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Abstract

Let H be a real separable Hilbert space and (a ez a sequence of bounded linear
operators from H to H. We consider the linear process X defined for any k in Z by
Xy = Y jezaj(€—j) where (& )kez is a sequence of i.i.d. centered H-valued random
variables. We investigate the rate of convergence in the CLT for X and in particular
we obtain the usual Berry-Esseen’s bound provided that ¥ jcz | j|l|a; || () < +oo and
€o belongs to Ly;.
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1 Introduction and notations

Let (H,||.||n) be a separable real Hilbert space and (L, ||.|| (7)) be the class of bounded
linear operators from H to H with its usual uniform norm. Consider a sequence (& )xcz of
i.i.d. centered random variables, defined on a probability space (2, 4,P), with values in H.
If (ax)rez is a sequence in L, we define the (non-causal) linear process X = (Xi)kez in H
by

X =Y aj(er)), keZ. (1.1)

JEZ

If ¥ ez l|lajll o) < oo and E||go||z < oo then the series in (1.1) converges almost surely
and in L};(Q, 4,P) (see Bosq [2]). The condition ¥ jc7 |a;]| £ (#) < o is know to be sharp for
the v/n-normalized partial sums of X to satisfies a CLT provided that (g )z are i.i.d. cen-
tered having finite second moments (see Merlevede et al. [6]). In this work, we investigate
the rate of convergence in the CLT for X under the condition

Y Lilllajl oy < e (1.2)
JEZ
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with T =1 when (& )rcz are assumed to be i.i.d. centered and such that €y belongs to Ly
and T = 1/2 when (& )z are i.i.d. centered and such that €y belongs to some Orlicz space
Ly (see section 2). This problem was previously studied (with T =1 in Condition (1.2))
by Bosq [3] for (causal) Hilbert linear processes but a mistake in his proof was pointed out
by V. Paulauskas [7]. However, in the particular case of Hilbertian autoregressive processes
of order 1, Bosq [4] obtained the usual Berry-Esseen inequality provided that (g )xcz are
i.i.d. centered with gy in L.

2 Main result

In the sequel, Cy, is the autocovariance operator of €y, A := Y. ;cz a; and A* is the adjoint of
A. For any sequence Z = (Z )xez of random variables with values in H we denote

§t> —P(INlla <)
H

where N ~ A[(0,ACg,A*).

For any j € Z, denote ¢, = }.;_; b;—; where b; = a; for any i # 0 and by = ag — A.

Lemma 2.1. For any positive integer n,
n
Y Xi=4
k=1

where O, = ZZ:] Z|j\>n ak,j(8j> and R, = Z\j|§n Cj,n(ej)-

Recall that a Young function \ is a real convex nondecreasing function defined on R™
which satisfies lim;_ o Y(f) = 4o and y(0) = 0. We define the Orlicz space Ly y as the
space of H-valued random variables Z defined on the probability space (, F,P) such that
E(||Z||r/c)] < 4eo for some ¢ > 0. The Orlicz space Ly y equipped with the so-called
Luxemburg norm ||. ||y defined for any H-valued random variable Z by

D=

8k> + Qn +Rn

k

1

1Z]ly = inf{c > 0; E{y([|Z]a/c)] <1}

is a Banach space. In the sequel, ¢(N) denotes a bound of the density of A[(0,ACg,A*) (see
Davydov et al. [5]). Our main result is the following.

Theorem 2.2. Let (€ )rez, be a sequence of i.i.d. centered H-valued random variables and
let X be the Hilbertian linear process defined by (1.1).

i) If € belongs to Ly and ¥ jcz,|j|||a;j|| £ (zy < oo then
A(X) < — 2.1

where ¢| = ¢y + 14c(N)|€o | X jez |jll|ajll () and ca is a positive constant which
depend only on the distribution of €.
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ii) If v is a Young function then

8,0 < 8,(4@) +o (N LRl )

Vn
where @(x) = xh~!(1/x) and h(x) = xy(x) for any real x > 0.

2.2)

The inequality (2.2) ensures a rate of convergence to zero for A, (X) as n goes to infinity
provided that A, (A(€9)) goes to zero as n goes to infinity and a bound for ||Q,, + R, ||y, exists.
As just an illustration, we have the following corollary.

Corollary 2.3. Assume that (€ )rez are i.i.d. centered H-valued random variables and that
the condition (1.2) holds witht=1/2.

i) If &g belongs to Ly, then A,(X) = O (1(\)/5’;:’> where 1 is the Young function defined
by i (x) = exp(x) — 1.

ii) If €y belongs to L}, for r > 3 then Ay(X) = O (n 2<"r+'>).

3 Proofs

Proof of Lemma 2.1. For any positive integer n, we have

The proof of Lemma 2.1 is complete.

Proof of Theorem 2.2. Let A > 0 and 7 > 0 be fixed and denote U = A (Y}_, &/+/n)
andV = (Q, +Ry)/\/n. SoU+V =Y}_, Xi/+/n and

POV 4V <0) <P(Ulla <t+2) +P([V]lz > 2) 3.1)
For A9 = 2||V||, we obtain
P(IU+V]la <t)=P(IN[lz <t) <P([Ulln <t+2do) —P(IN[lu <1).
If ¢(N) denotes a bound for the density of | N||y (see Davydov et al. [5]) then

2(N)[Q0 +Rull-

8a(X) < (A(e)) + L
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Noting that
—n—1 n—j
0= Y aj| ¥ &|+Ya| ¥ « (3:2)
j>n+2 k=1—j j<0 k=n+1
and
R,=R,+R, (3.3)
where

K—- Y aJ-(ZjSk)‘ L “f(ig")_za’( X £k>

j=—n k=1 j<—n k=1 j>0 k=n—j+1
and
" n 0 2n n—j
R”:Zaj Z g |+ Z aj Z & |,
j=1 k=—j+1 j=n+1 k=—n

we derive that ||Q, + Ryl < 7||€0lle X ez | 7l|@;]] £y and consequently
14c(N)|leolleo Xjez |illlajl oy
v '

Combining the last inequality with the Berry-Esseen inequality for i.i.d. centered H-valued
random variables (see Yurinski [11] or Bosq [2], Theorem 2.9) we obtain (2.1).

An(X) < Au(A(e)) +

In the other part, if y is a Young function we have P(||V||g > A) < W and keep-
v

ing in mind inequality (3.1), we derive
L1
v (A/1ViIy)

(cM)Vy)

. . 1 . . 0
Noting that ¢(N)A = YOIV if and only if A = )

xh~!(1/x) and h by h(x) = xy(x), we conclude

An(X) < Au(A(g)) +c(N)A

where @ is defined by @(x) =

c(N)|On +RnH\V) ‘

8,00 < &,(4@) +o (1%

The proof of Theorem 2.2 is complete.
Proof of Corollary 2.3. Assume that |[g||y, < oo where y; is the Young function de-

fined by y; (x) = exp(x) — 1. There exists a > 0 such that E (exp(al|€o||z)) < 2. So, there
exist (see Arak and Zaizsev [1]) constants B and L such that

m=2,3,4,..

)

|
Elleollfi < 5-B°L"

Applying Pinelis-Sakhanenko inequality (see Pinelis and Sakhanenko [9] or Bosq [2]), we

obtain
P (

q
) &
k=p

2
X
>x | <exp| — , x>0
H )‘ p< 2(q—p+1)32+2xL)
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and using Lemma 2.2.10 in van der Vaart and Wellner [10], there exists a universal constant

K such that .
Y & §K<L+B\/q—p+1) (3.4)
k=p 1

Combining (3.2), (3.3) and (3.4), we derive || @, +Ru|ly, < CYjcz v/ |Jlllajl| () Where the

"

constant C does not depend on n. Keeping in mind the Berry-Esseen’s central limit theorem
for i.i.d. centered H-valued random variables (see Yurinski [11] or Bosq [2], Theorem
2.9), we apply Theorem 2.2 with the Young function y;. Since the function ¢ defined by
@(x) = xh~'(1/x) with h(x) = xy (x) satisfies

¢(x)

lim — 22—,
x—0 xlog(1+ 1)

we derive A,(X) = O (k\’fﬁ").

Now, assume that ||€||, < o for some r > 3. Applying Pinelis inequality (see Pinelis [8]),
there exists a universal constant K such that

1/2

q
Y
k=p

1/r
q q
<K|r| Y Elaln ] +Vvr| X Eleln
r k=p k=p

and consequently

q
Y el <2Krleoll/qa—p+1. (3.5)
k=p r

Combining (3.2), (3.3) and (3.5), we derive ||Q, + Ryl < CY jez \/|jllla; |l £(z) Where the

constant C does not depend on n. Again, applying Berry-Esseen’s CLT (see Yurinski [11] or
Bosq [2], Theorem 2.9) and Theorem 2.2 with the Young function y(x) = x" and the func-

tion @ given by @(x) = x”/"+1) we obtain A,(X) = O <n_2("711>>. The proof of Corollary
2.3 is complete.
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