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1 Introduction

In 1978, Aurel Bejancu initiated the study of CR-submanifolds of Kaehler manifold [5]. Later
on, many geometers (see [13], [21], [14]) studied CR-submanifolds of different ambient spaces.
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In 1985, Oubina [15] introduced a new class of almost contact metric manifold known as trans-
Sasakian manifold. M. H. Shahid [18] and Al-Solamy [4] studied the geometry of CR-submanifolds
of trans-Sasakian and nearly trans-Sasakian manifold [12] respectively. In 1976, Upadhyay and
Dube [20] introduced the notion of almost contact hyperbolic (f, g, 17, £)-structure. Some proper-
ties of CR-submanifolds of trans-hyperbolic Sasakian manifold were studied in [7] and [11]. CR-
submanifolds of nearly trans-hyperbolic Sasakian manifold is a more general concept. In 2010,
Cihan Ozgiir [16] studied the submanifolds of Riemannian manifold with semi-symmetric non-
metric connection. Moreover, Ozgiir et al. also studied the different structures with semi-symmetric
non-metric connection in [17] and [2]. Some properties of semi-invariant submanifolds, hypersur-
faces and submanifolds with semi-symmetric non-metric connection were studied in [1], [2] and
[9]. Thus motivated sufficiently from the studies referred above in the present paper, we plan to
study the CR-submanifolds of nearly trans-hyperbolic Sasakian manifolds with a semi-symmetric
non-metric connection.

We know that a linear connection V on a manifold M is called metric connection if Vg = 0,
otherwise, it is non-metric. Further it is said to be a semi-symmetric linear connection [10] if its
torsion tensor 7'(X, Y), is

T'(X,Y) =n)X -nX)Y,

where 77 is a 1-form. Further, the study of semi-symmetric connection on Riemannian manifold
was enriched by K. Yano [22], Agashe and Chaffle [3]. It is well known that a linear connection is
symmetric and metric if and only if it is the Levi-Civita connection.

Semi-symmetric metric connection plays an important role in the study of Riemannaian man-
ifolds. There are various physical problems involving the semi-symmetric metric connection. For
example, if a man is moving on the surface of the Earth always facing one definite point, say Mekka
or Jaruselam or the North pole, then this displacement is semi-symmetric and metric [19].

This paper is organized as follows. In section 2, we give a brief introduction of nearly trans-
hyperbolic Sasakian manifold. In section 3, we have prove some basic lemmas on nearly trans-
hyperbolic Sasakian manifold with a semi-symmetric non-metric connection. In section 4, we dis-
cuss parallel distributions and in section 5, we obtain the integrability conditions of distributions on
CR-submanifolds.

2 Preliminaries

Let M be an almost hyperbolic contact metric manifold [8] with an almost hyperbolic contact metric
structure (¢, &,n, g), where ¢ is a (1,1) tensor field, £ is a vector field, 7 is a 1-form and g is a
compatible Riemannian metric such that

¢* =1 -n®¢, ¢ =0, nog = 0, (&) = -1 @2.1)
89X, ¢Y) = —g(X,Y) — n(X)n(Y), (2.2)
g(X,9Y) = —g(¢X, ), g(X, &) = n(X). (2.3)

An almost hyperbolic contact metric structure (¢, £, 7, g) on M is called trans-hyperbolic Sasakian
[7] if and only if

(Vxg)(¥) = a(g(X, V)& = n(Y)¢X) + B(dX, V)E = 1(Y)pX) 2.4
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for all X, Y tangent to M, « and 8 are smooth functions on M. On a trans-hyperbolic Sasakian
manifold M, we have

Vxé = —a(@X) + BX — (X)), (2.5)

where g is the Riemannian metric and V is the Riemannian connection. Further, an almost hyper-
bolic contact metric manifold M on structure (¢, &, 7, g), is called nearly trans-hyperbolic Sasakian
if [14]

(Vx$)(Y) + (Vyd)(X) = a2g(X, Y)E — n(Y)$X — n(X)pY) — Bu(Y)$X + n(X)pY). (2.6)

Let M be an m-dimensional isometrically immersed submanifold of nearly-hyperbolic Sasakian
manifold M. We denote by g the Riemannian metric tensor field on M as well as on M.

Definition 2.1. [7] An m-dimensional Riemannian submanifold M of an almost trans-hyperbolic
Sasakian manifold M is called a CR-submanifold if £ is tangent to M and there exists differentiable
distribution D : x € M — D, C T, (M) such that

(i) the distribution D, in invariant under ¢, that is D, C Dy, for each x € M,

(i) the complementary orthogonal distribution D* : x — Dy C T (M) of the distribution D on
M is anti-invariant under ¢, that is D5 (M) C T;-(M) for all x € M, where T(M) and T(M)
are tangent space and normal space of M at x € M respectively.

If dimD*+ = 0 (resp. dimD, = 0), then CR-submanifold is called an invariant (resp. anti-
invariant). The distribution D (resp. D*) is called horizontal (resp. vertical) distribution. The pair
(D, D*) is called &-horizontal (resp. &-vertical) if €, € Dy (resp. & € D*) for x € M.

For any vector field X tangent to M, we write
X = PX + 0X, 2.7
where PX and QX belong to the distributions D and D* respectively.
For any vector field N normal to M, we put
¢N = BN + CN, (2.8)

where BN (resp. CN) denotes the tangential (resp. normal) component of ¢N. Now, we remark that
owing to the existence of the 1-form 7, we can define a semi-symmetric non-metric connection V in
almost hyperbolic contact metric manifold by

VxY = VyY + n(N)X, (2.9)

where V is the Riemannian connection with respect to g on n-dimensional Riemannian manifold
and 7 is a 1-form associated with the vector field £ on M defined by

nX) = g(X, ). (2.10)

The torsion tensor T of the connection V is given by [3]

T(X,Y)=VxY - VyX - [X,Y]. (2.11)
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Also, we have
T(X,Y) = ()X - n(X)Y. 2.12)

A linear connection V, satisfying (2.12) is called a semi-symmetric connection. V is called a metric
connection if Vg = 0, otherwise, it is said to be non-metric connection. Furthermore, from (2.9), it
is easy to see that

Vxg(Y.Z) = (Vxg)(Y,Z) + g(Vx Y, Z) + g(Y,VxZ)

= (Vxe)(Y,2) + Vxg(Y,Z) + n(Y)8(X, Z) + n(Z)g(X. Y)

which implies
(Vx)(Y,Z) = n(Y)g(X, Z) = n(Z)g(X, Y) (2.13)

for all vector fields X, ¥, Z, on M. Therefore, in view of (2.12) and (2.13), V is a semi-symmetric
non-metric connection. Using (2.4) and (2.9), we get

(Vx)(Y) = a(g(X, V)é = n(Y)pX) + B(g(¢X, Y)é — n(Y)¢X) — n(Y)$X. (2.14)

Similarly, we have

(Vy®)(X) = a(g(Y, X)& = n(X)Y) + B(g(pY, X)é = n(X)¢pY) — n(X)$Y. (2.15)

On adding the two equations above, we obtain

(Vx) () + (Vyd)(X) = a2g(X, Y)E — (a + B+ D(Y)$X + n(X)$Y) (2.16)

This is the condition for an almost hyperbolic contact structure (¢, &, 7, g) with a semi-symmetric
non-metric connection to be nearly trans-hyperbolic Sasakian manifold. From (2.9) and (2.5), we
get

Vxé = —a(¢X) - Bm(X)é) + (B - DX. (2.17)

Let V be the semi-symmetric non-metric connection on M and V be the induced connection on M
with respect to the unit normal N. Now we have the following theorem:

Theorem 2.2. The connection induced on CR-submanifolds of a nearly trans-hyperbolic Sasakian
manifold with a semi-symmetric non-metric connection is also a semi-symmetric non-metric con-
nection.

Proof. Let V be the induced connection with respect to the unit normal N on a CR-submanifolds of
a nearly trans-hyperbolic Sasakian manifold with semi-symmetric non-metric connection V. Then

VxY = VxY + m(X,Y), (2.18)

where m is a tensor field of type (0, 2) on the CR-submanifold M. Let V* be the induced connection
on CR-submanifolds from Riemannian connection V, then

VxY = ViY + h(X,Y), (2.19)

where £ is a second fundamental tensor. By the definition of the semi-symmetric non-metric con-
nection, we have B
VxY = VxY + n(Y)X.
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Using (2.18) and (2.19), we get

VxY +m(X,Y) = Vi Y + h(X,Y) + n(Y)X.
Equating the tangential and normal components from both sides of the above equation, we obtain
m(X,Y) = h(X,Y)

and consequently, we have
VxY = ViY + n(Y)X.

Thus V is also a semi-symmetric non-metric connection. O
Now, the Gauss formula for a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold
with semi-symmetric non-metric connection is

VxY = VxY + h(X,Y) (2.20)
and the Weingarten formula for M is given by
VxN = —AyX + VxN (2.21)

forany X,Y € TM, N € T*M and h (resp. Ay) is the second fundamental form (resp. tensor) of M
in M and V+ denotes the normal connection. Moreover, we have [6]

g(h(X,Y),N) = g(AnX, Y). (2.22)

3 Some Basic Lemmas

First we prove the following lemmas.

Lemma 3.1. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold M with a
semi-symmetric non-metric connection. Then

P(Vx¢PY) + P(Vy¢PX) — P(ApoxY) — P(ApovX) = ¢PVxY + ¢pPVy (3.1)
+208(X, Y)P¢ — (@ + B+ Dn(X)pY — (a + B+ Dn(Y)¢PX,
Q(Vx¢PY) + Q(VypPX) — O(ApoxY) — O(AgorX) = 2Bh(X,Y) + 2ag(X, Y)Q¢, (3.2)
h(X, pPY) + h(Y, pPX) + V3¢ QY + V;QX = ¢OVyX + ¢OQVxY (3.3)
+2Ch(X,Y) — (@ + B+ Dn(X)¢QY — (@ + B+ Dn(Y)p0OX
forany X,Y € TM.

Proof. By direct covariant differentiation, we have
VxpY = (Vx$)Y + ¢(VxY).
By the virtue of (2.7), (2.10),(2.20) and (2.21), we get
Vx@PY + h(X, pPY) — Apor X + VydQY — ¢(VxY + h(X,Y))

+Vy$PX + h(Y, PX) — AgoxY — VidOX — ¢(VyX + h(X, Y))
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= a(28(X, Y)é = (a + B + DH(n(X)¢Y + 1n(Y)pX).
Again using (2.7), we get

P(Vx¢PY) + P(Vy¢PX) — P(A;QXY) — P(A4,QYX) (3.4)
$PVxY — $PVyX + Q(Vx$PY) + Q(VydPX) — Q(As0XY)
~Q(AyQYX) - 2Bh(X, Y) + h(X, pPY) + h(Y,pPX) + V56QY + V5 OX
—pOVyX — ¢VxY = 2Ch(X,Y) = 2a((g(X, Y))P¢ + 2a((g(X, ¥)) O¢

(@ +B+ DnX)¢pQY — (a + B+ Dn(Y)¢pQX — (a + B + Dn(X)¢PY — (a + B+ Dn(Y)¢PX

forX, Y e TM.
Now equating horizontal, vertical and normal components in (3.4), we get the desired results. O

Lemma 3.2. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold M with a
semi-symmetric non-metric connection. Then

2(VxP)Y = Vx@Y = VydX + h(X, ¢Y) — h(Y,6X) — $[X, Y] (3.5

+2a(8(X, Y)$) — (@ + B+ D((Y)pX + n(X)¢Y)
for X,Y € D.

Proof. From Gauss formula (2.20), we have
Vx@Y — Vy¢pX = VxoY + (X, ¢Y) — Vy¢pX — h(Y, $X). (3.6)

Also, we have
VxoY = VyoX = (Vxd)Y — (Vy$)X + ¢[X, Y]. (3.7

From (3.6) and (3.7), we get
(Vx)Y — (Vy$)X = VxpY + h(X, ¢Y) — VypX (3.8)

—h(Y,¢X) — ¢[X, Y].

Also for nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection,
we have

(Vx)Y + (VygX) = 2a(g(X, Y)é) (3.9)
—(a+ B+ D((X)¢Y + n(Y)pX).
Adding (3.8) and (3.9), we get

2(VxP)Y = Vx@Y = VydX + h(X, ¢Y) — h(Y, X) - $[X, Y]

#2a(g(X, 1)E) - (@ + B+ DONY)X + n(X)eY).
Subtracting (3.8) from (3.9), we get
2(Vy$)X = 2a(g(X, Y)é) = (@ + B+ D(V)$X + n(X)¢Y) (3.10)
—VxoY + VyodX — h(X, ¢pY) + h(Y, pX) + [ X, Y].

Hence lemma is proved. O
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Lemma 3.3. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold M with a
semi-symmetric non-metric connection. Then

UVyB)Z = AgyZ — ApZY + V5 Z — VigY — $[X, Y] (3.11)

+2a(g(Y, 2)¢) — (a + B+ DY((Y)PZ + n(Z)$Y)
forany X,Y € D*.

Proof. From Weingarten fromula (2.21), we have
Vz¢Y — VydZ = ApYZ — ApZY + \%+ y9Z — \' 7oY. (3.12)

Also we have
V2pY = Vy¢Z = (Vy$)Z — (Vz9)Y + ¢[Y, Z]. (3.13)

From (3.11) and (3.12), we get
(Vy®)Z — (Vz9)Y = ApYZ — ApZY + Vy¢Z — V;¢Y — ¢[Y, Z]. (3.14)

Also for nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection,
we have

(Vy®Z + (Vz9)Y = 2a(g(Y, 2)€) — (a + B+ D((Y)PZ + n(Z)$Y). (3.15)
Adding (3.13) and (3.14), we get

2(Vy$)Z = AgYZ — ApZY + Vy¢Z — V,¢Y — ¢V, Z]
+2a(8(Y, 2)¢) = (a + B + D((Y)PZ + n(Z)¢Y).
Subtracting (3.13) and (3.14), we obtain
2(Vz®)Y = —AgYZ — ApZY — Vy¢Z + V5¢Y + ¢[Y, Z]
+2a(8(Y,2)¢) — (a + B+ Dm(Y)PZ + n(Z)¢Y).
This proves our assertion. O

Lemma 3.4. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold M with a
semi-symmetric non-metric connection. Then

2TxP)Y = —AyYX + VY + VydX — h(Y, $X) — ¢[X, Y]
+2a(g(X, Y)E) — (a + B+ D(n(X)pY + n(Y)pX),
2Tyd)X = ApYX — VoY + VyoX + h(Y, $X) + ¢[X, Y]

+2a(g(X, Y)§) — (a + B+ D((X)9Y + n(Y)pX)
forany X € D and Y € D*.
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Proof. Using Gauss and Weingarten eqautions for X € D and Y € D* respectively, we get
Vx¢Y — VypX = —ApyX + VY — VydX — h(Y, pX). (3.16)

Also, we have
Vx¢Y — VyoX = (Vx¢)Y — (Vy)X + ¢[X, Y. (3.17)

From (3.15) and (3.16), we get
(Vx9)Y — (Vy@)X = —Apy X + VY — VypX (3.18)

—h(Y, ¢X) - ¢[X, Y].

Moreover, for nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric con-
nection, we have

(Vx®)Y + (Vy$)X = 2a(g(X, Y)§) — (@ + B+ D)((Y)$X + n(X)¢Y). (3.19)
Adding (3.17) and (3.18), we obtain
2(VxP)Y = 2a(8(X, V)é) - (@ + B+ D((X)$Y +n(Y)pX) (3.20)
—ApYX + VY — VyoX — h(Y, $X) — $[X, Y].
Subtracting (3.16) and (3.18), we get
2(Vy$)X = 2a(8(X, V)é) — (@ + B+ D(X)$Y + n(Y)pX) (32D

+ApYX = Vx@Y + VydX + h(Y, $X) + ¢[X, Y].

Hence Lemma is proved. O
4 Parallel Distributions

Definition 4.1. [7] The horizontal (resp. vertical) distribution D (resp. D*) is said to be parallel
with respect to the semi-symmetric non-metric connection on M, if VxY € D (VzW € D*) for any
vector field X, Y € D (resp. W,Z € D).

Proposition 4.2. [14] Let M be a &é-vertical CR-submanifold of neraly trans-hyperbolic Sasakian
manifold M with a semi-symmetric non-metric connection. If the horizontal distribution D is paral-
lel, then

h(X, ¢Y) = h(Y, $X) 4.1

forall X, Y € D.

Proof. From equation (2.9) and using the parallelism of horizontal distribution D, as
VxY = VxY + n(Y)X, (4.2)

VxY € D if and only if %XY € D, and from [14] Proposition 1, this happens if and only if A(X, ¢Y) =
h(Y,¢X) forany X, Y € D. O
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Proposition 4.3. [14] Let M be a &-vertical CR-submanifold of nearly trans-hyperbolic Sasakian
manifold M with semi-symmetric non-metric connection. If the distribution D* is parallel with
respect to the connection V on M, then

AgYZ + AyZY € D*, 4.3)

forany Y,Z € D*.

Proof. From equation (2.9) and using the parallelism of horizontal distribution D*, as
VxY = VxY + n(Y)X,

VxY € D*, if and only if VxY € D*, that is D* is parallel for V and V, is also hold from [14]
Proposition 1, then AyYZ + AyZY € D*, forany ¥, Z € D*.
O

Definition 4.4. [7] A CR-submanifold of a manifold with a semi-symmetric non-metric connection
is said to be mixed totally geodesic if 4(X,Z) = 0 forall X € D and Z € D*.

The following lemma is an easy consequence of (2.21).

Lemma 4.5. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold M with
semi-symmetric non-metric connection. Then M is mixed totally geodesic if and only if ANX € D
forall X € D.

Definition 4.6. A normal vector field N # 0 with semi-symmetric non-metric connection is called
D-parallel if normal section Vi, N = 0 for all X € D.

Now, we have the following proposition.

Proposition 4.7. Let M be a mixed totally geodesic &-vertical CR-submanifold of nearly trans-
hyperbolic Sasakian manifold M with a semi-symmetric non-metric connection. Then the normal
section N € ¢D* is D-parallel if and only if Vx¢N € D for all X € D.

Proof. The proof of this proposition can be directly deduced from [14] Proposition 3.

S Integrability Conditions of Distributions

In this part of the paper, we calculate the Nijenhuis tensor N(X,Y) on nearly trans-hyperbolic
Sasakian manifold M with a semi-symmetric non-metric connection. For this, first we need the
following lemmas.

Lemma 5.1. In an almost contact metric manifold, we have
Vyd)pX = —p(Vyd)X + (VymX)é + n(X)Vyé. (5.1)
Proof. For X, Y € TM , we have
(Vyd)pX = Vy(¢°X) - ¢(Vy¢X) + p(¢VyX) — ¢ Vy X
= Vy(=X + n(X)é) — ¢(Vy$X)

+d(@VyX)(=VyX + n(VyX)é),
which gives the equation (5.1).



102 M. DANISH SIDDIQI, M. AHMAD and J. P. OJHA.

Lemma 5.2. Let M be a nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-
metric connection, then

(Vox®)Y = 2a(g(¢X, V)€) = (@ + B+ Dn(V)X (5.2)

+Ha + B+ DnXOn(Y)éE = n(Y)Vyé + ¢(Vyd)X + n(VyX)é
forany X,Y € TM.

Proof. From the definition of nearly trans-hyperbolic Sasakian manifold M with a semi-symmetric
non-metric connection, we have

(Vxd)Y = 2a(g(X, V)é) — (a + B+ D)(n(V)pX + nX¢Y).
Replacing X by ¢X, in above equation, we get
(Ve XY = 2a(8($X, Y)E) + (a + B+ Dn(N)X (5.3)
+a + B+ Dn(nX)é — (Vyp)pX.
Using Lemma (5.1) and (5.3), we obtain
(VXY = 20(8(¢X, Y)E) + (@ + B+ (V)X + (@ + B + Dn(Y)n(X)é

+¢(Vy$)X + (VymX)é — n(X)Vyé

forall X,Y € TM. O
On a nearly trans-hyperbolic Sasakian manifold M the Nijenhuis tensor is

N(X,Y) = (VXY — (Vo Y$)X — ¢(Vx)Y + ¢(Vyd)X (54
forall X,Y € TM. From (5.2) and (5.4), we get
N(X,Y) = 4a(g(¢X, Y)E) + (a + B+ D((X)Y = n(Y)X) — n(X)Vyé (5.5

+2(a + B+ DnOn(Y)é + n@(Vy@)X + n(VyX)é.

Thus using (2.15) in (5.5), we find that the Nijenhuis tensor of nearly trans-hyperbolic Sasakian
manifold with a semi-symmetric non-metric connection which is given by

N(X,Y) = 4a(g(@X, V)¢) = n(X)Vy€ + n(Y)Vx¢€ - nlX, Y1é (5.6)

+a + B+ D) [3nX)Y + ()X = 2n(X)n(Y)E] + 4p(Vy )X

for all X, Y € TM. Now, we prove the following theorem.

Theorem 5.3. Let M be a &é-vertical CR-submanifold of nearly trans-hyperbolic Sasakian mani-
fold M with a semi-symmetric non-metric connection. Then the distribution D is integrable if the
following conditions are satisfied:

S(X,2) e D, h(X,¢Z)=h(¢pX,Z) 6.7

forany X, Z € D.
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Proof. The torsion tensor S (X, Y) of the almost contact metric structure (¢, &, 7, g) is given by
SX,Y)=NX,Y)+2dn(X, V)¢ = N(X,Y) + 2g(dX, Y)¢. (5.8)

Thus, we have
SX,Y) = [¢X, Y] — ¢[¢X, Y] - ¢[X, oY ] + 22(¢X, Y)& (5.9)

forX, YeTM.
The distribution D is integrable if and only if forall X, Y € Dand n([X,Y]) =0 as & € D*.
If S(X,Y) € D, then from (5.6) and (5.8) we have

2(a + Dg(9X, Y) + n([X, Y& (5.10)

+4(pOVydX + dh(Y,pX) + OVyX + h(X,Y)) € D.

or
2(a + Dg(9X, Y) + n([X, Y& (.11

+4(pOVydX + dh(Y, phiX) + OVyX + h(X,Y)) =0

for X, Y € D and & € D*-.
Replacing Y by ¢Z for Z € D in the above equation, we get

2(a + Dg(9X, ¢Z) 08 (5.12)
+4(pQV 4 YPX + ph(¢pZ, $X) + QV4ZX + h(X, ¢pZ) = 0.
Interchanging X and Z in (5.12) and subtracting these relations, we obtain
d0[dX, ¢Z] + O[X, ¢Z] + h(X, ¢Z) — h(Z, $pX) = 0. (5.13)

Consequently, from (5.13), we get
X, ¢Z) = h(Z, pX)

forany X, Y € D. O

Theorem 5.4. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold M with
a semi-symmetric non-metric connection. Then

1
AgYZ = AyZY = 3¢PIY.Z] + 2a(n(Y)Z = n(D)Y) + (@ + B + D(Y)PZ = n(2)¢Y)

foranyY, Z € D*.

Proof. For Y, Z € D+ and X € T(M), we get
28(ApZY, X) = 28(W(X, Y), ¢Z) = g(W(X, Y), $Z) + g(W(X. Y), $Z)
= g(VxY + VyX, ¢Z) = —g(¢(VxY + VyX), Z)
=-g [(6Y¢X + Vy$X,Z) - 2(ag(X, Y)E — (a + B+ D((X)pY) - TI(Y)¢X)7Z]
= —g(Vy¢X,Z) - g(VxoY, Z) + 2an(Z)g(X.Y)
—(@ + B+ 1) [g(¢X, 2n(Y) + g(@Y, Zn(X)] .
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28(AgzY. X) = 8(VyZ.¢X) + 8(AyYZ, X) + 2an(Z)3(X. Y)
—(a + B+ Dg(¢X, 2n(Y) — (@ + B + Dg(pY, Z2)n(X).

The above equation is true for all X € T (M), therefore, transvecting the vector field X both sides,
we obtain

2A4ZY = AyYZ — dVyZ + 2an(Z)Y + (a + B+ Dn(Y)pZ — (a + 8 + 1)g(pY, Z2)¢

or
2A4ZY = AYZ — §VyZ + 2an(Z)Y + (a + B + Dn(Y)$Z (5.14)

for any Y, Z € D*. Interchanging the vector fields Y and Z, we get
2A4YZ = AgZY — ¢V Y + 2an(Y)Z + (a + B + 1)n(Z)8Y. (5.15)
Subtracting (5.14) and (5.15), we find
AgYZ — AyZY = %qﬁP[Y, Z1+2am(Y)Z —n(2)Y) (5.16)
+a + B+ DOD)Y — n(Y)¢2)
forany Y, Z € D*. |

Theorem 5.5. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold M with
semi-symmetric non-metric connection. Then the distribution D™ is integrable if and only if

ApYZ — AyZY = 2a((Y)Z — n(2)Y) + (a + B+ 1)(Z)pY — n(Y)9Z). (5.17)
forany Y, Z € D*.
Proof. From (5.16), the proof of the theorem is obvious. O

Corollary 5.6. Let M be a horizontal CR-submanifold of a nearly trans-hyperbolic Sasakian man-
ifold M with a semi-symmetric non-metric connection. Then the distribution D* is integrable if and

only if
A¢YZ - A¢ZY =0 (518)

forany Y, Z € D*.
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