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ON SINGULAR CUBIC SURFACES*
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Abstract. We study global log canonical thresholds of singular cubic surfaces.
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All varieties are assumed to be defined over C.

1. Introduction. Let X be a variety with at most log terminal singularities, let
Z C X be a closed subvariety, and let D be an effective Q-Cartier Q-divisor on X.
Then the number

letz (X, D) = sup {)\ 0) ‘ the log pair (X, )\D) is log canonical along Z}

is said to be the log canonical threshold of D along Z (see [8]).

EXAMPLE 1.1. Let ¢ € C[z1,---,2,] be a nonzero polynomial, let O € C™ be
the origin. Then

1
leto ((C”, (gb = O)) = sup {c eQ ’ the function —— is locally integrable near O} .

|#]

For the case Z = X we use the notation lct(X, D) instead of lctx (X, D). Then
let(X, D) = inf {let (X, D) | P e X}
= sup {)\ €eQ ’ the log pair (X, )\D) is log canonical} .

Suppose, in addition, that X is a Fano variety.

DEFINITION 1.2. We define the global log canonical threshold of X by the number

let (X) = inf {lct (X, D) ‘ D is effective Q-divisor on X such that D = —KX} .

The number lct(X) is an algebraic counterpart of the a-invariant introduced in
[11].

EXAMPLE 1.3. Let X be a smooth cubic surface in P3. Then it follows from [4]
that

Let () 2/3 when X has an Eckardt point,
C =
3/4 when X does not have Eckardt points.
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192 I. CHELTSOV

In this paper we prove the following result’.

THEOREM 1.4. Let X be a singular cubic surface in P3 with canonical singulari-
ties. Then

2/3 when Sing(X) = {A1},
1/3 when Sing(X) D {A4},
1/3 when Sing(X) = {D4},

1/3 when Sing(X) 2 {Ag, Ay},

ICt(X) N 1;4 when SiniEX; ) iA5}, }
1/4 when Sing(X) = {Ds},
1/6 when Sing(X) = {Es},

1/2 in other cases.

Let us consider one birational application of Theorem 1.4.

THEOREM 1.5. Let Z be a smooth curve. Suppose that there is a commutative
diagram

V- - - -V (1.6)
Z Z

such that m and T are flat morphisms, and p is a birational map that induces an
isomorphism

p|V\X:V\X—>V\X, (1.7)

where X and X are scheme fibers of m and @ over a point O € Z, respectively. Suppose
that
e the varieties V and V have terminal Q-factorial singularities,
o the divisors —Ky and —Ky, are m-ample and T-ample, respectively,
e the fibers X and X are irreducible.
Then p is an isomorphism if one of the following conditions hold:
e the varieties X and X have log terminal singularities, and lct(X)+1et(X) > 1;
e the variety X has log terminal singularities, and let(X) > 1.

The assertion of Theorem 1.5 is sharp (see [10, Example 5.2-5.6]).
EXAMPLE 1.8. Let V be V subvarieties in C! x P? given by the equations
3 4 9% + 22w + %3 = 0 and 2® + 3 + 22w +w® =0,

respectively, where t is a coordinate on C!, and (z,y, z, w) are coordinates on 3. The
projections

7V —Cland 7: V — C!

LA cubic surface in P3 with isolated singularities has canonical singularities <=> it is not a
cone.
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are fibrations into cubic surfaces. Let O be the point on C! given by t = 0. Then
X is smooth, the surface X has one singular point of type Dy. Put Z = C'. Then
the map

(:E,y,z,w) — (t2x,t2y,t32,w)

induces a birational map p: V --» V such that the diagrams 1.6 and isomorphism 1.7
exist, and p is not biregular. But lct(X) = 1/3 and let(X) = 2/3 (see Exam-
ple 1.3 and Theorem 1.4).

EXAMPLE 1.9. Let V be V subvarieties in C' x P? given by the equations
3 4+ 9%2 + 22w + 2w = 0 and 2® + ¢z + 22w + w? =0,

respectively, where ¢ is a coordinate on C!, and (z,y, 2z, w) are coordinates on P3. The
projections

mV—Cland 7: V — C!

are fibrations into cubic surfaces. Let O be the point on C! given by t = 0. Then
X is smooth, the surface X has one singular point of type Eg. Put Z = C'. Then
the map

(:E,y,z,w) — (t2x,t3y,z,t6w)

induces a birational map p: V --» V such that the diagrams 1.6 and isomorphism 1.7
exist, and p is not biregular. But lct(X) = 1/6 and let(X) = 2/3 (see Exam-
ple 1.3 and Theorem 1.4).

EXAMPLE 1.10. Let V be V subvarieties in C' x P? given by the equations
wz? + za? + y?x + tPw® = 0 and w2? + 22 + y%r +wd =0,

respectively, where t is a coordinate on C!, and (z, vy, z, w) are coordinates on P3. The
projections

7V —Cland 7: V — C!

are fibrations into cubic surfaces. Let O be the point on C' given by t = 0. Then
X is smooth, the surface X has one singular point of type Ds. Put Z = C!. Then
the map

(x, Y, Z, w) — (t2:1:, ty, z, t4w)

induces a birational map p: V --» V such that the diagrams 1.6 and isomorphism 1.7

exist, and p is not biregular. But let(X) = 1/4 and let(X) = 2/3 (see Exam-
ple 1.3 and Theorem 1.4).

The number let(X) is closely related to the existence of a Kahler—Einstein metric
(see [6]), but we can not use Theorem 1.4 to prove the existence of such a metric on
singular cubic surfaces.

REMARK 1.11. If a singular normal cubic surface in P? admits an orbifold Kihler—

Einstein metric, then its singular locus must consist of singular points of type A; and
Ay (see [7]).
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Nevertheless, we can use an equivariant analogue of the number lct(X) to prove

the existence of an orbifold Kahler-Einstein metric on some symmetric singular cubic
surfaces.

EXAMPLE 1.12. Let X; be the Cayley cubic surface in P3, i.e. a singular surface
given by

zyz + zyt + 2t + yzt = 0 C P? = Proj ((C[:v, Y, 2, t]),

and let X5 be a cubic surface in P3 that is given by the equation zyz = 3. Put

lct(Xl, 84) = sup {)\ eQ

the log pair (X7, AD) has log canonical singularities}

for every Sy-invariant effective Q-divisor D = —Kx,
where we consider S4 as a subgroup of Aut(X;). Similarly, we define let(X3, Sg % Zs).
Then

lct(Xl,S4> - 1ct(X2,83 x Zg) —1> g

by [4, Lemma 5.1]. Then X; and X, admit Kihler-Einstein metrics? by [6] (cf. [5,
Appendix A]).

We prove Theorem 1.4 in Section 3, and we prove Theorem 1.5 in Section 4.

2. Basic tools. Let S be a surface with canonical singularities, and D be an
effective Q-divisor on it.

REMARK 2.1. Let B be an effective Q-divisor on S such that (S, B) is log

canonical. Then
1
(S, — (p- aB)>

is not log canonical if (S, D) is not log canonical, where o € Q such that 0 < a < 1.

Let LCS(S, D) C S be a subset such that P € LCS(S, D) if and only if (S, D) is
not log terminal at the point P. The set LCS(S, D) is called the locus of log canonical
singularities.

LEMMA 2.2. Suppose that —(Kg + D) is ample. Then LCS(S, D) is connected.

Proof. See Theorem 17.4 in [9]. O
Let P be a point of the surface S such that (.S, D) is not log canonical at the point

REMARK 2.3. Suppose that S is smooth at P. Then multp(D) > 1.

Let C be an irreducible curve on the surface S. Put
D =mC+Q,
where m € Q such that m > 0, and Q is an effective Q-divisor such that C' € Supp(Q).

2The existence of orbifold Kahler-Einstein metrics on X3 and X» is obvious, because both X1
and X2 are quotients branched over singular points of smooth Kéhler—Einstein del Pezzo surfaces
(see [2] and [7, Example 1.4]).
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REMARK 2.4. Suppose that C C LCS(S, D). Then m > 1.

LEMMA 2.5. Suppose that P € C, the surface S is smooth at P, and m < 1.
Then C-Q > 1.

Proof. 1t follows from Theorem 17.6 in [9] that C' - © > multp(Qc) > 1. O
Let m: S — S be a birational morphism such that the surface S has canonical
singularities, and D is a proper transform of D via 7. Then

Ks+D+ Y aE =7 (Ks+D),

i=1
where F; is a m-exceptional curve, and a; is a rational number.

REMARK 2.6. The log pair (S, D) is log canonical if and only if (S, D+";_, a, E;)
is log canonical.

Suppose that » = 1, 7(F1) = P, and P is an ordinary double point.
LEMMA 2.7. Suppose that S is smooth along Ey. Then a; > 1/2.

Proof. The inequality a; > 1/2 follows from Theorem 17.6 in [9]. O
Most of the described results are valid in much more general settings (see [9]).

3. Main result. Let S be a singular cubic surface in P® with canonical singu-
larities. Put 3 = Sing(S) and

lct, (S) = sup{,u €eQ ’ the log pair (S, ED) is log canonical for every D € ‘—nKX‘}
n

for every n € N. Then it follows from [12] that

2/3 when ¥ = {A},
1/3 when ¥ 2 {A4},
1/3 when ¥ = {4},
1/3 when ¥ D {AQ,AQ},
1/4 when ¥ 2 {As5},
1/4 when ¥ = {Ds },
1/6 when ¥ = {Eg},

1/2 in other cases.

lct(S) = inf,eN (lctn (S)) < lctl(S) =

Let D be an arbitrary effective Q-divisor on the surface S such that
D= —KS ~ Ops (1)‘5,

and let A be an arbitrary positive rational number such that A < lcty(S).
LEMMA 3.1. Suppose that 1ct1(S) < 1/3. Then LCS(S,AD) C X.
Proof. Suppose that (S, \D) is not log terminal at a smooth point P € S. Then

3=—Kgs-D>multp(D) >1/X> 3,
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which is a contradiction. The obtained contradiction implies that LCS(S, AD) C X.
a

LEMMA 3.2. Suppose that [LCS(S,AD)| < +o00. Then LCS(S,\D) C 3.

Proof. The required assertion follows from [4]. O

Let O be a singular point of the surface S, and «: § — S be a partial resolution
of singularities that contracts smooth rational curves F1, ..., Ex to the point O such
that

5\(0&) ~ S\ 0,

the surface S is smooth along U¥_, E;, and E? = —2 for every i = 1,...,k. Then

k
D =" (D) — ZaiEi,
i=1

where D is the proper transform of D on the surface S,and a; € Q. Let Ly,..., L,
be lines on the surface S such that O € L;, and L; be the proper transform of L; on
the surface S. Then

~Kg-Ly=---=-Kg-L,=1.

REMARK 3.3. To prove Theorem 1.4, we must show that the equality
let (S) = lety (S)

holds. Hence, it follows from the choice of the divisor D and A € Q that to prove
Theorem 1.4 it is enough to show that the singularities of the log pair (S, \D) are log
canonical.

In the rest of the section, we prove Theorem 1.4 case by case using [1].
LEMMA 3.4. Suppose that ¥ = {A1}. Then lct(S) = 2/3.

Proof. Suppose that the log pair (S,AD) is not log canonical. Let us derive a
contradiction.

Suppose that there is an irreducible curve Z C S such that D = uZ + ), where
1 is a rational number such that p > 1/A, and Q is an effective Q-divisor such that
Z ¢ Supp(f?). Then

3=—-Kgs-D=pdeg(Z) — Ks-Q > pdeg(Z) > 3deg(Z)/2,
which implies that Z is a line. Let C be a general conic on S such that —Kg ~ Z+C.
Then
3

2=C-D=uC-Z+C-Q>uC 2> 3p,

which is a contradiction. Then LCS(S,AD) = O by Lemma 3.2.
We have 3 —2a; = H- D > 0, where H is a general curve in | — Kg — Eq|. Tt
follows from

Ks+AD + Xa1Ey = o (Ks + AD)



ON SINGULAR CUBIC SURFACES 197

that there is a point Q € F; such that (S, A\D+\aj E) is not log canonical at the point
Q.
It follows from [1] that » = 6. Let : S — P? be a contraction of the curves
I1,.... L. i

Suppose that Q ¢ U%_; L;. Then

W(D—l—alEl) EW(—KS) = — Kpe,

and 7 is an isomorphism in a neighborhood of ). Let L be a general line on P?. Then
the locus

LCS(P2, L+m(AD + A1 Ey))

is not connected, which is impossible by Lemma 2.2.

Therefore, we may assume that Q € L;. Put D = aL; + Y, where a is a non-
negative rational number, and T is an effective Q-divisor, whose support does not
contain the line L. Then

Y= a*(T) — ek,

where € = a1 —a/2, and T is the proper transform of the divisor T on the surface S.
The log pair (S, AaL; + AT + A(a/2 + €)E1) is not log canonical at ). Then

l+a/2—e=L;-Y>1/A—a/2—¢

by Lemma 2.5, because Aa < 1. Hence, we have a > 1/2.
It follows from [12] that there is a conic C7 C S such that the log pair

(S, leta(8) (L1 + C) )

is not log terminal. But it must be log canonical. Therefore, in the case when
Cy C Supp(D), we can use Remark 2.1 to find an effective divisor D’ on the surface
S such that the equivalence

D/ = _KS

holds, the log pair (S, AD’) is not log canonical at the point P, and C; € Supp(D’).
To complete the proof, we may assume that C1 Z Supp(D). B
Let C7 be the proper transforms of the conic C; on the surface S. Then

2—3a/2—e=C1-T >multg(Y) >1/A—a/2—¢,

which implies that a < 1/2. But a > 1/2. The obtained contradiction completes
the proof. O
LEMMA 3.5. Suppose that ¥ = {A1,..., A1} and |3] > 2. Then lct(S) = 1/2.

Proof. Suppose that the log pair (S, AD) is not log canonical. Let us derive a
contradiction.
Suppose that there is an irreducible curve Z on the surface S such that

D=uzZ+9Q,
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where p is a rational number such that p > 1/X, and Q is an effective Q-divisor, whose
support does not contain the curve Z. Then Z is a line (see the proof of Lemma 3.4).
We have

2=C-D=uC-Z+C-Q2uC-Z=2pz1/x>2,

where C' is a general conic on S that intersects Z in two points.

We may assume that LCS(S,AD) = O by Lemmas 2.2 and 3.2. Then a; > 1 by
Lemma 2.7.

Arguing as in the proof of Lemma 3.4, we see that there is a point Q € E such
that the singularities of the log pair (S, A\D+ a1 E1) are not log canonical at the point

Q.
Let P be a point in X such that P # O. We may assume that P € L. Then
201+ L' ~ —Kg

for some line L' C S.
Suppose that @ € Ly. Let a be a non-negative rational number such that

D=al;+ 7,
where T is an effective Q-divisor, whose support does not contain the line L;. Then
T = a*(T) — ek,

where T is the proper transforms of Y on the surface S, and € = a; — a/2. The log
pair

(S,M@1+AT+A@U2+QEQ
is not log canonical at the point Q. We have L} = —1/2. Then
l—e=L1-T>1/A—a/2—¢

by Lemma 2.5. We have a > 1/, which is impossible. Hence, we see that Q ¢ L. B
There is a unique reduced conic Z C S such that O € Z > P and Q € Z, where Z
is the proper transform of the conic Z on the surface S. Then L; € Supp(Z), because

Q¢ L.
Suppose that Z is irreducible. Put
D=eZ + A,
where e € Q, and A is an effective Q-divisor such that C' € Supp(A). Then
A=a*(A) - 0E,,
where A is the proper transforms of A on the surface S, and § = a; — e/2. Then
2—e—0=Z-A>1/]A—¢/2-0>2—¢/2—§

by Lemma 2.5, because C2 = 1/2. We have e < 0, which is impossible.
We see that the conic Z is reducible. Then

Z =Ly + L,
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where L} is a line on S such that P € L and Lo N LY # @.

The intersection Lo N L} consists of a single point. The impossibility of the case
Q € L, implies that the surface S is smooth at the point Lo N L}. There is a rational
number ¢ > 0 such that

D =cly+E,
where Z is an effective Q-divisor, whose support does not contain the line L. Then
== a*(E) —vE,
where Z is the proper transforms of = on the surface S, and v = a; — ¢/2. The log
pair
(S, AeLa + AE + A(c/2 + U)El)
is not log canonical at Q. We have Q € Ly and L2 = —1. Then
l+e¢/2—v=Ly-E>1/A—¢c/2—v>2—¢/2—v

by Lemma 2.5. Therefore, the inequality ¢ > 1 holds.
There is a unique hyperplane section T of the surface S such that T'= C5 + Lo
and

Q=CyNLy=0,

where Cs is a conic, and Cs is the proper transforms of Cy on the surface S.
The conic Cy is irreducible. We may assume that Co € Supp(D) (see Remark 2.1).
Then

2-3c/2—v=Cy 22 multg(E) > 1/A—¢/2 -,
which implies that ¢ < 0. The obtained contradiction completes the proof. O

LEMMA 3.6. Suppose that ¥ = {Dy}. Then lct(S) =1/3.

Proof. Suppose that the log pair (S, AD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that » = 3. The lines Ly, Lo, L3 lie in a single plane. Thus,
we may assume that Ls  Supp(D) due to Remark 2.1 and Lemma 3.1.

Let 8: S — S be a birational morphism such that the morphism « contracts one
irreducible rational curve E that contains three singular points Op, Oz, O3 of type
Ay

Let D and L; be the proper transforms of D and L; on the surface S, respectively.
Then

D = p*(D) — puE,
where y is a positive rational number. We have L; = 8*(L;) — E. Then
0< D -Ly= (6*(D)—ME) Ly=1-pE-Ly=1-pu/2,

which implies that < 2. Therefore, we may assume that there is a point ) € E such
that the singularities of the log pair (S, AD + pFE) are not log canonical at the point
Q (see Lemma 3.1).
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Suppose that S is smooth at Q. The log pair (S, \D + E) is not log canonical at
Q. Then

>p/2=-pE?=E-D>1/A>3

by Lemma 2.5. We see that Q O; for some j.
The curves Ly, L, and L3 are disjoined, and each of them passes through a
singular point of the surface S. Therefore, we may assume that O; € L; for every i.
Let ~: S — S be a blow up of the point O;, and G be the exceptional curve of .
Then

Ly=~"(L;) ~ 3¢ = (B07)" (L)) - B~ G,

where i/j and E are proper transforms of the curves L; and E on the surface s,
respectively. 3
Let D be the proper transform of the divisor D on the surface S. Then

D=7"(D) —eG=(Bo7) (D) = nb = (/2 + )G
where € is a rational number, because 2F = v*(2E) — G. By Lemma 2.7, we have
Ae+ Ap/2 > 1/2.

Suppose that j =3. Then 1 — p/2 —e =D - Ls > 0. But € + p/2 > 3/2.
We may assume that Q = O;, and the support of the divisor D contains the line
Ll. Put

D:aL1+Q,

where @ € Q and a > 0, and Q is an effective Q-divisor such that L; € Supp(Q).
Then

O= (Bo)"(Q) —mE — (m/2+4b)G

where () is the proper transform of 2, and m and b are non-negative rational numbers.
Then

(B07) (D) — pE — (/2 +€)G =D = aLy +
= (Bo) (aLi +9) = (a+m)E - (a+m/2+b)G
which implies that 4 =a+m < 2 and € = a/2 + b. We have
2=-1,F?=-1,G=-2L-F=0,L-G=E-G=1
on the surface S. The surface S is smooth along the curve G. Then
—a<—a+Q-L = (af)1—|-@) -ﬁlzl—a—m/2—b,
which implies that m/24+b <1 and a+m/24+b < 1+a < 3. Thus, by the equivalence

Kg+XaLi + M2+ Ma+m)E+ A a+m/2+b)G = (B07)" (Ks + AaLi + AQ),
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there exists a point A € GG such that the log pair
(8. AaLy +2Q+ Aa+m)E +Aa+m/2+)G)

is not log canonical at the point A.
Suppose that A ¢ L1 UE. Then (S, AQ + A(a +m/2 4 b)G) is not log canonical
at A, and

2b—|—a:(ai1+Q)~G:a+Q-G>a+3,

by Lemma 2.5. We see that b > 3/2. But m/2 +b < 1. We see that A € L UE.
Suppose that A € L;. The log pair

(S‘, AQ+ Aa+m)E + )\(a+m/2+b)G)
is not log canonical at the point A. Arguing as in the previous case, we see that
mj2-b=0-F>3—a—-m/2—b,
which implies that a +m > 3. But a + m < 2. We see that A€ L.
The log pair (S, AaLy + AQ + A(a +m/2 + b)G) is not log canonical at A. Then
l—a—m/2—b= (ail+§2) Liy=-a+Q-Li>—-a+3— (a+m/2+D)

by Lemma 2.5. We have a > 2. But a +m < 2, which is a contradiction. O
LEMMA 3.7. Suppose that ¥ = {Ds}. Then lct(S) = 1/4.

Proof. Suppose that the log pair (S,AD) is not log canonical. Let us derive a
contradiction.

We see that LCS(S,AD) = {O} by Lemma 3.1.

It follows from [1] that » = 2 and the surface S contains a line L such that O ¢ L.

Projecting from L, we see that there is a conic C' C S such that the equivalence

~Ks~C+1L

holds, O ¢ C and |[CNL|=1. Put P=CnN L. Then
PuOchs(s, Z(C+L)+)\D> CPUOUCUL,

which is impossible by Lemma 2.2. The obtained contradiction completes the proof. O
LEMMA 3.8. Suppose that ¥ = {Eg}. Then lct(S) =1/6

Proof. Suppose that the log pair (S, AD) is not log canonical. Let us derive a
contradiction.
It follows from [1] that » = 1. The log pair

(5, lctl(S)Ll)

is not log terminal. But it must be log canonical. The surface S contains a plane
cuspidal cubic curve C' such that O ¢ C. Arguing as in the proof of Lemma 3.6, we
obtain a contradiction. O
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Using the classification of possible singularities of the surface S obtained in [1],
we see that it follows from Lemmas 3.4, 3.5, 3.6, 3.7 and 3.8 that we may assume that

Y= {Ail,...,Ais}

to complete the proof of Theorem 1.4 . We assume that i; < --- < 45 and O is of
type A;_.
LEMMA 3.9. Suppose that ¥ = {As}. Then lct(S) =1/2.
Proof. Suppose that the log pair (S, AD) is not log canonical. Let us derive a
contradiction.
It follows from [1] that » = 6. We may assume that the equivalences
—Kg~Li+ Lo+ Ls~Ls+ Ls+ Lg
hold. The log pairs (S, lct1(S)(L1 + L2 + L3)) and (S,1ct1(S)(La + Ls + Lg)) are log
canonical.
Arguing as in the proof of Lemma 3.4, we see that

LCS (S, /\D) — 0.

Let H be a proper transform on S of a general hyperplane section that contains
O. Then

0<f[-D=3—a1—a2, 2@1—&2:E1-D>O, 2(12—(11:E2'D>O,

which implies that a1 < 2 and ag < 2. There is a point Q € F; U E5 such that the log
pair

(S, A(D+ 1B+ a2E) )
is not log canonical at ). We may assume that @ € E7, and
Li-Ey=Ly Ey=L3- By =Ly Ey=1Ls-Fy=Lg- By =1,
which implies that L1 - By = Ly - Ey = Ly - Fo = Ly - By :7E5 -Ey = Lg - E; =0.
It follows from Remark 2.1 that we may assume that Ly € Supp(D) 2 L4. Then

1—@1:D'E1
1—@2:D'E4

which implies that a1 <1 and a3 < 1

0,
0,

AR\

Suppose that @ € Ey. Then (S, A\D + E;) is not log canonical at Q. We have
2&1—&2:D'E1 >1/>\>2,
by Lemma 2.5. Then a; > 4/3, which is impossible, because a1 < 1. Hence, we see
that Q € Fs. o o
The log pairs (S, AD + E1 + a2 E>) and (S, AD 4 a1 F1 4+ E») are not log canonical
at . Then

2a1—a2:D~E1>1/x\—a2>2—a2,
2a2—a1:D~E2>1//\—a1>2—a1,
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by Lemma 2.5. Then a; > 1 and az > 1. But a; < 1 and az < 1, which is a
contradiction. O

LEMMA 3.10. Suppose that ¥ = {As}. Then lct(S) =1/2

Proof. Suppose that the log pair (X, AD) is not log canonical. Let us derive a
contradiction.
It follows from [1] that » = 5. We may assume that

I_/l'El:EQ-El=L3'E2:E4-E3=L5'E3:1,
which implies that Ls-Ey=Ls-Ey=0 and
.Z/l'EQZLQ'EQZ.El'E3:L2'E3:.Z/4'E2:L5'E2:.Z/4'E1:L5'E1:O.

The inequalities L? = —1 and L; - L; = 0 hold for i # j. We have —Kg ~
Ly + Ly + Ls.
Suppose that there are a line L C S and a rational number p > 1/ such that

D = uL+, where 2 is an effective Q-divisor, whose support does not contain the line
L. Then

2=C-D=pC-L+C-Q>puC-L>2C-L,

where C'is a general conic on the surface S such that the divisor C'+ L is a hyperplane
section of the surface S. Then |LNC| =1and C-L < 1, which implies that L = Ls.
But L3 -C=1.

Arguing as in the proof of Lemma 3.2, we see that LCS(S,AD) = O by Lem-
mas 2.2.

Let H be a general curve in | — Kg — Z?:l E;|. Then

ay + a3z < 3, 2a1 = a2, 2az > a1 + a3, 2a3 = az,

because H - D > 0, F; -D > 0, Es - D> 0, E5 - D> 0, respectively.
We may assume that either L; € Supp(D) or Ls € Supp(D) by Remark 2.1. But
I_/l-Dzl—al, I_/3-D=1—a2,

which implies that either a; < 1 or ag < 1. Similarly, we assume that either az < 1
or as < 1.

We have a1 < 2, a2 < 2, az < 2. There is a point Q € E; U Es U E3 such that
the log pair

(5’, )\(D +a1E1 + axEs + a3E3))

is not log canonical at ). We may assume that Q) € Es.
Suppose that @ ¢ F5. Then (S, AD+ E1) is not log canonical at @, which implies
that

2a1—a2:D~E1>2

by Lemma 2.5. Then a; > 3/2 and as > 1. But either a; <1 or as < 1.
Suppose that @Q € F, N E7. Arguing as in the proof of of Lemma 3.9, we see that

2a1—a2:D-E1>1/)\—a2>2—a2,
2&2—&1—&3:D'E2>1/)\—a1>2—CL1,
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by Lemma 2.5. Then a; > 1 and 2as > 2 + a3, which is impossible.
We see that Q € E2 and Q ¢ E1. Then (S,\D + E») is not log canonical at Q.
We have

2a2—a1—a3=D-E2>1/)\>2,

which implies that a; > 3/2 and as > 2. The obtained contradiction completes
the proof. O

LEMMA 3.11. Suppose that ¥ = {A4}. Then lct(S) =1/3

Proof. Suppose that the log pair (X, AD) is not log canonical. Let us derive a
contradiction.
It follows from [1] that r = 4. We may assume that

Ly -Ey=Ly Ey=L3-FE3=1Ly - Ey =1,
which implies that Ls - By = L3 - Es = L3 - E4 = 0 and
[1Ey=ILoBEy=IL1Ey=ILoE3=IL-Ey=1ILyEy—=1LyFE =1Ly FEy=1L4FEs=0.
We have LCS(S,AD) = O by Lemma 3.1. Let H be a general curve in | — Kg —
!, Eil. Then

3> a1+ a4, 2a1 2 ag, 2a2 = a1 + a3, 2a3 > a2 + a4, 2a4 > as,

because H-D >0,E,-D>0,Ey,-D>0,E3-D >0, E;-D >0, respectively.
One can easily check that the equivalences

—Kg~Li+Ly+ L3 ~2L3+ Ly
hold. Therefore, we may assume that either
Ly Z Supp(D) 2 Ly
or Ly € Supp(D) by Remark 2.1 and Lemma 3.1. But
I_/3-D=1—a3, I_/l-Dzl—al, I_/4-D=1—a4,

which implies that there is a point @ € UL, E; such that the log pair

(5‘, A(D + 24: aiEi))

is not log canonical at the point Q). Arguing as in the proof of Lemma 3.10, we see
that

Q€ E1\ (E1NEy) = 2a1 > as + 3,

Q€ E1NEy = 2a; > 3 and 2as > 3 + ags,

Q € Ex\ ((B1NE3) U(E; N E3)) = 2az > a1 + az + 3,
Q€ EsNE3 = 2as >3+ ay and 2a3 > 3 + ay,

Q € B3\ (B2 N E3) U(E3 N Ey)) = 2a3 > 3+ as + au,
Q€ EsNEy = 2a3 > 3+ as and 2a4 > 3,

Q€ EL\ (EyNEs) = 2a4 >3,
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which leads to a contradiction, because either a3 < 1ora; <1andas <1.0
LEMMA 3.12. Suppose that ¥ = As. Then lct(S) = 1/4.

Proof. Suppose that the log pair (X, AD) is not log canonical. Let us derive a
contradiction. - - -

It follows from [1] that » = 3. We may assume that Ly - F1 = Lo Ey = L3 - By =
1 and

El'EQZEQ'EQZEl'Egzig'Eg:El'E4:E2'E4:El'E5:E2'E3:O

and I_/3 . El = .Eg . E2 = I_/3 . E3 = .Eg ';E5 = 0. Then LCS(S, )\D) =0 by Lemma 3.1.
Let H be a proper transform on S of a general hyperplane section that contains
O. Then

3> a1+as, 2a1 = az, 2a2 = a1 +as, 2as = as+ay, 2a4 = az+as, 2a5 = ay, (313)

becausefl-D}O, EyD}O, Eg-D}O, Eg-D}O, E4-D2O, E5-D2O,
respectively.

We have —Kg ~ 3L3. Thus, we may assume that L3 € Supp(D) by Remark 2.1.
Then

al<5/27 G/2<2, G/3<3/2, (I4<1, a5<5/47

because 1 —ay = L3 - D > 0.
Arguing as in the proof of Lemma 3.10, we see that there is a point Q € U2_, F;
such that
Q € E1\ (B1N E2) = 2a1 > az + 4,
Q€ E1NEs = 2a; >4 and 2a2 > 4+ as,
Q € B2\ ((B1 N E3) U(E; N E3)) = 2az > a1 + az + 4,
Q€ EsNEs = 2as >4+ a; and 2a3 > 4+ aq,
Q€ E3\ (B2 N E3) U(E3NEy)) = 2a3 > 4+ az + au, (3.14)
Q€ EsNEy= 2a3 >4+ as and 2a4 > 4+ as,
Q € Eq\ (EsNEy) U(E4NEs)) = 2a4 > 4+ a3 + as,
Q€ EsNEs = 2a4 >4+ a3 and 2a5 > 4,
Q€ E;\ (E4NE5) = 2a5 > aq + 4.

The inequalities 3.13 and 3.14 imply that either Q = Es N E4 or Q = E4 N E5,
because a4 < 1.

Let H; and Hj be general divisors in | — Kg| that contain L and Ls, respectively.
Then

Hy =L+ Cy, H3 = L3+ Cs,

where C and Cj are irreducible conics such that C1 & Supp(D) 2 Cs. B
Let C; and C5 be the proper transforms of C; and C5 on the surface .S, respec-
tively. Then
2— a5 = Ol . D 5
2 — as = 03 . D

0
0

VoWV

)
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which is impossible due to the inequalities 3.13 and 3.14. O
LEMMA 3.15. Suppose that ¥ = {A1,As}. Then lct(S) = 1/4.

Proof. Suppose that the log pair (X, AD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that » = 2. We have LCS(S,A\D) C ¥ by Lemma 3.1.

Let P be a point in X of type A;. We may assume that P € L;. Then

EQ'El:EQ'EQ:EQ'E:;:EQ'E5:El'EQZEl'EgZEl'E4:E1'E5:O,

and L1 - E1 = Ly - B4 = 1. The equivalence —Kg ~ 3Lo holds;
Suppose that (S, A\D) is not log canonical at P. Let 3: S — S be a blow up of
P. Then

D =p*(—Kg) —mF,

where F' is the §-exceptional curve, D is the proper transform of the divisor D, and
m € Q. Then

0<H-D=(p"(~Ks)—mF)- (8" (- Ks) - F) =3-2m,

where H is general curve in | — Kg — F|. Thus, we have m < 3/2. But m > 2 by
Lemma 2.7.

We see that LCS(S,AD) = O. Let Cy and Cs be general conics on the surface S
such that

Li+Cy~Ly+Cy ~—Kg,

and let C; and Cj be the proper transforms of C; and Cs on the surface S, respectively.
Then

)

2—&1201'[) 0
0,

>
2—a5:C'2-D>

because Cy Z Supp(D) 2 Ca. We may assume that Lo € Supp(D) due to Remark 2.1.
Arguing as in the proof of Lemma 3.12, we obtain the inequalities

3 > a1 +as, 2a1 2= az, 2a2 2 a1 + a3, 2a3 > as + ay,
2a4 2 a3 +as, 2a5 = a4, 22 a2, 2 2 as, 1 > ay,

which imply that there is a point @ € U?_, E; such that the log pair

(S, AD+ i aiE))

is not log canonical at (). Arguing as in the proof of Lemma 3.10, we obtain a
contradiction. 0

LEMMA 3.16. Suppose that ¥ = {A1,A4}. Then let(S) =1/3.

Proof. Suppose that the log pair (X, AD) is not log canonical. Let us derive a
contradiction.
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Let P be a point in ¥ of type A;. We may assume that P € L;.
It follows from [1] that » = 3. Then

I_/l'Elzl,El'EQZI_/l'E3=E1-E4:0,
and we may assume that L3 - E3 = Lo - E; = 1. Then —Kg ~ Ly + 2L5 and

We may assume that either Ls ¢ Supp(D) or L1 € Supp(D) 2 L2 (see Re-
mark 2.1).
Arguing as in the proof of Lemma 3.15, we see that

Lcs(s, )\D) — 0,

and arguing as in the proof of Lemma 3.11, we obtain a contradiction. O
LEMMA 3.17. Suppose that ¥ = {A1,Az}. Then lct(S) =1/2.

Proof. Suppose that the log pair (X, AD) is not log canonical. Let us derive a
contradiction.

Let P be a point in ¥ of type A;. We may assume that P € L;.

It follows from [1] that » = 4 and S contains lines Ls, Lg, L7 such that

Ls>Pelg, O Ly ZP, LsNLs #3, LyNLg # D,
L:NLy# @, Ly N Ly # &, Ly N Lg # 9,

which implies that Ly N L1 = Ly N L3 = Ly N Ly = &. Then
Li+Ls+Ls~Li+Lys+Ls~Ls+Ls+Ly~Ly+2Ly~Lo+Ls+Ly~2Ly+ L7
and —Kg ~ L1 + Ls + Ls. Put

D = p; L +Q,

where p; is a non-negative rational number, and €2; is an effective Q-divisor, whose
support does not contain the line L;. Let us show that that pu; <1/Afori=1,...,7.

Suppose that pe > 1/A. We may assume that L; ¢ Supp(D) by Remark 2.1.
Then

1=1Ly D=Ly (p2Lo+ Q) = paLy - Ly = pa/2 > 1,

which is a contradiction. Similarly, we see that u; < 1/Afori=1,...,7.
Arguing as in the proof of Lemma 3.4, we see that

Lcs(s, )\D) cy,

which implies that LCS(S,AD) = O or LCS(S,AD) = P by Lemma 2.2.
Suppose that LCS(S,AD) = P. Put

D = usLs + peLe + T,

where T is an effective Q-divisor such that Ls & Supp(YT) 2 Lg. Then ps > 0 and
e > 0. But

1=1L7 D=Lz (usLs + peLle + Y) = L7 - (usLs + peLe) = ps + pe,



208 I. CHELTSOV

because we may assume that Ly  Supp(Y). Let 8: S — S be a blow up of the
point P. Then

psLs + pele + Y = B (tsLs + peLle +T) — (us/2 + ps/2 + €)G,

where € is a rational number, G is the exceptional curve of 3, and .Z/5, I/ﬁ, Y are proper
transforms of the divisors Ls, Lg, T on the surface .S, respectively. Then

0< (M5E5+M61~/6+T)ﬁ=3—u5—MG—QE,

where H is a general curve in | — K5 — G|. There is a point Q € G such that the log
pair

(S’, AMusLs + peLe + ) + Mus /2 + pe/2 + e)G)

are not log canonical at (). We have
2—2¢=7T-(Ls+ L¢) >0,
which implies that € < 1. Then it follows from Lemma 2.5 that
2e=Q-G>2

if Q € Ls U Lg, which implies that we may assume that Q € Ls. Then

14 p5/2 —pg —e=Q- Ly >2— ps/2 — pi6/2 — €,
by Lemma 2.5. Thus, we see that us > 1. But

ps < ps + pe <1,

which is a contradiction. The obtained contradiction shows that LCS(S, AD) # P.
We see that LCS(S,A\D) = O. We may assume that

L, Ey=L, E3=Ly Ey=Ly - E3=1L3-Ey=L3-Ey=Ly-E  =Ly-E;=0

and Ly -Fy =Ly-Ey = L3 - E3 =L,- E5 = 1. But the log pair

(8. Teta(S) (211 + Iz) )
has log canonical singularities. Similarly, the log pair

(S, et (S)(La + Ls + Lg))
is log canonical. By Remark 2.1 and Lemma 3.1, we may assume that either
Ly Z Supp(D) 2 Ls

or Lo € Supp(D). Arguing as in the proof of Lemma 3.10, we obtain a contradiction. O

LEMMA 3.18. Suppose that ¥ = {A1,Az}. Then lct(S) = 1/2.

Proof. Suppose that the log pair (X, AD) is not log canonical. Let us derive a
contradiction.
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It follows from [1] that » = 5. We may assume that
El'El:EQ'El:Eg'E2:E4'E2:E5'E2:1
andi1~E2:l_L2-E2:E3-E1:I)4~E1:E5-E1:O.

Let P be a point in X of type A;. We may assume that P € L;.
It follows from [1] that S contains lines Lg, L7, Ls, Lo, L10, L11 such that

P—I.NLgNL;NLs, LoNLg %@, LoN Ly #@,LoN Lg £ &
and Lo N Ly # @, Lo N Ly % @, LygN Ls # @, L1y N Lg # @, L1 N Lg % @. Then
LyZP¢ Ly, Ly ZP & Ls, Le 2O & L7, Ls O & Ly, L1g 2 O & L,
which implies that —Kg ~ Ls + Ly + Ls ~ 2Ly + Ly ~ Ls + Ly + Ls and
—Kg~2L1+Ly~Li+Ls+Ls~Li+Ly+L7~Ly+Ls+ Ls~ Le¢+ L7+ Lg

and —Kg~ L7+ Lg+ Lig~ L¢+ Ls+ L.
Arguing as in the proof of Lemma 3.17, we see that

LCS(S, /\D) — 0.

By Remark 2.1, we may assume that either Ly & Supp(D) or Ly € Supp(D),
because

9L1 + Ly ~ —Kg

and the log pair (S,1ct;(S)(2L1 4+ L2)) has log canonical singularities. Similarly, we
may assume that Supp(D) does not contain at least one of the lines Lz, L4, Ls,
because the equivalence

L3+ Lys+Ls~—Kg
holds. Arguing as in the proof of Lemma 3.9, we obtain a contradiction. O

LEMMA 3.19. Suppose that ¥ = {Aq,...,As} and |X| = 2. Then lct(S) =1/3.

Proof. Suppose that the log pair (X, AD) is not log canonical. Let us derive a
contradiction.
Let P be a point in X such that P # O. We may assume that P € L. Then

—Kg ~3L;.

We may assume that (S, AD) is not log canonical at O by Lemma 3.1, and we
assume that

Ly € Supp(D)

by Remark 2.1 and Lemma 3.1. -

We may assume that L1 N Es # @. Then as < 1, because D - L > 0.

Arguing as in the proof of Lemma 3.9, we see that 3 > a1 + ao,2a1 > a9, 2as >
ai, 1 2 as.
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There is a point Q € E1 U E3 such that the log pair
(S’, /\(D +arEr + GQEQ))
is not log canonical at the point ). Arguing as in the proof of Lemma 3.9, we see

that
Q € E1\ (E1NE2) = 2a1 > az + 3,
Q€ F1NEy; = 2a; > 3 and 2as > 3,
QEEQ\(EQQE1)1>2(12>CL1+3,
which easily leads to a contradiction, because 3 > a1 +as,2a1 > a2,2a2 > a1,1 > a9.O
LEMMA 3.20. Suppose that ¥ = {A1, Az, As}. Then lct(S) = 1/3.

Proof. Suppose that the log pair (X, AD) is not log canonical. Let us derive a
contradiction.

It follows from Lemma 3.1 that LCS(S,AD) C .
Let P # O be a point in ¥ of type As. We may assume that P € L. Then

—Kgs ~ 3L,

which implies that we may assume that L; Z Supp(D) due to Remark 2.1 and
Lemma 3.1.
Arguing as in the proof of Lemma 3.15, we see that

LCS (S, /\D) COUP,

which easily leads to a contradiction (see the proof of Lemma 3.19). O
LEMMA 3.21. Suppose that ¥ = {A1,A1,Az}. Thenlct(S) =1/2.

Proof. Suppose that the log pair (X, AD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that r = 3.

Let P, and P, be points in ¥ of type A;. Then we may assume that P; € Ly and
P, € Ls.

It follows from [1] that S contains lines Ly and Ls such that

PreLy>P,, OLy, PrgLsF Py, LsNY =0,
which implies that Ly N L3 # @, Ls N Ly # @, Ls N Ly =@, Ls N Ly = @. Then
—Kg~IL1+ Lo+ Ly~ Lg+2L1 ~Lg+2Ly~2L3+ L5 ~ 2L+ Ls. (3.22)
Let us show that LCS(S, AD) does not contains the lines Ly, ..., Ls. Put
D = pu; L; + €,

where p; € Q, and Q; is an effective Q-divisor such that L; Z Supp(£2;).
Suppose that g1 > 1/A. Then it follows from the equivalence 3.22 and Remark 2.1
that we may assume that L3z € Supp(D). Therefore, we have

1=Ls-D=Lg- (u1L1+ Q1) > p1Lg- Ly = p1/2 > 1,
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which is a contradiction. Similarly, we see that po < 1/X, pug < 1/A, pa < 1/,
s < 1/A.
Arguing as in the proof of Lemma 3.4, we see that |LCS(S,AD)| =1 and

Lcs(s, AD) >

Suppose that LCS(S,AD) = P;. Let 8: S — S be a blow up of the point P;.
Then

/1*4l~/4 + Q = ﬁ* (M4L4 + Q) — (/L4/2 + E)G,

where G is the exceptional curve of the birational morphism 3, L4 and Q are proper
transforms of the divisors Ly and  on the surface S, respectively, and € is a positive
rational number. Then

0< (u4i4+§~2)fl= (ﬁ*(u4L4+Q) — (M4/2+6)G) . (ﬁ*(—KS) —G) =3 — g — 2,

where H is a general curve in | — K5 — G|. Thus, there is a point P € G such that
the log pair

(S’, pala +Q + (M4/2 + 6)G>

is not log canonical at P. Then 1 — e = Q- i/4 > 0. It follows from Lemma 2.5 that
2e=Q-G>2
in the case when P ¢ L. Therefore, we see that P € L4. Then
l—e=Q0-L,>2— /2 —¢

by Lemma 2.5. Thus, we see that u4 > 2, which is a contradiction.
Similarly, we see that P, & LCS(S,AD). Then LCS(S,AD) = O. We may assume
that

l_/l-El = Lg-Eg = L3-E2 =1, El-Eg = El-E3 = .Z/Q'El = .Z/Q'EQ = Eg-El = Eg-E3 =0.

It follows from the equivalences 3.22 that we may assume that either Ls ¢
Supp(D) or

Ly Z Supp(D) 2 Ly
by Remark 2.1. Arguing as in the proof of Lemma 3.10, we obtain a contradiction. O
LEMMA 3.23. Suppose that ¥ = {A1,A1,As}. Then let(S) =1/2.

Proof. Suppose that the log pair (X, AD) is not log canonical. Let us derive a
contradiction.

It follows from [1] that r = 4.

Let P, # P» be points in X of type A;. Then we may assume that P, € Ly and
P, € Ly.

It follows from [1] that S contains lines Ls, Lg, L7, Lg such that

Prels, BLeLle, PL€EL7>P, OfLg, Py g Lg# Ps,
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which implies that LgﬂL7 }é g, LgﬂLQ }é J, LgﬂLg 7§ o, LQﬂL7 =, L30L7 = J.
Then

Ly+Lys+ Ly ~Lo+20y ~L3+2L4~2L7+ Lg

~Ly+ L3+ Lg~ L1+ L3+ Ls~ Ly+ Lo+ Lg,

and —Kg ~ L1 + Ly + L7. Without loss of generality, we may assume that

Arguing as in the proof of Lemma 3.21, we see that LCS(S,A\D) = O.
By Remark 2.1, we may assume that either Ly ¢ Supp(D) or Ly € Supp(D),
because

2Ly + Ly ~ —Kg ~ 0p3(1)‘5

and the log pair (X,lct;(S)(2L1+L2)) is log canonical, where lcty (S) = 1/2. Similarly,
we may assume that either Ly € Supp(D) or Ly € Supp(D), because —Kg ~ L3+2Ly.
Arguing as in the proof of Lemma 3.9, we obtain a contradiction. O
It follows from [1], that the equalities

2/3 when ¥ = {A },
1/3 when ¥ 2 {A4},
1/3 when ¥ = {4},
1/3 when ¥ 2 {AQ,AQ},
1/4 when ¥ 2 {As5},
1/4 when ¥ = {Ds},
1/6 when ¥ = {E},

1/2 in other cases.

lct(S) = lctl(S) =

are proved for all possible values of the set ¥. Hence, the assertion of Theorem 1.4 is
proved.

4. Fiberwise maps. Let us use the assumptions and notation of Theorem 1.5.
Proof of Theorem 1.5. Suppose that X is log terminal and lct(X) > 1, but p is

not an isomorphism. Let D be a general very ample divisor on Z. Put

A= ‘ —’n,Kv—f—ﬂ'*(’rLD)’, I'= ‘ —nK(/-i-ﬁ'*(TLD) s A:p(A), f:p_l(r),

where 7 is a natural number such that A and I" have no base points. Put

1—¢ 1—¢

r

MV:§A+ T, M—:§]\+ :
n n
where ¢ is a positive rational number.

The log pairs (V, My ) and (V, My) are birationally equivalent, and Ky + My
and Ky + M, are ample. The uniqueness of canonical model (see [3, Theorem 1.3.20])
implies that p is biregular if the singularities of both log pairs (V, My) and (V, My )
are canonical.
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The linear system I' does not have base points. Thus, there is a rational number &
such that the log pair (V, My) is canonical. So, the log pair (V, My') is not canonical.
Then the log pair

(v, x+1=51)

is not log canonical, because A does not have not base points, and I' does not have
base points outside of the fiber X, which is a Cartier divisor on the variety V. The

log pair
1—¢_
(==,
n X

is not log canonical by Theorem 17.6 in [9], which is impossible, because lct(X) > 1.
To conclude the proof we may assume that the varieties X and X have log terminal

singularities, the inequality lct(X) 4 lct(X) > 1 holds, and p is not an isomorphism.
Let A, T, A, T and n be the same as in the previous case. Put

_ let(X) L let(X) _Ei Mo — let(X) iy O let(X) —e

n n n n

r

v

3

where ¢ is a sufficiently small positive rational number. Then it follows from
the uniqueness of canonical model that p is biregular if both log pair (V, My ) and
(V, My;) are canonical.

Without loss of generality, we may assume that the singularities of the log pair
(V, My) are not canonical. Arguing as in the previous case, we see that the log pair

(X, let(X) —e F}){)

n

is not log canonical, which is impossible, because I'|x = —nKx. [
The assertion of Theorem 1.5 is a generalization of the Main Theorem in [10].
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