we have ap(E5) = π + π̄ = 2k.

Corollary 3.26. (1) Let 0 6= r ∈ Z. If there exists a prime p such that
ap(E5) = r, then, for any prime q, aq(E5) 6= −r.

(2) Let p be a prime. Then the following statements hold:
(i) ap(E5) = 2 if and only if p = 7x2 + 1 for some x ∈ Z. In particular, the

polynomial 7x2+1 represents infinitely many primes if and only if there are infinitely
many primes p such that ap(E5) = 2.

(ii) ap(E5) = 4 if and only if p = 7x2 + 4 for some x ∈ Z. In particular, the
polynomial 7x2+4 represents infinitely many primes if and only if there are infinitely
many primes p such that ap(E5) = 4.

(iii) ap(E5) = 8 if and only if p = 7x2 + 16 for some x ∈ Z. In particular, the
polynomial 7x2+16 represents infinitely many primes if and only if there are infinitely
many primes p such that ap(E5) = 8.

Corollary 3.27. Let p be an odd prime. Then

(1)
∑p−1

x=0

(

x3− 3
4x

2−2x−1

p

)

=

{

0, if p ≡ 3, 5, 6 (mod 7),
−2k, if p ≡ 1, 2, 4 (mod 7),

where k is deter-

mined by (3) of Theorem 3.25.

(2)
∑

p−1
4 ≤k≤ p−1

2
22(p−1)−4k32k−

p−1
2 7k

(

p−1
2
k

)(

k
p−1
2 − k

)

≡











































(

3(p−1)
7

p−1
7

)

(mod p), if p ≡ 1 (mod 7),

−
(

3(p−2)
7

p−2
7

)

(mod p), if p ≡ 2 (mod 7),
(

3(p+3)
7

p+3
7

)

(mod p), if p ≡ 4 (mod 7),

0 (mod p), otherwise.
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Finally, we consider the elliptic curve E6 : y2 = x3 − 595x+ 5586.

Theorem 3.28. Let p be an odd prime. The following assertions hold.
(1) ap(E6) = 0 if and only if p ≡ 3, 5, 6 (mod 7).

(2) ap(E6) ≡































(

−1
p

)

(

3 p−1
7

p−1
7

)

(mod p), if p ≡ 1 (mod 7),

−
(

−1
p

)

(

3 p−2
7

p−2
7

)

(mod p), if p ≡ 2 (mod 7),

(

−1
p

)

(

3 p+3
7

p+3
7

)

(mod p), if p ≡ 4 (mod 7).

(3) Let p ≡ 1, 2, 4 (mod 7). Write p = 7n2 + k2, and fix the sign of k by
(

k
7

)

=
(

−1
p

)

. Then ap(E6) = 2k.

(4) Let k be an integer such that
(

k
7

)

=
(

−1
p

)

. Then the Hardy-Littlewood Con-

jecture holds for 7x2 + k2 with the constant δ = δ(7, 0, k2) > 0 if and only if the
Lang-Trotter Conjecture holds for πE6,2k(x) with the constant CE6,2k = δ > 0.

Proof. Since the discriminant ∆(E6) = 21273, E6 has bad reduction at primes 2
and 7.

Set

E(6,1) : y2 = x3 + 42x2 − 7x,
E(6,2) : y2 = x3 − 84x2 + 1792x,
E(6,3) : y2 = x3 − 21x2 + 112x,
E(6,4) : y2 = x3 + 21x2 + 112x.

Then one can check that

φ1 : E6 −→ E(6,1), (x, y) −→ (x− 14, y), is an isomorphism;

φ2 : E(6,1) −→ E(6,2), (x, y) −→ ( y
2

x2 ,− y(7+x2)
x2 ), is an isogeny of degree 2;

φ3 : E(6,2) −→ E(6,3), (x, y) −→ (x/4, y/8), is an isomorphism;
E(6,3) is a twist of E(6,4) by − 1.

Hence, for any odd prime p, we have

ap(E6) = ap(E(6,1)) = ap(E(6,2)) = ap(E(6,3)) =

(−1

p

)

ap(E(6,4)).

It follows from the proof of Theorem 3.25 that E5 is isomorphic to E(6,4) over Q,
hence ap(E(6,4)) = ap(E5). Therefore the result follows.

Corollary 3.29. (1) Let 0 6= r ∈ Z. If there exists a prime p such that
ap(E6) = r, then, for all prime q, aq(E6) 6= −r.

(2) Let p be a prime. The following statements hold:
(i) ap(E6) = 2 if and only if p = 28x2 + 1 for some x ∈ Z. In particular, the

polynomial 28x2+1 represents infinitely many primes if and only if there are infinitely
many primes p such that ap(E6) = 2.

(ii) ap(E6) = 12 if and only if p = 7(2x+1)2+36 for some x ∈ Z. In particular,
the polynomial 7(2x+ 1)2 + 36 represents infinitely many primes if and only if there
are infinitely many primes p such that ap(E6) = 12.

(iii) ap(E6) = 18 if and only if p = 28x2 + 81 for some x ∈ Z. In particular,
the polynomial 28x2 + 81 represents infinitely many primes if and only if there are
infinitely many primes p such that ap(E6) = 18.
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(iv) ap(E6) = −4 if and only if p = 7(2x+1)2+4 for some x ∈ Z. In particular,
the polynomial 7(2x + 1)2 + 4 represents infinitely many primes if and only if there
are infinitely many primes p such that ap(E6) = −4.

(v) ap(E6) = 22 if and only if p = 28x2 + 121 for some x ∈ Z. In particular,
the polynomial 28x2 + 121 represents infinitely many primes if and only if there are
infinitely many primes p such that ap(E6) = 22.

(vi) ap(E6) = −8 if and only if p = 7(2x + 1)2 + 16 for some x ∈ Z. In
particular, the polynomial 7(2x + 1)2 + 16 represents infinitely many primes if and
only if there are infinitely many primes p such that ap(E6) = −8.

Corollary 3.30. Let p be an odd prime. Then

(1)
∑p−1

x=0

(

x3−595x+5586
p

)

=

{

0, if p ≡ 3, 5, 6 (mod 7),
−2k, if p ≡ 1, 2, 4 (mod 7),

where k is deter-

mined by (3) of Theorem 3.28.

(2)
∑

p−1
3 ≤i≤ p−1

2 ,i even

(

p−1
2
i

)(

i
p−1−i

2

)

(−595)
3i−(p−1)

2 5586
p−1−2i

2

≡







































(

−1
p

)

(

3 p−1
7

p−1
7

)

(mod p), if p ≡ 1 (mod 7),

−
(

−1
p

)

(

3 p−2
7

p−2
7

)

(mod p), if p ≡ 2 (mod 7),

(

−1
p

)

(

3 p+3
7

p+3
7

)

(mod p), if p ≡ 4 (mod 7),

0 (mod p), otherwise.
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