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Abstract

In this work we suggest a way to estimate some nonlinear terms appearing in the
study of semilinear viscoelastic problems. So far we know how to deal with these
terms only when the energy is decreasing. In this case we can estimate parts of these
nonlinearities by the initial energy. We solve this issue in the general case with the
help of a new differential inequality.
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1 Introduction

We shall consider the following problem

t
Uy +ulP u=Au— fh(t— $)Au(s)ds, in QxX R,
0

1.1
u=0,onT xR, (1)

u(x,0) = ug(x), u(x,0) =ui(x), in

where Q) is a bounded domain in R"” with smooth boundary I' = dQ and p > 0. The functions
up(x) and u;(x) are given initial data and the (nonnegative) relaxation function A(#) will be
specified later on. The equation in (1) describes the equation of motion of a viscoelastic
body with fading memory. In the last twenty five years or so, there has been an extensive
development of the theory of viscoelasticity. This is mainly due to the growing interest in
viscoelastic materials in industry. Indeed, viscoelastic material possess some very important
properties. In particular, they are used to control and suppress or at least reduce vibrations
in different structures.

Many papers appeared in the literature treating the well-posedness and asymptotic be-
havior of solutions. Researchers have focused in particular on enlarging the class of vis-
coelastic materials ensuring a certain decay and also on improving the decay rates (see
[1-12,14-18,20-35] to cite but a few).
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In this work we do not intend to do neither of these and rather focus on the main con-
tribution here which is concerned with the estimation of some nonlinear terms which arise
while studying the asymptotic behavior of solutions. As far as we know, these terms are
dealt with only in the dissipative case where we know from the beginning that the energy is
decreasing and therefore bounded by its initial value. This is not valid in the non-dissipative
case and we are lead to face a new differential inequality. We treat this problem with the
help of a new differential inequality (new in the field of viscoelasticity) which may be found
in [13].

The local existence can be proved using the Faedo Galerkin method (see for instance
[4,5,6-8,14]).

Theorem: Assume that (ug,u;) € Hé(Q) x L2(Q) and h(t) is a nonnegative summable
kernel. If 0<p < % when n >3 and p >0 when n= 1,2, then there exists a unique solution
u to problem (1.1) such that

ue C([0,T1; Hy(Q) N LA () nC' ([0, T1; LA(Q))

for T small enough.

The plan of the paper is as follows: In the next section we prepare some material needed
to prove our result. We introduce the different functionals we will use. The modified energy
functional is defined in this section too. Section 3 is devoted to the statement and proof of
our asymptotic behavior result. Section 4 contains some examples illustrating our results.

2 Preliminaries

We define the (classical) energy by

1 2 2 1 p+2
EO = 5 (Il + 1Vul) + -l

where ||.||, denotes the norm in LP(€)) (the usual Lebesgue space). Then by the equation
(1.1); it is easy to see that

t

E'(t)=fVut.fh(t—s)Vu(s)dsdx.

Q 0
Note that
t
2 [Vuy. [h(t-$)Vu(s)dsdx = [(h'OVu)dx—h(1)||Vull;
Q 0 Q
t
-4 { [(haVuydx - ( i h(s)ds) ||vu||§}
Q 0
where

t

(how) (1) := f h(t = s)|v(t) = v(s)]> ds.

0
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Therefore, if we modify E(¢) to

t

1 2
(1) = §{||ut||%+{1 - f h(s)ds]||vu||§+ e ||u||§j§+ f (hl:qu)dx}
Q

0

we obtain
@)= %f((h’DVu) —h(t)quIz)dx. 2.1
Q

‘We assume that the kernel is such that

+00

l—fh(s)dSZI—K>0.

0
Next, we define the standard functionals
D(1) := fu,udx
Q

and
t

Dy(1) := — fu,fh(t— $) (u(t) —u(s))dsdx.
Q 0

The next functionals have been introduced by the present author in [34]

t

D5(1) := f Hy(t— ) |IVu(s)|[3ds, Dy(t) := f (1 5) [|Vu(s)|3 ds
0

0

where

H, (1) := 7(1)_1fh(S)7(S)ds, ‘Py(t)i=7(t)_1f§(S)7(S)ds
t t

and y(¢) and &(r) are two functions which will be precised later (see (H2), (H3) and Exam-
ples at the end of the paper). The modified energy we will work with is

L(t) := &) + Z; 2,8 (2.2)

for some A; > 0,i=1,2,3,4 to be determined.
The first result tells us that L(¢) and &(#) + O3(¢) + D4(f) are equivalent.
Proposition 1: There exist p; > 0, i = 1,2 such that

P1LE@) + D3(2) + D4(1)] < L(F) < py[E(2) + D3(1) + Dy(1)]

forall t >0 and small 4;,i=1,2.
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Proof. By the inequalities

1 C
O(r) = futudxs Ellut|I§+7p||VuII§,
Q

and

¢ 2
Do) < ez + 5 [ ( [h(t=s) (u(t)—u(s))a’s] dx
Q \0

%Iu,||2+ 21 h(t—s)qu(t)—Vu(s)lds) dx
Q
t 2
<3+ [ f VRt =) \/h(t—s)|Vu(t)—Vu(s)|ds) dx
Q
< M5 + % [ h(s)ds)( [h(t- s)IVu(t)—Vu(s)Izds)dx
Q

%nu,n2 + =2 f (hoVu)dx

where C), is the Poincaré constant, we have

t
Lit) < (1420 + ) g5 + 4 (1 — [(s)ds+ Alcp) IVull3
0

o 2 + 3 (1+ Cpk) [(hOVi)dx + A3®3(1) + AaDa(2).
Q

On the other hand

2L(t) 2 (1= Ay = ) a3 + (1 - /lchk) J(havVudx+ -2 ||””Zi§

+[1 =k =, C,1IIVull3 + 2/l3d>3(t) +224D4(1).

Therefore, p;[E(1) + P3(1) + D4(1)] < L(2) < po[E(F) + D3(¢) + P4(#)] for some constant p; > 0,
i=1,2 and small ;, i = 1,2 such that 4, < min{1,(1-x)/C,) and 1, < mln{c _ /11}.

The following inequality will be used repeatedly in the sequel.

Lemma 1: We have )

b
abgéa%E, a,beR, §>0.

The next result will be used later to estimate

fVu.fh(t—s)Vu(s)dsdx.
Q 0

Lemma 2: We have for continuous functions / and v on (0, o)

w(t) fot h(t—s)v(s)ds = % (fot h(s)ds) V3(1) + % foth(t — sWV2(s)ds
—L(how)(@), t> 0.
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Proof. 1t suffices to develop the last term in the right hand side of the identity itself.
Indeed, we have

(hov)(0) = [ h(t =) v(t) = v(s)I* ds
0

t
= [h(t=9)[2() = 20(t)v(s) +v*(5)| ds
0
= (J h(s)ds)v2(1) = 2v(2) [ bt = s)v(s)ds + [} h(t— s)v2(s)ds.

The proof is complete.

The next lemma is well-known as the Sobolev-Poincaré inequality.

Lemma 3: Assume that 2 < g<+ooifn=1,20r2<g< nzTnz if n > 3. The there exists
a positive constant C, = C.(£,q) such that

llully < CelIVull,

for u € Hy(Q).

We end this section by the following lemma (see [13]) which is the key tool in the
present contribution.

Lemma 4: Let y(¢), a(1), B(t) € C[fy, o) and a(t) > 0, for all ¢ > . Suppose that there
exists a positive function u(f) € C 119, %) such that

a(r) 1
oo PO G

then a nonnegative solution to the following inequality

W@
(X e )

V(1) < —x(@Ov(t) + a(tv’ (1) + (1), p> 1

such that u(ty)v(ty) < 1, satisfies the estimate

1
v(t) < —, Yt > 1.
u()

3 Asymptotic Behavior

In this section we state and prove our result. For every measurable set A C R*, we define
the probability measure £ by

N 1
h(A) = - f h(s)ds. (3.1
K Ja
The non-decreasingness set and the non-decreasingness rate of & are defined by
Q,:={seR*: W (s)>0) (3.2)
and
R = h(Qn),

respectively.
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Our assumptions on the kernel /() are the following
+00

(H1) h(r) > Oforall 1> 0and 0 <k = [ h(s)ds < 1.
0

(H2) & is absolutely continuous and of bounded variation on (0, c0) and h’(¢) < &(¢) for
some non-negative summable function &(¢) (= max{0,4’(r)} where h’(t) exists) and almost
all t > 0.

(H3) There exists a non-decreasing function y(#) > 0 such that y'(¢)/y(¢) = n(t) is a
+0o0
non-increasing function and f h(syy(s)ds < +oo.
0
Note that the assumption (H3) is satisfied by a large class of functlons like the poly-

nomials and exponential functions. Let z, > 0 be a number such that f h(s)ds = h, >0

0
and

||p+2

2
el + e

1
I(ug,u1) = 2 \Vuoll3 + mlluo

+
2 2

where 1 =«*/2C »BV[h,Al, BV is the total variation and A is the set on which 4’ is negative.

Theorem 1: Assume that the hypotheses (H1)-(H3) hold, 2 < g < +o0 if n = 1,2 or
2<q<;%ifn>3,R,<1/4and ff(s)ds is small enough. Then, E(f) < C/u(t), t > 0 for
Qh
some positive constants C in case

(2) lim, eo(f) =77 # 0 and B < pP()[A- 48], 12 0 or

(b) Tim, e () = 0 and B < P (1) | (o) - & ((j))] 1>0
for some positive constants A, B and D to be determined provided that I(ug,u;)u(0) < 1.

Proof. A differentiation of @ (f) with respect to ¢ along trajectories of (1.1) gives

t

(I)’l(t) = ||u,||§ - ||VM||% +f fh(t— )Vu(s)dsdx— ||u||p+2, >0

Q 0

and by Lemma 2 we obtain

t
(1) < ||u,||§ (1= [Vull3+ % f h(t = 5)IVu(s)|l3 ds 53
(hl:!Vu)dx—llullp 1> 0. '

Q

p+2°
For @, (t) we have

t
(1) = — [uy [ h(t = 5) (u(t) - u(s))dsdx
Q 0

t t
— [ug| [ (2= 5) (u(t) = u(s))ds+u; [ h(s)ds|dx
Q 0 0
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or
() = — g{ (1 - Oft h(s)ds) Au—|ul? u+ Oft h(t — s) (Aut) - Au(s))ds]
X Oft h(t = ) u(t) — u(s)) dsdx — ( Oft h(s)ds) ot |12
—[u f W (1= s) (u(?) —u(s))dsdx, t > 0.
Therefore, Y

(1) = (1 -f h(s)ds) [ Vu. [h(t=5)(Vu(t) = Vu(s)) dsdx
0 Q 0

o

2

t
dx— ( 1l h(s)ds)||u,||§
0

t
[ (e = 5)(Vu() = Vu(s))ds
0

, (3.4)
= [uy [ 1 (2= s) (u(t) - u(s))dsdx
Q 0

+ [lul? u [ h(t = ) (u(t) - u(s)) dsdx.
Q 0

The last term in (3.4) used to be estimated using the bound E(0) of E(¢). This holds in the
dissipative case. That is, when E’(#) < 0, which is clearly not the case here. We have

flulp ufh(t— 8) (u(®) —u(s))dsdx
Q 0

<6 [PV dx+ 2 ( [ h(s)ds) [(hoVu)dx
@ (3.5)
<5C, IVul 37V + & ( ) h(s)ds) [(hoVuydx

< 2Cegptin+ 2 ( ) h(s)ds) [(hoVu)dx.
0 Q

For all measurable sets A and Q such that A =R*\Q, we may estimate the first term in the
right hand side of (3.4) as follows

t
[Vu. [ h(t = 5)(Vu(t) - Vu(s))dsdx

Q 0
= [Vu. [ h(t=s)(Vu(t) = Vu(s))dsdx
Q Ay
+ f Vu. f h(t = 5) (Vu(t) = Vu(s)) dsdx (3.6)
< f Vu. f h(t — ) (Vu(t) = Vu(s)) dsdx
A,

[th(t— s)ds)uVuu2 [Vu. f h(t — s)Vu(s)dsdx

where we have adopted the notation: B, := BN [0,?]. Using Lemma 2, it is easy to see that
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for6; >0

[Vu. [ h(t—5)(Vu(t) - Vu(s))dsdx
Q Ay
<1Vl + 7= [ [ 7t = 9)|Vu(t) = Vu(s)P dsdx,
QA

3.7

and

[Vu. [ h(t—5)Vu(s)dsdx
Q Q

(3.8)
< %th(z— s)ds]||vu||§ +1 [h(t=9)Vu(s)l3 ds.
1 Qt

These relations (3.7) and (3.8) together with (3.6) imply that

t
[Vu. [ h(t = 5)(Vu(t) - Vu(s))dsdx
Q 0

3(51+§ f h(t—s)ds]lqull%+ﬁ [ [ ht = 5)|Vu(t) - Vu(s)|* dsdx (3.9)
Q, QA

+3 [ h(t=$)|IVu(s)I ds
Q

where £ is defined in (3.1). For the second term in the right hand side of (3.4) we have

2

f fh(t —8)(Vu(t) = Vu(s))ds| dx
Q[0

<+ [ [ h(t=5)Vu(t) = Vu(s)P* dsdx (3.10)
QA

+(1+62) ()f h(t - s)ds) [ [ h(t=5)IVu(t) - Vu(s)* dsdx, 6, > 0.
t Q Qr

Finally we may write

fu, fh’(t— $) (u(t) —u(s))dsdx
Q 0
< 631l — 52 BVIh.A) [ [ (1= 5)Vu(t) = Vu(s)P dsdx

QA
+32 U§(t s)ds] [ [&@-5)Vu(t) - Vu(s)|* dsdx (3.11)
QQ
< 631l — 32 BV[h.A) [ [ (2= 5)Vu(t) = Vu(s)P dsdx
QA

f(;; Lfg(z s)ds][< [ §(t—s)ds]||Vu||2+3 [ &= 9)IIVu(s)l3ds|,
Qu
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for 3 > 0. Having in mind the relations (3.5), (3.9)-(3.11) we infer from (3.4) that

2
(1) < {(1 —h*)[(sl +3 [h(t- s)ds} o (Af - s)ds] }||Vu||§

Q
+(03 = ) ludl3 + &1+ 2=+ L] [ [ 1t = ) IVu(r) = Vu(s)P dsdx
QA

+3(1—h,) Qf h(t = 5)|IVu(s)l3 ds + j—g ( Of h(s)ds) [(hoVu)dx
t Q
Cp

+20Cegprl () - 2 BVILAL [ [ 1 (= 9)|Vu(t) - Vu(s)P dsdx
Q ﬂt

+(1+ 52)[afh(z - s)ds] [ [ h(t=5)|Vu@) = Vu(s)P* dsdx

QQ,

(3.12)

3C,

5, [aff(f_ S)ds) ff(l‘— s) ||Vu||% ds.
: Q
In virtue of the fact that y(¢)/y(¢) = n(¢) is a non-increasing function, we have

t
DL (1) = Hy(0)[Vull3 + [ H (1= 5)IVu(s)l3 ds
0

t t
= Hy(O0)IVull3 - [ L= Hy (1 — ) IVu(s)l3 ds — [ h(t =) Vu(s)3 ds (3.13)
0 0

< Hy(0)[[Vull; - n()®@3(1) - [ h(t = 5)[Vu(s)I3 ds
0

and

(1) = Yy (O [Vull3 + [V, (1= ) IVu(s)l3 ds
0

t t
=W (0) IVull3 - [ L=2W, (1 - ) IVu(s)|3ds — [£(t—s)IVu(s)l3 ds
0 0

<V O)[Vully — n()Da(1) - [ €t = 9)|IVu(s)I3 ds.
0
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Taking into account the relations (2.1), (3.3), (3.12), (3.13), we see that

L)< L [(WaVudx— 2 LBVIRAL [ [ 1 (t= 5)[Vu() - Vu(s)P dsdx
Q QA

61+3 [h(t—s)ds
Qr

2
§ R (afg(r—s)ds] + A3 H,,(0)

{/12(1 ~h.)
—01 (1= IVl + (4 = 3) [ 7t = 9 IVu(s)l3 ds
0

/lzc (fh(s)ds)

—/l3n(t)(l)3(t)+/lzk(l+l e ) f f h(t— 5)|Vu(t) — Vu(s)P dsdx (3.14)

f(hDVu)dx+ [A1+ (83 = h) Ao [l 3

+(1+8) [h(t—s)ds [ [ h(t—s)IVu(t) Vu(s)P dsdx
Q QQ

+2(1=ho) [ bt =) IVu(s)3ds + 252 Lfg(z— s)ds]
Qt t
X [ &= 5)IVu(s)ll3 ds + 2¥y(0) [Vull3 — Aan(t)®a (1)
a

~A f E(t— ) IVus)|3 ds + ZELEPH (1) — Ay ||ul

p+2
p+2°

Let us introduce the sets

={seR*:nh'(s)+h(s) <0}, neN,
Ay ={seR":0<s<t,nh(t—s)+h(t—s) <0}, neN,

Qui={seRT:0<s<t,0<H(t—25) <&t—ys))
and observe that
A =R (@ UN:)
where
Qn:={seR":0<H(s) &)}

and N, is the nullset where /#’ is not defined. Furthermore, if we denote Q,, := R*\A,, then
limy—e0 A(Q,) = H(Qy) because Q41 C Q, for all n and N Q, = Q, U N,. In (3.14), we take
n
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A=A, and Q := Qy (the complement in [0, ¢]). It follows that

L)< t(1-22BVInAY) [ [ 1t~ 5)Vu(t) - Vu(s)P dsdx
QAp
+[A1 + (63 — )] |13 + {/12(1 - h*)(él +3 [ h(t- s)ds] + A3H,(0)
ént

2
+A5¥(0) + 2t [ J §(t—s)ds] —/11(1——)}||Vu||2 (U= p;)

nt

AkC)

xfh(z—s)||Vu(s>||2ds+[ s o1+ ey 1) L

5] an (3.15)
x f [ h(t=5)|Vu(t) = Vu(s)P? dsdx = 43n()@3(1) = A4n(D) D4 (1)

Q Ay
/lZKC,, + (14621 f h(t—s)ds— f f h(t—s)|Vu(t) - VM(S)|2dsdx
Qu QQu
o [f &(t- s)ds] [ &a—9)IVul3ds - ﬂ4f £ =9)IVu(s)lds
nt Q"’

+25Ce/128p+1(t) /l ||u||p+2

Let 41 = (h. —&) A» for some & > 0. If A(@Q) < 1/4, then 25 [ n(z - s)ds < 2079 with

Qu
0= 221 (2h,)<l; + 3 where 8 is a small positive constant and n large enough. Further we may

select A3 and H,(0) such that

1—&)d 1= 8)h.(2—
-9 2‘9) zHy(0)</l3Hy(0)</lz—( )2( “

Note that this is possible if H,(0) is small enough and (z. is so large that) A, > 7k/(8 —«)
eventhough

H,(0) = )/(O)_l foo h(syy(s)ds > f‘x’ h(s)ds = k.
0 0

It is clear that
A
(1 +62)/12fh(t— s)ds — 31 <0
ént

for small &, §,, large n and if lAi(Qh) < 1/4. Select A2 < 63/C,BV[h, A] so that

(3.16)

1-h. 1 C 1
/12K(1+ : —p)<—

46, 6, 464) 4n’

Furthermore, we select A4 large enough so that

3/12C
ff(s)ds
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Therefore, if 63 = £/2, &,8,0;, i = 1,2, f &(s)ds are sufficiently small and ¢ large enough,
Q;
then

6 o "
L'(1) £ =C1E(1) = 43n() D3 (1) — Aam() D4 (1) + ZSP ')

for some C; > 0.
If limy_, o () = 77 # 0, then n(¢) > 77 and there exist C> > 0 such that

26C. A

p+1
1

L' (1) < —CLL(1) + L7 (1)

(by Proposition 1). This relation is of the same form as the one in Lemma 4 with L(t), C»,

(f‘SC)"/}il and O instead of v(¢), (), a(t) and B(¢), respectively. Observe that we have here
—op

p+ 1 instead of p. Note also that the condition of Lemma 4 is fulfilled if L(0) < I(ug,u;).
Therefore

E@)<C/u(),t>0 3.17)

for some positive constant C.
If lim,_,0 1(¢) = 0, there exist > ¢, such that n(r) < Cy, Vt > f. We deduce that

L'(6) < ~Csn()L(1) + ‘i 2+l p)

and thereafter as in the previous argument the relation (20) holds again with y(¢) = C3n(¢),
a(t) = 2‘” €y and B(r) =

) L
Remark 1: The smallness of the integral of £ over Q has been discussed in [34]. Tt is
difficult to be determined exactly. Some simpler situations where more reasonable kernels
may be considered are, for instance, the exponentially decaying kernels (satisfying A’(f) <
—Ch(t) on A) or I'(t) < —w(t)h(1), for all t € A where w(?) is a continuous function such
that inf,»o w(f) = w > 0. In these cases the bound 1/4n in (3.17) may be very large.

4 Examples

The class of functions y(#) include polynomials and exponentials. Indeed, if we consider
() = (1+6)%, >0 we are lead to n(¢) =y’ (1) /y(t) = a(1 + 1)~ and if we consider y(t) = e,
a > 0 then we find n(t) =y’ (1) /v(t) = a.

Example 1:

For part 1 in the theorem it is easy to check that u(f) = pye”" with ,ug > #"U, a =

o < C; satisfies the hypotheses of Lemma 5. Therefore the decay rate in case y(¢)

is of an exponential type (for instance, see first paragraph above in this section) is also of
exponential type.

Example 2:

To illustrate the second part of our theorem we consider 7(¢) = yo(1 + )1 (which results
in case y(f) = yo(1 +1)?, see first paragraph above in this section). The decay rate is also
polynomial, that is p(?) = (1 +£)7 with /10 > 5 5 Yo <O < 1/p.

Acknowledgment: The author is grateful for the financial support and the facilities
provided by King Fahd University of Petroleum and Minerals.
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