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CHARACTERIZATIONS OF PROJECTIVE SPACES AND
HYPERQUADRICS*

STEPHANE DRUEL' AND MATTHIEU PARISt

Abstract. In this paper we prove that if the r-th tensor power of the tangent bundle of a smooth
projective variety X contains the determinant of an ample vector bundle of rank at least r, then X is
isomorphic either to a projective space or to a smooth quadric hypersurface. Our result generalizes
Mori’s, Wahl’s, Andreatta-Wisniewski’s and Araujo-Druel-Kovécs’s characterizations of projective
spaces and hyperquadrics.
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1. Introduction. Starting with Mori’s seminal paper [Mor79] where the author
characterized projective spaces as the only smooth projective varieties with ample
tangent bundle, the study of the relation of the positivity of the tangent bundle with
the geometry of the variety has become a very active subject in the classification
theory of smooth projective variety.

In [CS95], the authors prove that if X is a smooth complex projective variety of
dimension > 3 with A?Tx ample, then X is isomorphic to a projective space or an
hyperquadric.

The aim of this paper is to provide a new characterization of projective spaces
and hyperquadrics in terms of positivity properties of the tangent bundle. We refer
the reader to the article [ADKO08] which reviews these matters. Notice that our
results generalize Mori’s (see [Mor79]), Wahl’s (see [Wah83] and [Dru04]), Andreatta-
Wisniewski’s (see [AWO01] and [Ara06]) and Araujo-Druel-Kovdcs’s (see [ADKOS8])
characterizations of projective spaces and hyperquadrics. K. Ross recently posted a
somewhat related result (see [ROS10]).

In this paper, we prove the following theorems. Here @),, denotes a smooth quadric
hypersurface in P"™!, and &, (1) denotes the restriction of Opni1(1) to Q,. When

n=1,(Q1,00g,(1)) is just (P, Op1(2)).

THEOREM A. Let X be a smooth complex projective n-dimensional variety and &
be an ample vector bundle on X of rank r +k withr > 1 and k > 1. If h°(X, Tf?’“ ®

det(&)®71) # 0, then (X, det(&)) =~ (P", Opn (1)) withr +k <1 < w

Theorem B. Let X be a smooth complex projective n-dimensional variety and &
be an ample vector bundle on X of rank v > 1. If h°(X,TY" @ det(&)®~1) # 0, then
either (X, det(&)) ~ (P", Op~ (1)) with r < 1 < @, or (X,&) ~ (Qn, Og, (1)®7)
andr=2i+nj withi >0 and j > 0.

In [ADKO08], the authors prove that a nonsingular complex projective variety X is
biholomorphic to a projective space or an hyperquadric if and only if for some positive
integer p, the p-th wedge product APTx of the holomorphic tangent bundle contains
the p-th tensor power of an ample line bundle on X.
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584 S. DRUEL AND M. PARIS

The line of argumentation follows [AW01] and [ADKO08]. We first prove Theorem
A and Theorem B for Fano manifolds with Picard number p(X) =1 (see Proposition
16). Then the argument for the proof of the main Theorem goes as follows. We
argue by induction on dim(X). We may assume p(X) > 2. Hence the H-rationally
connected quotient of X with respect to an unsplit covering family H of rational
curves on X is non-trivial. It can be extended in codimension one so that we can
produce a normal variety Xp equipped with a surjective morphism 7wp with integral
fibers onto a smooth curve B such that either B ~ P1 XB — B is a P%bundle
for some d > 1 and h%(Xp, Ty /Pl @ T ® det(é’)‘x ') # 0 for some integer

1 < i < r where 4 be a vector bundle on P' such that ¥*(2) is nef, or Xp — B
is a P%bundle for some d > 1 and h°(Xp, T;‘?T/B ® det(é")%(;l R TEY*) # 0 where
% is a nef vector bundle on B, or the geometric generic fiber of g is isomorphic to
a smooth hyperquadric and hO(XB, )[( }B ® det(é’)%{sl ® mR%9*) # 0 where 4 is a
nef vector bundle on B. But this is impossible unless X ~ P' x P' (see Lemma 4,
Lemma 5 and Proposition 7).

Throughout this paper we work over the field of complex numbers.

Acknowledgments. We are grateful to Nicolas PERRIN for very fruitful discus-
sions. The authors would like to thank the referee for his valuable comments on the
manuscript.

2. Proofs.

2.1. Projective spaces and hyperquadrics. In this section, we gather some
properties of the tangent bundle to projective spaces and smooth hyperquadrics.

LEMMA 1. Let n, r and k be integers with n > 1 and r > 1. Then
WP, TEI (—k)) # 0 if and only if k < ")

Proof. 1t is well-known that Tp~ is stable in the sense of Mumford-Takemoto with
slope u(Tpr) = ”T“ with respect to &pn(1). By [HL97, Theorem 3.1.4], Tf?,f(fk) is
semistable with slope pu(Tgn (—k)) = @—kz. It follows that if hO(P", Tgn (—k)) # 0
then k < @ Conversely, let us assume that k < rntl)  Write r = an + b where
a and b are integers with ¢ > 0 and 0 < b < n. Then kfa(nJr 1)=1k—an+1)s<
\_M =Lb+ L J*band

n

RO(P™, T3r (—k)) = W (P, TS (—a(n 4+ 1)) @ TS (—k + a(n + 1))
> WP, [T (—(n+ 1))]%* @ TE2(—b))
> h(P", [det(Tpn )(— ( +1))]%* @ TEr (b))
= hO(P", Tn(=b)) > 1,

as claimed. O

Let d be a positive integer. Let Q C pitt = P(W) be a smooth hyperquadric
defined by a non degenerate quadratic form ¢ on W := C**2 and let 0 (1) denote
the restriction of Opa+1(1) to Q. Let = be a point of Q and w € W \ {0} representing
z; then T (—1), identifies with 1/ < 2 > and ¢ induces an isomorphism Tg(—1) ~
Q4 (1) or equivalently a nonzero section in HY(Q, (To(—1))®2) still denoted by g. Let
Vi=at/ < x> Let G:=SO(W) and let P C SO(W) be the parabolic subgroup
such that G/P ~ @ corresponding to z € Q. Let a € H%(Q,det(Tp(—1)) be a
nonzero section.



CHARACTERIZATIONS OF PROJECTIVE SPACES AND HYPERQUADRICS 585

LEMMA 2. Let the notations be as above.
1. The vector bundle Ty is stable in the sense of Mumford-Takemoto; in partic-
ular, one has hO(Q,Té@"(fk)) =0 fork>r>1.
2. The space of sections H°(Q, (To(—1))®") is generated as a C-vector space by
the o-¢® ®a®I ’s where i and j are nonnegative integers such that r = 2i+dj

and o € G, the symmetric group on r letters acting as usual on the vector
bundle (To(—1))®".

Proof. Observe that Tg(—1) is homogeneous or equivalently that
To(~1) = (G x V)/P
over Q ~ G/P where g € P acts on G x V by the formula
g9-(g"0) = (d'g,p(g7") - v)
and
p: P — GL(Tg(~1),) = GL(V)

is the stabilizer representation. It vanishes on the unipotent radical U of P and can
be viewed as the representation of the Levi subgoup L ~ C* x SO(V) C P on V given
by the standard representation of SO(V') on V. It is irreducible and therefore Tio(—1)
is indecomposable hence stable by [Ram66] and [Ume78] with slope p(Tp(—1)) =0
with respect to Og(1). By [HLI7, Theorem 3.1.4], (T(—1))®" is semistable with
slope u((To(—1))®") = 0. This ends the proof of the first part of the Lemma.
Observe that (To(—1))®" is homogeneous and that the stabilizer representation
P — GL((T(-1));")
is p®". In particular, (To(—1))®" decomposes as the direct sum of indecomposable
vector bundles hence as the direct sum of stable vector bundles with slope 0. Re-
call that a non-trivial morphism between stable sheaves is an isomorphism. It fol-
lows that there is a one-to-one correspondence between the set of nonzero section in
HY(Q, (To(—1))®") and the set of rank one direct summands of To(—1))®". Finally,
we obtain an isomorphism

HO(Q, (TQ(—l))®7') ~ (V®T)SO(V)

since SO(V') has no nontrivial character. The result now follows from [Wey39, Theo-
rem 2.9 A]. O

2.2. Fibrations over curves. In this section, we prove our main Theorems for
fibrations over curves.

NoTATION 3. Let X be a normal variety and X — B a morphism. Set T'x,p :=
(Qy/p)"

LEMMA 4. Let .7 be a vector bundle on P* of rank m > 2, X := Ppi(F)
and © : X — P! be the natural morphism. Let & be an ample vector bundle on
X of rank v+ k with r > 2 cmd k > 0. Let 9 be a vector bundle on P! such
that 4*(2) is nef. If h°(X, Tg/lpl @ TG @ det(&£)®1) # 0 for some integer
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0<i<rthen X ~P' x P, .F = Opi(a)®? for some integer a, k =0, 2i = r and
det(é") ~ ﬁpl(2) X ﬁpl(2)

Proof. Write & ~ Op1(a1)®- - -®0p1(am) withay < -+ < ap,. Letb:=ap,—a; >
0. Let o be a section of 7 corresponding to a surjective morphism Opi(a1) ® -+ &
Opi(ay) = Opi(ay,) and let o1 the section of 7 corresponding to the projection map
Opi(a1) @ -+ ® Opi(am) - Opi(ar). Then o = o1 + bl where £ is vertical line and

det(&)-oczr+k+br+k)=(r+k)(b+1).

We may assume that h°(o, (Tf?/ipl ® TGO ® det(£)¥ 1), ) # 0 since o is a free

rational curve, or equivalently,

(1) det(é")‘g — (Tg/ipl ®7T*g®rfi)‘g.

Write & ~ Op1(c1) B -+ @ Opi(cs) with ¢; < -+ < ¢5 and ¢; < 2 since ¥*(2) is nef.
Note that

TX/P1|J ~ o/X zﬁpl(am—al)@~~~@ﬁp1(am—am,1).
From (1), we obtain

(2) (r+k)b+1)<det(&) o <i(am —ar)+ (r—i)es <ib+2(r — i),

r(b+1) < (r+k)(b+1)<ib+2(r—1i) <rb+2(r—1)
and
(3) 2i <

Let F ~ P™ ! be a general fiber. Then hO(F, (Tf?/ipl QTG @det(£)® ) p) # 0.
Thus hO(F, T§' @ (det(&)®~1) p) # 0 since (7*F®" ) p ~ ﬁ?s(r%). By Lemma 1,
we must have

m
r+k<i1

m—1
Thus, using (3), we get

m m
2 < 2(r + k) < 2i <
r (r+k) Zm—l Tm—l

and we must have m = 2, k = 0 and 2¢ = r. From (2), we obtain
2r(b+1) <rb+2r

hence b=0. O

LEMMA 5. Let X be a smooth complex projective variety, & be an ample vector
bundle on X of rank r +k withr > 1 and k > 0. Let m : X — B be a surjective
morphism onto a smooth connected curve with integral fibers. Let ¢ be a numerically
effective vector bundle on B of rank > 0. Assume that the geometric generic fiber is
isomorphic to a projective space. Then h°(X, T;‘?fB ® det(&)®" L @ m*9*) = 0.
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Proof. Let n be the generic point of B. Tsen’s Theorem implies that X, ~ Pi
where k is the residue field at 7. Thus there exists a divisor H on X such that
6")((H)‘X77 ~ Opa(l). Let & = Ox(H). Let v > r 4+ k be defined by the
formula det(&)|x, ~ Opa(r’). It follows from the semicontinuity Theorem that
hO(Xp, (det(&) ® £%77) ) = 1 and hO(X,, (L @ det(£6)®71),) = 1 for any
point b in B. Thus h%(X,, (det(&) ®$®_7'/)‘Xb) = 1 since X, is integral. By the
base change Theorem, det(&) ~ £ @ n*.4 for some line bundle .# on B. Thus
£ is ample/B and by [Fuj75, Corollary 5.4], 7 is a P%-bundle. By replacing B with
a finite cover B — B and X with X xp B we may assume that .# ~ .#'®" for
some line bundle .#’ on B. Set &' := £ @ 7*.#'®'. Then £"®"" ~ det(&) hence
£ is ample. Let # = m.(%¥’). Then .# is an ample vector bundle on B and
X ~ Pp(%). By [CF90], By replacing B with a finite cover B — B and X with
X xp B, we may assume that there exist an ample line bundle ./ on B, a positive
integer m and a surjective map of &g-modules &/9™ — %. Observe that the line
bundle ¥’ @7*/®~1 is generated by its global sections. Let C' = D{N- - ‘N Dgim(x)—1
be general complete intersection curve with D; € |.¢' @ n*&/®~1| (C is a section of

m). Then (Tx/p)jc ~ Neyx ~ (&' @ n* o/ ©~ )®dlm(x) . Moreover

W(C (L @ ® )% o @ det(8)[5 ' @ 7°F*|0)

= hO(C, $I®7‘_TI|C ® F*ﬂ®_7‘|c QT G* \C)
=0

since ' > r > 0, ﬂ*aiﬂ"c and 7*@|c are ample vector bundles and 7% is a nef
vector bundle. Our claim follows. O

When dealing with sheaves that are not necessarily locally free, we use square
brackets to indicate taking the reflexive hull.

NoOTATION 6 (Reflexive tensor operations). Let X be a normal variety and 2 a
coherent sheaf of Ox-modules. Forn € N, set 2@ .= (%7 gl g .— (g7 @)
and det(2) := (AK(2) ()=,

PROPOSITION 7. Let X be a normal complex projective variety, & be an ample
vector bundle on X of rank r+k withr > 1 and k > 0. Let 7 : X — B be a surjective
morphism onto a smooth connected curve with integral fibers. Let ¢ be a numerically
effective vector bundle on B of rank > 0. Assume that the geometric generic fiber is

isomorphic to a smooth hyperquadric. Then h°(X, T)[((X;B] @ det(&)® ! @ m*g*) = 0.

Proof. Let n be the generic point of B and k be an algebraic closure of the residue
field x of . Let g5 be a non degenerate quadratic form defining X5 C Pg“ where
d:=dim(X) — 1. By Lemma 2, k = 0 and det(&),x ~ Ox, (r).

Let us assume to the contrary that h(X, T)[(%’; ® det(£)®t @ m*9*) # 0 and

let s € HO(X, T)[Sg ® det(&£)®~1 @ 7*%*) be a nonzero section. Notice that, for any

o € 6, and any non negative integers 7 and j such that r = 2i + dj,
o - [(SPTx, 5) @ © det(Tx/ )] @ det(6)® ! @ n*F*
is a direct summand of

TEN @ det(6) 7! @ G,
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By Lemma 2, we may assume that
s € HY(X, (SPTx, 5)® @ det(Tx, ) @ det(#)® ! @ 7*9*)
and
S|1x, = q}?i ® detﬁ®j ® g7

for some non negative integers ¢ and j with » = 2i 4+ dj and some non zero section
g7 € T H(7],45). Tt follows that the induced map

4 — 1. ((SPTx/ )" @ det(Tx,5) % @ det(£)® 1)

has rank one and therefore, we may assume that ¢ is a line bundle (with deg(¥) > 0).
We obtain a map

[©1]

vs: Uxp Tx/p'®" ® det(Tx/5)!® @ det(£)® ! @ 7 g

whose restriction to X3 is an isomorphism. Finally, we obtain a nonzero section

s' = det(ps) € H(X, det(TX/B[®i])®det(Tx/B[®i]®det(TX/B)[®j]®det(g)®_l®ﬂ_*g*))
~ HO(X, det(TX/B)[®(2idi71+dij)] ® det(ﬁ)@’*di ® W*g®7di).

Observe that s’ does not vanish anywhere on a general fiber of 7 and that any fiber
of m is integral. Thus

di
X/B 2id“1+dljcl( et(6)) +m
for some (integral) effective divisor A > %di,dif_kdijcl (¢4) and —Kx/p is ample. But

that contradicts Lemma 8. 0

LEMMA 8 ([ADKO8, Theorem 3.1]). Let X be a normal projective variety, f :
X — C be a surjective morphism onto a smooth curve, and let A C X be a Weil divisor
such that (X, A) is log canonical over the generic point of C. Then —(Kx/c + A) is
not ample.

LEMMA 9. Let S be a smooth projective surface equipped with a surjective mor-
phism w : S — B with connected fibers onto a smooth connected curve. Suppose that
the general fiber of 7 is a (smooth) rational curve. Let A be a nef and big line bundle
on S. Assume that, for a general point b in B, .# - Sy, = 2r for some r > 1. Then
RO(S, TS" @ A ®~ 1) = 0.

Proof. Let ¢ : S/B — S/B be a minimal model /B. Write .# = c*.#(—F)
for some divisor E on S supported on the exceptional locus of ¢. Observe that
E is effective by the negativity Lemma (see [KM98, Lemma 3.39]) and that .# is
nef since # is nef. Therefore, the natural map Ts — ¢*Ts induces an inclusion
HO(S,TE" @ #®~") C HY(S,T&" @ .A4®~1). Note that S is a ruled surface over B.
Replacing S/B with S/B we may assume that S — B is smooth. The short exact
sequence

O%TS/B%Tsﬁﬂ*TB—)O
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yields a filtration
T;?T:FODFlD"'DFrJrl:O
such that

FifFir T8, @ w* T8
Since . - Sy = 2r and TS/B -8, = 2 for b € B, we must have h%(S, Tg?/’B ®’/T*T§T_i®
MOV =0for 0 <i<r—1. Thus

HY(S, Ty @ M%) = HY(S,T§" @ M)

Let us assume to the contrary that h®(S, 75" @ .#®~1) # 0. Then r(—Kg/p) ~
c1(A) + 7 A where A is an effective divisor on C and Kg/p is nef and big. But
K3 2 S/B = = 0 for any (geometrically) ruled surface, a contradiction. O

2.3. Tools. The proof of the main Theorem will apply rational curves on X.
Our notation is consistent with that of [Kol96].

Let X be a smooth complex projective uniruled variety and H an irreducible
component of RatCurves(X). Recall that only general points in H are in 1:1-
correpondence with the associated curves in X. Let £ be a rational curve corre-
sponding to a general point in H, with normalization morphism f: P! — ¢ c X. We
denote by [¢] or [f] the point in H corresponding to £.

We say that H is a dominating family of rational curves on X if the corresponding
universal family dominates X. A dominating family H of rational curves on X is called
unsplit if it is proper. It is called minimal if, for a general point x € X, the subfamily
of H parametrizing curves through z is proper.

Let Hy,..., Hy be minimal dominating families of rational curves on X. For each
i, let H; denote the closure of H; in Chow(X). We define the following equivalence
relation on X, which we call (Hy,..., Hx)-equivalence. Two points z,y € X are

(Hy,..., Hy)-equivalent if they can be connected by a chain of 1-cycles from H; U

U Hy. By [Cam92] (see also [Kol96, IV.4.16]), there exists a proper surjective
morphism 7y : Xg — Yy from a dense open subset of X onto a normal variety
whose fibers are (Hy, ..., Hy)-equivalence classes. We call this map the (Hy, ..., Hy)-

rationally connected quotient of X. For more details see [KK0l96].

LEMMA 10. Let X be a smooth complex projective variety and Hy, ..., Hy unsplit
dominating families of rational curves on X. Let my : Xog — Yy be the (Hy,..., Hy)-
rationally connected quotient of X. If the geometric generic fiber is isomorphic to a
projective space, then mg is a P?-bundle in codimension one in Yy with d := dim(Xo)—

Proof. By [ADKO08, Lemma 2.2], we may assume that g is a proper surjective
equidimensional morphism with integral fibers. Let Cy C Yy be a general complete
intersection curve. Set X¢, := 1, '(Co). Then X, is a smooth variety. Let n be the
generic point of Cyp with residue field x and let £, be a line bundle on X¢, that
restricts to Opa (1) on X¢,, =~ P? (d > 1) (see the proof of Lemma 5). Let .# be an
ample line bundle on X and ra pOSlthG integer such that ./ Xeoy, = ~ Opa (r).

For each i, denote by Hi], 1 < j < ny, the unsplit covering families of rational
curves on X¢, whose general members correspond to rational curves on X from the
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family H;. Then mc, = mo|x,, * Xc, = Co is the (Hi,...,H"™,...,H}, ... H™)-
rationally connected quotient of X¢,. Let F' be a fiber of m¢,. Let [Hf | denote the
class of a member of Hf in Ny(F) and H := {[HZJ] |i=1,...,k,j=1,...,n;}. Then
by [Kol96, Proposition IV 3.13.3], N1(F) is generated by H. Therefore any curve
contained in any fiber of m¢, is numerically proportional in N;(X¢,/Co) to a linear
combination of the [H}]’s. Hence Ni(X¢,/Co) is generated by H and ci(Ax,,) =
re1(Ze,) € Ni1(Xe,/Co). Thus L, is ample/Cp and the claim follows from [Fuj75,
Corollary 5.4]. O

NoTATION 11. Let X be a normal variety and 2 be a coherent torsion free
sheaf of &x-modules. We say that a curve C C X is a general complete intersection
curve for 2 in the sense of Mehta-Ramanathan if C' = H; N -+ N Haipm(x)—1, where
H; € |m;H| are general, H is an ample line bundle on X and the integers m; € N are

large enough so that the Harder-Narasimhan filtration of 2 commutes with restriction
to C.

LEMMA 12. Let X andY be a smooth complex projective varieties with dim(Y") >
1, Xo be an open subset of X with codimx (X \ Xo) > 2, Yy be a dense open subset of Y
and let o : Xo — Yy be a proper surjective equidimensional morphism. Let C' C Xg be
a general complete intersection curve for ’/TSQ%/O in the sense of Mehta-Ramanathan.
If (70, )| is not nef then'Y is uniruled.

Proof. Fix an ample line bundle H on X, and consider general elements H; €
|m;H|, for i € {1,...,dim(X) — 1}, where the m; € N are large enough so that the
Harder-Narasimhan filtration of 7€}, commutes with restriction to C' := Hy N---N
Hgim(x)—1- Setting Z := H1 N+ N Hgim(x)—dim(y) and Zg := ZN Xp, we may assume
that Z is a smooth variety of dimension dim(Y"), and that the restriction g := 7|z,
is a finite morphism.

By the hypothesis (£5Qy, )| is not nef, therefore (¢fTy,)|c contains a subsheaf
with positive slope. Thus if we denote by i : Zyg — Z the inclusion and by %
the reflexive sheaf i, (p§Ty,), then the maximally destabilizing subsheaf & of .# has
positive slope (with respect to H,z).

Let K be a splitting field of the function field K(Zy) over K (Yp), and let ¢ : T —
Z be the normalization of Z in K. Consider Ty := ¢~1(Zp), and let j : To — T be
the inclusion. If we denote by g the restriction of ¥ to Tg, then the reflexive sheaf
F' o= (W F)* = j.(YieiTy,) contains the sheaf (¢*&)**. Notice that (¢*&)**
has positive slope. Consequently the maximally destabilizing subsheaf &’ of .%’ has
positive slope. Hence by replacing Zy with Ty, ¢o with g o 1o, and (F,&) with
(ZF',8") if necessary, we may assume that K(Zy) D K(Yp) is a Galois extension with
Galois group G.

Because of its uniqueness, the maximally destabilizing subsheaf & of % is invari-
ant under the action of G. Thus by replacing Z; with another open subset of Z if
necessary, we may assume that there exists a saturated subsheaf ¢ of Ty, such that
& =i.(05¥9).

As & has positive slope, it follows from [KSCTO07, Proposition 29 and Proposition
30] that the vector bundles ¢ and (& ® & ® (F/&)*)|c are ample. The morphism g
being finite, this implies that 4, () and (4 @ Y @ (Ty,/9)*)|40(c) are ample vector
bundles too. In particular we deduce from this that Hom(¥ ® ¢, Ty, /¥) = 0, because
the deformations of the curve ¢o(C) dominate the variety Yy. As a consequence ¥ is
a foliation on Yj.
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Finally, by extending ¢ to a foliation & on the whole variety Y, we can conclude
by using [KSCTO07, Theorem 1]. Indeed it follows from the fact that %,y is ample

that the leaf of the foliation & passing through a general point of ¢o(C) is rationally
connected; in particular Y is uniruled. O

The proof of our main result is based on the following result.

COROLLARY 13. Let X be a smooth complex projective variety, Xy be an open
subset of X with codimx (X \ Xo) > 2, Yo be a smooth variety with dim(Yp) > 1 and
let mp : Xo — Yo be a proper surjective equidimensional morphism. Assume that the
generic fiber of my is isomorphic to a projective space. Let C be a general complete
intersection curve for 73S, in the sense of Mehta-Ramanathan. If (58, )| is not

nef then there exists a minimal free morphism f : Pt — Yj.

Proof. Let Y be a smooth projective variety containing Yj as a dense open subset.
By Lemma 12, Y is uniruled. Let Hy be a minimal dominating family of rational
curves on Y. By Tsen’s Theorem, there exists a dominating family Hx of rational
curves on X such that for a general member [f] € Hx, [mo o f] is a general member of
Hy . By [Kol96, Proposition IT 3.7], if [f] € Hx is a general member then f(P') C Xj.
The claim follows from [Kol96, Corollary IV 2.9]. O

The following Lemma is certainly well known to experts. We include a proof for
lack of an adequate reference.

LEMMA 14. Let X be a smooth complex variety and H be a minimal dominating
family of rational curves on X. Let x be a general point in X and [{) € H with x € £.
If Ty » does not depend on £ > x then there exists a non empty open subset Xo in X
and a proper surjective morphism m : Xo — Yo onto a variety Yo such that any fiber
of my 1s a rational curve from the family H.

Proof. Let [f] € H be a general member. By [Kol96, Corollary IV 2.9], f*Tx ~
Op1(2) ® Op:(1)%? & ﬁff"id*l) with d := —Kx - f.P* —2. Let x be a general point
in X with z € ¢ := f(P'). By [Hwa0l, Proposition 2.3], d = 0 using the fact that
T o does not depend on ¢ > z.

Let H be the normalization of the closure of H in Chow(X) and U the normaliza-
tion of the universal family. Let us denote by 7 : U — H and € : U — X the universal
morphisms. By shrinking H if necessary, we may assume that H parametrizes free
morphisms. Then H is smooth (see [Kol96, Theorem I 2.16]) and e := ey : U — X
is étale where U := 771 (H) (see [Kol96, Proposition II 3.4]).

It remains to show that there exists a dense open subset Hy of H such that the
restriction of € to #~(Hp) induces an isomorphism onto the open set &(7~1(Hp).
By Zariski’s main Theorem, it is enough to prove that e is birational. We argue
by contradiction. Then there exists a curve C C U such that dim(7(C)) = 1 and
e(C) = L. Let c be a general point in C. Then d.é(Tc,.) = Ty () since €(C) = £ and
Tyec) = de(Tr-1(5(c)),e) since Ty . does not depend on ¢’ > ¢ ([¢('] € H). But that
contradicts the fact that e is étale at c. The claim follows. O

2.4. Characterizations of projective spaces and hyperquadrics. The
proof of Theorem A and Theorem B stated in the introduction is based on the fol-
lowing result whose proof is similar to that of [ADKO08, Theorem 6.3].

NoTATION 15. Fix a minimal covering family H of rational curves on X. Let
[f: P! = X] € H. We denote by (f*Tx)* the subbundle of f*Tx defined by

(f*Tx)" =Im [H*(P', f*Tx(~1)) ® Op:(1) = f*Tx] — f*Tx.
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PROPOSITION 16. Let X be a smooth complex projective n-dimensional variety
with p(X) =1 and & be an ample vector bundle on X of rank r + k with r > 1 and
k>0, If iO(X,TY" @ det(&)®71) £ 0, then either X ~P", or k=0 and X ~ Q,

(n#2).

Proof. First notice that X is uniruled by [Miy87], and hence a Fano manifold with
p(X) = 1. The result is clear if dim X = 1, so we assume that n > 2. Fix a minimal
dominating family H of rational curves on X. Let .Z be an ample line bundle on X
such that Pic(X) = Z[.Z].

Let & C Tx be the maximally destabilizing subsheaf of T'x; &’ is a reflexive sheaf
of rank »* > 1. By [ADKO8, Lemma 6.2], p, (&) > M. Let [f] € H be a
general member. Note that deg(f* det(&)) > r + k since & is ample. This implies
that deg(f &) > des(f” det(g)) > 7+k > 1. If ¥ =1, then &’ is ample and we are done
by Wahl s Theorem. It f*& s ample then X ~ P" by [ADKO0S8, Proposition 2.7],
using the fact that p(X) = 1.

Otherwise, as f*&" is a subsheaf of f*T'x ~ Op1(2) © Op1 (1)%? @ ﬁffl("_d_l) (see
[Kol96, Corollary IV 2.9]), we must have deg(f* det(&”)) = 7/, deg(f* det(&)) = r,
k=0and f*& ~ Op1(2)® Op1 (1)®"' =2 @ Op1 for a general [f] € H. Then Op1(2) C
[*&" for general [f] € H. Thus by [Hwa01, Proposition 2.3], (f*T5), C (f*&"), for a
general p € P! and a general [f] € H. Since f*&” is a subbundle of f*Tx, we have an
inclusion of sheaves (f*Tx)* < f*&”, and thus f*det(&”) = f*wy'. Since p(X) = 1,
this implies that det &' = w;(l, and thus 0 # h%(X, A Tx Ruwx) = h”"'/(X7 Ox). The
latter is zero unless ' = n since X is a Fano manifold. Notice that deg(f* det(&)) = r.
It follows that f*& ~ Opi1(1)®" for any [f] € H since & is ample. By [AWOLI,
Proposition 1.2] (see also [ROS10, Theorem 4.3]), & ~ £%" and deg(f*.¢) = 1.
Since n = 1/, we must have wy' ~ det(&8’) ~ £%®". Hence X ~ Q,, by [KO73]. O

We will need the following auxiliary result.

LEMMA 17. Let X be a smooth complex projective variety and & be an ample
vector bundle on X of rank r + k with r > 2 and k > 0. Assume that X is uniruled
and fix a minimal dominating family H of rational curves on X. If h°(X, Tf?r ®
det(&)®71) # 0, then H is unsplit.

Proof. Let [f] € H be a general member. Let us assume to the contrary that
RO(X, TY" @ det(£)®~1) # 0 and f.(P') = C; + Cy with C; and Cy nonzero integral
effectlve rational 1-cycles. Notice first that det(&’) - C' > r + k for all rational curves
C C X. By [Kol96, Corollary IV 2.9], f*Tx =~ Op1(2) ® Op: (1) @ 65" and
we must have deg(f* det(&)) < 2r. Finally, 2(r + k) < deg(f* det(&)) < 2r and we
must have k = 0, deg(f*det(&)) = 2r and f*det(&) ~ Op1(2r) C f* A" (Tx) ~
N (Op1(2) @ Op:1(1)%4 @ ﬁ;‘?l(n_d_l)). Hence TE; = det(&), C Tf?; for a general
point z in ¢ and therefore, Ty , does not depend on ¢ > x. Thus, by Lemma 14,
there exists a non empty open subset Xy in X and a proper surjective morphism
mo : Xo — Yp onto a variety YO such that any fiber of 7 is a rational curve from the
family H and det(&)|x, ~ T5" oYy Let Z C Tx be the saturated line bundle such
that Ty, /v, ~ Zx,. Notice that det(&) C £®" with equality on X. Let C' C X be
a general complete intersection curve and let S be the normalization of the closure in
X of w5 (mo(C N Xp)). By [Drud4, Lemme 1.2] (or [ADKO0S, Proposition 4.5]), the
map QY — £®~1 induces a map Qf — L% where %5 denotes the pull-back of
£ to S. Notice that my induces a surjective morphism 7wg : S — B onto a smooth
curve. By Lemma 9, dim(X) # 2. Thus, we may assume g(B) > 1. Let S — S be a
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minimal desingularization of S. By [BW74, Proposition 1.2], QL — ZLs®1 extends
to ng — $g®_1. Let mg : S — B be the induced morphism. By replacing £ with
its saturation in T, we may assume det(&)g C f?r - T?T. Observe also that, for
a general point b in B, det(&)5 - S, = 2r. But that contradicts Lemma 9. O

Now we can prove our main theorems.

THEOREM 18. Let X be a smooth complex projective variety and & be an ample
vector bundle on X of rank v+ k with r > 1 and k > 0 and such that h°(X, Tf?r ®
det(£)®~1) # 0.

1. If k> 1 then X ~P".
2. If k=0 then either X ~P", or X ~ Q,.

Proof. We shall proceed by induction on n := dim(X). The result is clear if
n =1, so we assume that n > 2. If r + k£ = 1 then we are done by Wahl’s Theorem
so we assume that » + k > 2.

Notice that X is uniruled by [Miy87]. Fix a minimal dominating family H of
rational curves on X. By Lemma 17, H is unsplit. Let mg : Xo — Yy be the
H-rationally connected quotient of X. By [ADKO08, Lemma 2.2], we may assume
codimx (X \ Xo) > 2 and g is an equidimensional surjective morphism with integral
fibers. By shrinking Yj if necessary, we may also assume that Y} is smooth.

By Proposition 16, we may assume p(X) > 2. By [Kol96, Proposition IV 3.13.3],
we must have dim(Yp) > 1.

Let F be a general fiber of my. There exist (see [ADKO08, Lemma 5. 1]) non negative
integers 4 and j with i + j = r such that h%(X T[®1]Y ® det(é")‘X ® w’O*T%]) #0
and hO(F,TE' ® det(é’) ') # 0. Notice that i > 1 since det(&)|p is an ample line
bundle and d := dim(F ) > 1

The induction hypothesis implies that F ~ P?if i < r or k > 1 and either F ~ P¢
or F~Qgifi=rand k=0.

Let C C X, be a general complete intersection curve (with respect to some
very ample line bundle on X). Let X be the normalization of ;' (mo(C)). Let
mc : X — C be the induced map. Note that X¢ is the normalization of C' Xy, Xo
and that C' xy, Xp is regular in codimension one since any fiber of m is integral.

T e ® det(&)fx ) @ m5 (0,0 7) # 0.

Let us assume that either (7504, )|c is a nef vector bundle or i = r. If the
geometric generic fiber of 7y is isomorphic to a projective space then we may assume
that 7o is a P%-bundle by Lemma 10. But that contradicts Lemma 5. By Proposition
7, the geometric generic fiber of mp is not isomorphic to a (smooth) hyperquadric.
Thus (WSQ%/O)‘C is not nef, i < r and F ~ P? by the induction hypothesis.

Hence, we must have h%(X¢,

By Lemma 13, there exists a minimal free morphism f : P' = Y. By generic
smoothness, we may assume that Xy = =P! ><yO X is smooth. We may also assume

thathOX, T®1 1®deté" Lo r* Ty 1)) # 0. Let £ be a line bundle on X
f X;/P f o\P f f

that restricts to Opa(1) on F o~ P (see the proof of Lemma 5). By [Fuj75, Corollary
54], mp + Xy — P! is a P? bundle. It follows from Lemma 4 that k = 0, d = 1,
(X;/P) =~ (P xP'/P') and det(&)|x; ~ Op1(2) X Op1(2). Let H' be the covering
family of rational curves on X whose general member corresponds to the ruling of
Xy that is not contracted by 7. Observe that H’ is a minimal dominating family of
rational curves since f : P* — Y is a minimal free morphism (using [Kol96, Corollary
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IV.2.9]). Since & is ample, H' is an unsplit covering family of rational curves, using
Lemma 17.

Let 1 : X1 — Y7 be the (H, H')-rationally connected quotient of X. By [ADKO08,
Lemma 2.2], we may assume codimy (X \ X;) > 2 and m is an equidimensional
surjective morphism with integral fibers. By shrinking Y7 if necessary, we may also
assume that Y7 is smooth. Replacing 79 : X9 — Yy with m : X1 — Y71 above, we
obtain a contradiction unless X ~ P! x P'. O

Proof of Theorem A. By Theorem 18, X ~ P" and by Lemma 1, det(&") ~ &p» (1))
with r+k <1< 22 g

Proof of Theorem B. By Theorem 18, either X ~ P" or X ~ Q,,. If X ~ P",
then the claim follows from Lemma 1. Let us assume X =~ @Q,. By Lemma 2,
det(&) =~ g, (r). Thus, for any line P' ¢ Q,, ¢ P"*!, &p1 ~ Op1(1)%7, and the
claim follows from [AWO01, Proposition 1.2] (see also [ROS10, Theorem 4.3]). O
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