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1 INTRODUCTION

We will consider the Dirac system

l1 (y) := J
dy (x)

dx
+B (x)y (x) = λA (x)y (x) , x ∈ I, (1.1)

where λ is a complex spectral parameter and I = I1∪ I2, I1 := [0,c), I2 := (c,1], J =
(

0 −1
1 0

)
, y (x)=(

y1 (x)
y2 (x)

)
, A (x) =

(
a (x) c (x)
c (x) b (x)

)
, B (x) =

(
0 p (x)

q (x) 0

)
, A (x) > 0 ( for almost all x ∈ I ); ele-

ments of the matrices A (x) and B (x) are real valued, continuous functions on I and q (1), 1. Equation
(1.1) is the radial wave equation for a relativistic particle in a central field and is of interest in physics
[9]. Spectral properties of (1.1) have been investigated in [22]-[28].

Boundary-value problems with transmission conditions arise in different branches of mathemat-
ics, radio, electronics, geophysics, mechanics, and other fields of natural science and technology
[1]. Discontinuous Sturm-Liouville problems were investigated in [13], [29], [31], [33].

The first general results on completeness property of non-homogeneous string with dissipative
boundary condition was obtained by Krein and Nudelman [14]. The recent publications [19], [16],
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[17], [18] devoted to the questions of completeness and spectral synthesis for general n× n first order
systems of ODE (see also references therein). In [19], [16], [17] it was shown that the completeness
property for some classes of boundary conditions essentially depends on boundary values of the
potential matrix and explicit conditions of the completeness were found. In particular, in [19], an
example of incomplete dissipative 2× 2 Dirac operator was constructed. It was shown in [17],
[18] that the resolvent of any complete dissipative Dirac type operator admits the spectral synthesis.
Moreover, explicit conditions of the dissipativity and completeness of such operators were found. It
is also worth to mention recent papers [4], [5], [6], [7], [8] devoted to the Riesz basis property for
2× 2 Dirac operator (see also references therein). In this paper, using Livsic’s theorem we prove
the system of all eigenfunctions and associated functions of the Dirac operator. A similar way was
employed earlier in the Sturm- Liouville operator case in [2], [3], [11], [12], [30], [32].

To pass from the differential expression l (y) := A−1 (x) l1 (y) (x ∈ I) to operators we introduce
the Hilbert space H1 := L2

A (I; E)
(
E := C2

)
of vector valued functions with values in C2and with the

inner product

〈y,z〉 =

1∫
0

〈A (x)y (x) ,z (x)〉Edx.

Denote by D the linear set of all vectors y ∈ H1 such that y1 and y2 are locally absolutely continuous
functions on I and l (y) ∈ H1. We define the operator L on D by the equality Ly = ly.

For two arbitrary vectors y,z ∈ D, we have Green’s formula

〈Ly,z〉− 〈y,Lz〉 = [y,z]c−− [y,z]0+ [y,z]1− [y,z]c+ (1.2)

where [y,z]x :=Wx[y,z] = y1 (x)z2 (x)− y2 (x)z1 (x).
In H, we consider the dense linear set D′0 consisting of smooth, compactly supported vector-

valued functions on I. Denote by L′0 the restriction of the operator L to D′0. It follows from (1.2) that
L′0 is symmetric. Consequently, it is closable. Its closure is denoted by L0. The operators L0 and L
are called the minimal and maximal operators, respectively [20].

We assume that L0 satisfies the Weyl’s limit circle case.
Denote by

u (x,λ) =
(

u1 (x,λ)
u2 (x,λ)

)
, v (x,λ) =

(
v1 (x,λ)
v2 (x,λ)

)
,

u1 (x,λ) =
{

u11 (x,λ) , x ∈ I1
u12 (x,λ) , x ∈ I2

, u2 (x,λ) =
{

u21 (x,λ) , x ∈ I1
u22 (x,λ) , x ∈ I2

v1 (x,λ) =
{

v11 (x,λ) , x ∈ I1
v12 (x,λ) , x ∈ I2

, v2 (x,λ) =
{

v21 (x,λ) , x ∈ I1
v22 (x,λ) , x ∈ I2

, I1 = [0,c), I2 = (c,1],

the solutions of the equation
l (y) = λy, x ∈ I (1.3)

satisfying the initial conditions

u12 (0,λ) = cosα, u22 (0,λ) = sinα,

v12 (0,λ) = −sinα, v22 (0,λ) = cosα,

and

u11 (c−,λ) = δ1u12 (c+,λ) , u21 (c−,λ) = δ2u22 (c+,λ) ,

v11 (c−,λ) = δ1v12 (c+,λ) , v21 (c−,λ) = δ2v22 (c+,λ) ,
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where δ1, δ2 and α are some real numbers with δ1δ2 , 0
The Wronskian of the two solutions (1.3) doesn’t depend on x, and the two solutions of this

equation are linearly independent if and only if their wronskian is nonzero. It is clear that

Wx[u,v] =W0[u,v] = 1, x ∈ I.

Lemma 1.1. Let [u,v]x = 1 (a ≤ x ≤ b) for some real solutions u (x) and v (x) of equation l (y) =
0. Then, one has the equality

[y,z]x = [y,u]x[z,v]x− [y,v]x[z,u]x, y,z ∈ D. (1.4)

Proof. Since the functions u (x) and v (x) are real valued and [u,v]x = 1 (a ≤ x ≤ b) , we obtain

[y,u]x[z,v]x− [y,v]x[z,u]x = (y1 (x)u2 (x)− y2 (x)u1 (x)) (z1 (x)v2 (x)− z2 (x)v1 (x))

− (y1 (x)v2 (x)− y2 (x)v1 (x)) (z1 (x)u2 (x)− z2 (x)u1 (x))

= y1 (x)u2 (x)z1 (x)v2 (x)− y1 (x)u2 (x)z2 (x)v1 (x)

−y2 (x)u1 (x)z1 (x)v2 (x)+ y2 (x)u1 (x)z2 (x)v1 (x)

−y1 (x)v2 (x)z1 (x)u2 (x)+ y1 (x)v2 (x)z2 (x)u1 (x)

+y2 (x)v1 (x)z1 (x)u2 (x)− y2 (x)v1 (x)z2 (x)u1 (x)

= −y1 (x)u2 (x)z2 (x)v1 (x)− y2 (x)u1 (x)z1 (x)v2 (x)

−y1 (x)v2 (x)z1 (x)u2 (x)+ y1 (x)v2 (x)z2 (x)u1 (x)

+y2 (x)v1 (x)z1 (x)u2 (x)

= (−y1 (x)z2 (x)+ y2 (x)z1 (x)) (u2 (x)v1 (x)−u1 (x)v2 (x))

= [y,z]x.

�

The identity (1.2) is well known for Sturm-Liouville operators.
Since L0 satisfies the Weyl’s limit circle case, u,v ∈ H1, and moreover u,v ∈ D. The solutions

u (x,λ) and v (x,λ) form a fundamental system of (1.3) and they are entire functions of λ ( see [20]) . Let
u (x)= u (x,0) and v (x)= v (x,0) the solutions of the equation l (y)= 0 satisfying the initial conditions

u12 (0) = cosα, u22 (0) = sinα,

v12 (0) = −sinα, v22 (0) = cosα.

Let us consider the functions y ∈ D satisfying the conditions

y1 (0)cosα+ y2 (0)sinα = 0, (1.5)

[y,u]1−h[y,v]1 = 0, (1.6)

y1 (c−) = δ1y1 (c+) (1.7)

y2 (c−) = δ2y2 (c+) (1.8)

where =mh > 0, α ∈ R.
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2 Preliminaries

Let A denote the linear non-selfadjoint operator in the Hilbert space with domain D (A) . A complex
number λ0 is called an eigenvalue of the operator A if there exists a non-zero element y0 ∈ D (A) such
that Ay0 = λ0y0; in this case, y0 is called the eigenvector of A for λ0. The eigenvectors for λ0 span a
subspace of D (A) , called the eigenspace for λ0.

The element y ∈ D (A) , y , 0 is called a root vector of A corresponding to the eigenvalue λ0 if
(T −λ0I)n y = 0 for some n ∈ N. The root vectors for λ0 span a linear subspace of D (A) , is called
the root lineal for λ0. The algebraic multiplicity of λ0 is the dimension of its root lineal. A root
vector is called an associated vector if it is not an eigenvector. The completeness of the system of
all eigenvectors and associated vectors of A is equivalent to the completeness of the system of all
root vectors of this operator.

An operator A is called dissipative if =m 〈Ax, x〉 ≥ 0, (∀x ∈ D (A)) . A bounded operator is dissi-
pative if and only if

=m A =
1
2i

(
A−A∗

)
≥ 0.

Let A be an arbitrary compact operator acting in the Hilbert space H. Let
{
µ j (A)

}
be a sequence

of all nonzero eigenvalues of A arranged by considering algebraic multiplicity and with decreasing
modulus, where ν (A) (≤∞) is a sum of algebraic multiplicities of all nonzero eigenvalues of A.
If A is a nuclear operator, then

∑ν(A)
j=1

∣∣∣µ j (A)
∣∣∣ < +∞ and if A is a Hilbert - Schmidt operator, then∑ν(A)

j=1

∣∣∣µ j (A)
∣∣∣2 < +∞. We will denote the class of all nuclear and Hilbert - Schmidt operator in H by

σ1 and σ2, respectively. If A ∈ σ1, then
∑ν(A)

j=1 µ j (A) is called the trace of A and is denoted by spA.
The determinant

det (I−µA) =
ν(A)∏
j=1

[
I−µµ j (A)

]
, A ∈ σ1

is called the characteristic determinant of A and is denoted by DA (µ) . DA (µ) is an entire function
of µ.

For any A ∈ σ2, the product

D̃A (µ) =
ν(A)∏
j=1

[
I−µµ j (A)

]
eµµ j(A) (2.1)

is also an entire function of µ, called the regularized characteristic determinant of A.
If the operator I − µA has a bounded inverse defined on the whole space H, then the complex

number µ is called an F -regular point (regular in the sense of Fredholm) for A.
Let A and B be linear bounded operators in H and A− B ∈ σ1. If the point µ is an F -regular

point of B, then
(I−µA) (I−µB)−1 = I−µ (A−B) (I−µB)−1

where µ (A−B) (I−µB)−1 ∈ σ1. Consequently, the determinant

DA/B (µ) = det
[
(I−µA) (I−µB)−1

]
makes sense and is called the determinant of perturbation of the operator B by the operator K =
A−B.
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Theorem 2.1 ([10, p.172]). If A, B ∈ σ2, A−B ∈ σ1 and µ is an F -regular point of B, then

DA/B (µ) =
D̃A (µ)

D̃B (µ)
eµsp(B−A).

Theorem 2.2 ([10, p.177]). If A and B are bounded dissipative operator and A− B ∈ σ1, then for
any β0 ∈

(
0, π2

)
, the limit

lim
ρ→∞

ln
∣∣∣∣DA/B

(
ρeiβ

)∣∣∣∣
ρ

= 0

converges uniformly in β on the interval
(
π
2 −β0,

π
2 +β0

)
.

Definition 2.3. Let f be an entire function. If for each ε > 0 there exists a finite constant Cε > 0,
such that

| f (λ) | ≤Cεeε|λ|, λ ∈ C (2.2)

then f is called an entire function of order ≤ 1 of growth and minimal type.

From (2.2), it is clear that

lim
|λ|→∞

sup
1
|λ|

ln | f (λ) | ≤ 0. (2.3)

It is known that each function f , having properties (2.2) and f (0) = −1, has the representation

f (λ) = − lim
r→∞

∏
|λ j|≤r

(
1−

λ

λ j

)
, (2.4)

and also the limit limr→∞
∏
|λ j|≤r

1
λ j

exists and is finite [12], [21], [34].

Theorem 2.4 (Livšic [10, p.226]). Let A be compact dissipative operator on H and let A=m ∈

σ1 where A=m =
1
2 (A−A∗). The system of all root vectors of A be complete in H, if and only if

ν(A)∑
j=1

=mµ j (A) = spA=m .

3 Main Results

In this section, let us define a Hilbert space and an operator whose root vectors coincide with those
of problem (1.3)-(1.8).

Let H be the Hilbert space H :=
{

y (x) =
(

y1 (x)
y2 (x)

)
: y1 (x) , y2 (x) ∈ H1

}
. The inner product of

H is defined by

〈y (.) ,z (.)〉H :=

c∫
0

yT (x)z (x)dx+δ1δ2

1∫
c

yT (x)z (x)dx

where T denotes the matrix transpose, y (x) =
(

y1 (x)
y2 (x)

)
, z (x) =

(
z1 (x)
z2 (x)

)
∈ H, yi (.) ,zi (.) ∈ H1, i =

1,2.
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Let us adopt the notations:

S − (y) : = [y,u]1−h[y,v]1,

S + (y) : = y1 (0)cosα+ y2 (0)sinα,

S 1 (y) : = y1 (c−)−δ1y1 (c+) ,

S 2 (y) : = y2 (c−)−δ2y2 (c+) .

We construct the operator A : H→ H with domain

D (A) :=
{

f ∈ H : f ∈ ACloc (I) , f (c±) one sided limit exists and are finite,
l (y) ∈ H, S − ( f ) = 0, S + ( f ) = 0, S 1 ( f ) = 0,S 2 ( f ) = 0, Ay = l (y)

}
.

Thus, we can pose the boundary-value problems (1.3)-(1.8) in H as Ay = λy, y ∈ D (A) . It is clear
that the eigenvalues and root lineals A and L coincide.

Let ψ (x,λ) =
(
ψ1 (x,λ)
ψ2 (x,λ)

)
,

ψ1 (x,λ) =
{
ψ11 (x,λ) , x ∈ I1
ψ12 (x,λ) , x ∈ I2

, ψ2 (x,λ) =
{
ψ21 (x,λ) , x ∈ I1
ψ22 (x,λ) , x ∈ I2

be solutions of (1.1) given in the introduction. Let us define ω1 (λ) := W[ψ1,v1]x (x ∈ I1) and
ω2 (λ) :=W[ψ2,v2]x (x ∈ I2) . If we set ω := ω1 = δ1δ2ω2, then ω becomes an entire function that
its zeros coincide with the eigenvalues of the operator A. So A has discrete spectrum and possible
limit points can only at infinity.

We set z (x) =
(

z1 (x)
z2 (x)

)
where

z1 (x) =
{

z11 (x) , x ∈ I1
z12 (x) , x ∈ I2

, z2 (x) =
{

z21 (x) , x ∈ I1
z22 (x) , x ∈ I2

,

z11 (x) = u11 (x)−hv11 (x) , (x ∈ I1) ,

z12 (x) = u12 (x)−hv12 (x) , (x ∈ I2) ,

z21 (x) = u21 (x)−hv21 (x) , (x ∈ I1) ,

z22 (x) = u22 (x)−hv22 (x) , (x ∈ I2) .

It is clear that the solution z (x) satisfies both transmission conditions (1.7), (1.8) and the bound-
ary condition (1.6). Similarly, the solution v (x) satisfies the boundary condition (1.5) and both
transmission conditions (1.7), (1.8).

It is clear that

[y,z]x = [y,u]x[z,v]x− [y,v]x[z,u]x (x ∈ I1) , (3.1)

[y,z]x = δ1δ2 ([y,u]x[z,v]x− [y,v]x[z,u]x) (x ∈ I2) .

Theorem 3.1. The operator A is dissipative in H.

Proof. Let η ∈ D, then by Lagrange identity we get

〈Aη,η〉− 〈η,Aη〉 = [η,η]c−− [η,η]0+δ1δ2[η,η]1−δ1δ2[η,η]c+. (3.2)
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Since η0 ∈ D, we have
[η,η]0 = 0, [η,η]c− = δ1δ2[η,η]c+ (3.3)

From Lemma 1,

[η,η]1 = δ1δ2 ([η,u]1[η,v]1− [η,v]1[η,u]1)

= δ1δ22i=mh ([η,v]1)2 . (3.4)

From (3.3) and (3.4)
=m 〈Aη,η〉 = (δ1δ2)2=mh ([η,v]1)2 , (3.5)

and so A is dissipative in H. �

It follows from Theorem 4, all the eigenvalues of A lie in the closed upper half plane =mλ ≥ 0.

Theorem 3.2. The operator A has not any real eigenvalue.

Proof. Suppose that the operator A has a real eigenvalue λ0. Let η0 (x) = η (x,λ0) be the correspond-
ing eigenfunction. Since =m (Aη0,η0)) = =m

(
λ0 ‖η0‖

2
)
, we get from (3.5) that [η0,v]1 = 0. By the

boundary condition (1.6), we have [η0,u]1 = 0. Thus

[η0 (x,λ0) ,u]1 = [ξ0 (x,λ0) ,v]1 = 0. (3.6)

From Lemma 1 with ξ0 (x) = ξ (x,λ0) ,

1 = δ1δ2[η0, ξ0]1 = [η0,u]1[ξ0,v]1− [η0,v]1[ξ0,u]1.

By the equality (3.6), the right -hand side is equal to 0. This contradiction proves the theorem. �

From Theorem 5, there exist the inverse operator A−1. We shall find the operator A−1. For
y ∈ D (A) , the equation Ay = f (x) is equivalent to he non homogeneous differential equation

l (y) = f (x) , x ∈ I

subject to the boundary conditions

y1 (0)cosα+ y2 (0)sinα = 0,

[y,u]1−h[y,v]1 = 0,

y1 (c−) = δ1y1 (c+)

y2 (c−) = δ2y2 (c+)

where f (x) =
{

f1 (x) , x ∈ I1
f2 (x) , x ∈ I2

, f (x) ∈ H, δ1δ2 > 0.

Let

G (x, t) =
{

v (x)zT (t) , 0 ≤ t ≤ x ≤ 1, x , c, t , 0
v (t)zT (x) , 0 ≤ x ≤ t ≤ 1, x , c, t , 0

(3.7)

where T denotes the matrix transpose. Then we have

y (x) = 〈G (x, t) , f 〉H ,

where f (x) =
{

f1 (x), x ∈ I1

f2 (x), x ∈ I2
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The integral operator K defined by the formula

K f = 〈G (x, t) , f (t)〉H ( f ∈ H) (3.8)

is a compact linear operator in the space H. K is a Hilbert Schmidth operator. It is evident that K =
A−1. Consequently the root lineals of the operator A and K coincide and, therefore, the completeness
in H of the system of all eigenvectors and associated vectors of A is equivalent to the completeness of
those for K. Since the algebraic multiplicity of nonzero eigenvalues of a compact operator is finite,
each eigenvector of A may have only a finite number of linear independent associated vectors.

Let

τ1 (λ) : = [ϕ1 (x,λ) ,u1 (x)]1,

τ2 (λ) : = [ϕ1 (x,λ) ,v1 (x)]1, (3.9)

τ (λ) : = τ1 (λ)−hτ2 (λ) .

It is clear that
σp (A) = {λ : λ ∈ C, τ (λ) = 0}

where σp (A) denotes the set of all eigenvalues of A. Since for arbitrary b (c ≤ b < 1) , the function
ϕ1 (b,λ) is entire function of λ of order ≤ 1 (see [15]), consequently, τ (λ) have the same property.
Then τ (λ) is entire functions of the order ≤ 1 of growth, and of minimal type.

Since z (x) = u (x)− hv (x) , setting h = h1 + ih2 (h1,h2 ∈ R), we get from (3.8) in view of (3.7)
that K = K1+ iK2, where

K1 f = 〈G1 (x, t) , f (t)〉, K2 f = 〈G2 (x, t) , f (t)〉

and

G1 (x, t) =
{

v (x) [u (t)−h1v (t)], 0 ≤ t ≤ x ≤ 1, x , c, t , 0
v (t) [u (x)−h1v (x)], 0 ≤ t ≤ x ≤ 1, x , c, t , 0

G2 (x, t) = −h2v (x)v (t) , h2 = =mh > 0.

The operator K1 is the self-adjoint Hilbert–Schmidt operator in H, and K2 is the self-adjoint one
dimensional operator in H.

Let A1 denote the operator in H generated by the differential expression l and the boundary
conditions

y1 (0)cosα+ y2 (0)sinα = 0,

[y,u]1−h1[y,v]1 = 0,

y1 (c−) = δ1y1 (c+)

y2 (c−) = δ2y2 (c+)

where δ1δ2 > 0.
It is easy to verify that K1 is the inverse A1.

Let T = −K and T = T1 + iT2, where T1 = −K1, T2 = −K2. We will denote by λ j and γk the
eigenvalues of the operators A and A1, respectively. Then the eigenvalues of T are −1

λ j
and the

eigenvalues of T1 are −1
γk
. =mγk = 0 for all k, since L1 is a self-adjoint operator.

Theorem 3.3.
∑

j=m
(
−1
λ j

)
= spT2.
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Proof. Let A = T1 and B = T. Substituting this in the Theorem 1, we obtain

DT1/T (µ) =
D̃T1 (µ)

D̃T (µ)
eµspT2 , (3.10)

and by (2.1) we get

D̃T (µ) =
∏

j

(
1+

µ

λ j

)
e
−

µ
λ j , D̃T1 (µ) =

∏
k

(
1+

µ

γk

)
e−

µ
γk .

We set
τ (µ) := τ1 (µ)−hτ2 (µ) , Γ (µ) := τ1 (µ)−h1τ2 (µ) ,

where the functions τ1 (µ) and τ2 (µ) are defined by (3.9). The eigenvalues of K and K1 coincide with
the root of functions τ (µ) and Γ (µ) , respectively. The functions τ (µ) and Γ (µ) are entire functions
of order ≤ 1 of growth and minimal type and τ (0) = Γ (0) = −1. Then

τ (µ) = −
∏

j

(
1+

µ

λ j

)
, Γ (µ) = −

∏
k

(
1+

µ

γk

)
,

by (2.3). So

D̃T (µ) = −τ (−µ)e
−µ

∑
j

(
1
λ j

)
, D̃T1 (µ) = −Γ (−µ)e

−µ
∑

k

(
1
γk

)
,

and from 3.10) we find

DT1/T (µ) =
Γ (−µ)
τ (−µ)

.
e
−µ

∑
k

(
1
γk

)

e
−µ

∑
j

(
1
λ j

) eiµspT2 .

Putting here µ = it (t > 0) , then we get

1
t

ln
∣∣∣DT1/T (it)

∣∣∣ = 1
t

ln |Γ (−it)| −
1
t

ln |τ (−it)| −
∑

j

=m
(

1
λ j

)
− spT2. (3.11)

From (2.3) and Theorem 2 we obtain that

lim
t→∞

1
t

ln
∣∣∣DT1/T (it)

∣∣∣ = 0, (3.12)

lim
t→∞

sup
1
t

ln |Γ (−it)| ≤ 0, (3.13)

lim
t→∞

sup
1
t

ln |τ (−it)| ≤ 0. (3.14)

On the other hand, taking into consideration that for t > 0,∣∣∣∣∣∣1+ it
λ j

∣∣∣∣∣∣2 = 1+2t
=mλ j∣∣∣λ j

∣∣∣2 + t2∣∣∣λ j
∣∣∣2 ≥ 1,

∣∣∣∣∣1+ it
γk

∣∣∣∣∣2 = 1+
t2

|γk|
2 ≥ 1,

we have |Γ (−it)| ≥ 1, |τ (−it)| ≥ 1 for all t > 0. Consequently,

1
t

ln |Γ (−it)| ≥ 0,
1
t

ln |τ (−it)| ≥ 0,
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and from (3.13)-(3.14) it follows that

lim
t→∞

sup
1
t

ln |Γ (−it)| = lim
t→∞

sup
1
t

ln |τ (−it)| = 0. (3.15)

Hence we get, by (3.11), (3.12), (3.15) that∑
j

=m
(
−1
λ j

)
= spT2.

�

Theorem 3.4. The system of all root vectors of the dissipative operator T (also of K ) is complete
in H.

Proof. From Theorem 6, the operator T carries out all the conditions of Livšic’s theorem on com-
pleteness. �
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