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Abstract. In this paper, the third-order Jacobsthal generalized quaternions are
introduced. We use the well-known identities related to the third-order Jacobsthal
and third-order Jacobsthal-Lucas numbers to obtain the relations regarding these
quaternions. Furthermore, the third-order Jacobsthal generalized quaternions are
classified by considering the special cases of quaternionic units. We derive the rela-
tions between third-order Jacobsthal and third-order Jacobsthal-Lucas generalized
quaternions.

MSC : 11B37, 11R52, 11Y55
Keywords: Generalized quaternion, semi-quaternion, split quaternion, third-order
Jacobsthal generalized quaternion, third-order Jacobsthal number

1. Introduction and Preliminaries

Recently, the topic of number sequences in real normed division algebras has at-
tracted the attention of several researchers. It is worth noticing that there are ex-
actly four real normed division algebras: real numbers (R), complex numbers (C),
quaternions (H) and octonions (O). In [2] Baez gives a comprehensive discussion
of these algebras.

The real quaternion algebra

H = {q = q0 + q1i + q2j + q3k ; qs ∈ R, s = 0, 1, 2, 3}

is a four-dimensional R-vector space with basis {1 ' e0, i ' e1, j ' e2,k ' e3}
satisfying multiplication rules q01 = q0, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1
and e3e1 = −e1e3 = e2.

There has been an increasing interest on quaternions and octonions that play an
important role in various areas such as computer sciences, physics, differential ge-
ometry, quantum physics, signal, color image processing and geostatics (for more
details, see [1, 4, 10, 17]).

The origin of the topic of number sequences in division algebra can be traced back
to the works by Horadam in [12] and by Iyer in [15]. In this sense, Horadam [12]
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defined the quaternions with the classic Fibonacci and Lucas number components
as

QFn = Fn + Fn+1i + Fn+2j + Fn+3k, Fn1 = Fn

and
QLn = Ln + Ln+1i + Ln+2j + Ln+3k, Ln1 = Ln

respectively, where Fn and Ln are the n-th classic Fibonacci and Lucas numbers,
respectively, and the author studied the properties of these quaternions. Several
interesting and useful extensions of many of the familiar quaternion numbers (such
as the Fibonacci and Lucas quaternions [11, 12] and Pell quaternion [5] have been
considered by several authors.

After the work of Hamilton, James Cockle introduced the set of split quaternions
which can be represented as

H(1,−1) = {q = q0 + q1e1 + q2e2 + q3e3 ; qs ∈ R, s = 0, 1, 2, 3}

where e21 = −1, e22 = e23 = 1 and e1e2e3 = 1. Note that e1e2 = e3 = −e2e1,
e2e3 = −e1 = −e3e2 and e3e1 = e2 = −e1e3. The set of split quaternions
is also noncommutative. Unlike quaternion algebra, the set of split quaternions
contains zero divisors, nilpotent and nontrivial idempotent elements [18]. For more
properties of the split quaternions the reader is refereed to [19].

The set of generalized quaternions which can be represented as

H(α,β) = {q = q0 + q1e1 + q2e2 + q3e3 ; qs ∈ R, s = 0, 1, 2, 3}

where e1, e2 and e3 are quaternionic units which satisfy the equalities{
e21 = −α, e22 = −β, e23 = −αβ

e1e2 = e3 = −e2e1, e2e3 = βe1 = −e3e2, e3e1 = αe2 = −e1e3
(1)

where α, β ∈ R.

By choosing α and β, there are following special cases:

• α = β = 1 is considered, then H(1,1) is the algebra of real quaternions.
• α = 1, β = −1 is considered, then H(1,−1) is the algebra of split

quaternions.
• α = 1, β = 0 is considered, then H(1,0) is the algebra of semi-quaternions.
• α = −1, β = 0 is considered, then H(−1,0) is the algebra of split semi-

quaternions.
• α = β = 0 is considered, then H(0,0) is the algebra of 1

4 -quaternions.
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Pottman and Wallner provided a brief introduction of the generalized quaternions
in [20]. Furthermore, in [16], Jafari and Yayli studied some algebraic properties
of generalized quaternions and operations over them. A generalized quaternion q
is a sum of a scalar and a vector, called scalar part, Sq = q0 ∈ R, and vector part
Vq = q1e1 + q2e2 + q3e3 ∈ R3

αβ . Therefore, H(α,β) forms a four-dimensional
real space which contains the real axis R and a three-dimensional real linear space
E3
αβ , so that, H(α,β) = R

⊕
E3
αβ (for more details, see [16]).

2. Third-Order Jacobsthal Quaternions

The Jacobsthal numbers have many interesting properties and applications in many
fields of science (see, e.g., [3,14]). The Jacobsthal numbers J (2)

n are defined by the
recurrence relation

J
(2)
0 = 0, J

(2)
1 = 1, J

(2)
n+1 = J (2)

n + 2J
(2)
n−1, n ≥ 1. (2)

Another important sequence is the Jacobsthal-Lucas sequence. This sequence is
defined by the recurrence relation

j
(2)
0 = 2, j

(2)
1 = 1, j

(2)
n+1 = j(2)n + 2j

(2)
n−1, n ≥ 1 (3)

(see [14]).

In [8] the Jacobsthal recurrence relation is extended to higher order recurrence
relations and the basic list of identities provided by A. Horadam [14] is expanded
and extended to several identities for some of the higher order cases. For example,
the third-order Jacobsthal numbers, {J (3)

n }n≥0, and third-order Jacobsthal-Lucas
numbers, {j(3)n }n≥0, are defined by

J
(3)
n+3 = J

(3)
n+2 + J

(3)
n+1 + 2J (3)

n , J
(3)
0 = 0, J

(3)
1 = J

(3)
2 = 1, n ≥ 0 (4)

and

j
(3)
n+3 = j

(3)
n+2 + j

(3)
n+1 + 2j(3)n , j

(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5, n ≥ 0 (5)

respectively.

Some of the following properties given for third-order Jacobsthal numbers and
third-order Jacobsthal-Lucas numbers play important roles in this paper (see [6,8]).

3J (3)
n + j(3)n = 2n+1, j(3)n − 3J (3)

n = 2j
(3)
n−3

J
(3)
n+2 − 4J (3)

n =

{
−2 if n ≡ 1 (mod 3)
1 if n 6≡ 1 (mod 3)
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j(3)n − 4J (3)
n =


2 if n ≡ 0 (mod 3)
−3 if n ≡ 1 (mod 3)
1 if n ≡ 2 (mod 3)

(6)

j
(3)
n+1 + j(3)n = 3J

(3)
n+2

j(3)n − J
(3)
n+2 =


1 if n ≡ 0 (mod 3)
−1 if n ≡ 1 (mod 3)
0 if n ≡ 2 (mod 3)

(7)

(
j
(3)
n−3

)2
+ 3J (3)

n j(3)n = 4n

n∑
k=0

J
(3)
k =

{
J
(3)
n+1 if n 6≡ 0 (mod 3)

J
(3)
n+1 − 1 if n ≡ 0 (mod 3)

and (
j(3)n

)2
− 9

(
J (3)
n

)2
= 2n+2j

(3)
n−3.

Using standard techniques for solving recurrence relations, the auxiliary equation,
and its roots are given by

x3 − x2 − x− 2 = 0, x = 2 and x =
−1± i

√
3

2
·

Note that the latter two are the complex conjugate cube roots of unity. Call them
ω1 and ω2, respectively. Thus the Binet formulas can be written as

J (3)
n =

2

7
2n − 3 + 2i

√
3

21
ωn1 −

3− 2i
√
3

21
ωn2 (8)

and

j(3)n =
8

7
2n +

3 + 2i
√
3

7
ωn1 +

3− 2i
√
3

7
ωn2 (9)

respectively. Now, we use the notation of equation (6)

V (3)
n =

Aωn1 −Bωn2
ω1 − ω2

=


2 if n ≡ 0 (mod 3)
−3 if n ≡ 1 (mod 3)
1 if n ≡ 2 (mod 3)

(10)

where A = −3 − 2ω2 and B = −3 − 2ω1. Furthermore, note that for all n ≥ 0
we have

V
(3)
n+2 = −V

(3)
n+1 − V

(3)
n , V

(3)
0 = 2 and V

(3)
1 = −3. (11)
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From the Binet formulas (8), (9) and equation (10), we have

J (3)
n =

1

7

(
2n+1 − V (3)

n

)
and j(3)n =

1

7

(
2n+3 + 3V (3)

n

)
. (12)

In [6, 7], the author introduced the so-called third-order Jacobsthal quaternions,
which are a new class of quaternion sequences. They are defined by

JQ(3)
n =

3∑
s=0

J
(3)
n+ses = J (3)

n +

3∑
s=1

J
(3)
n+ses, J (3)

n 1 = J (3)
n (13)

where J (3)
n is the n-th third order Jacobsthal number, e21 = e22 = e23 = −1 and

e1e2e3 = −1.

The main objective of this paper is to define third-order Jacobsthal generalized
quaternions and obtain the relations related to these quaternions (i.e., for split
third-order Jacobsthal quaternions, third-order Jacobsthal semi-quaternions and
split third-order Jacobsthal semi-quaternions).

3. Third-Order Jacobsthal Generalized Quaternions

The third-order Jacobsthal and third-order Jacobsthal-Lucas generalized quater-
nions have respectively the expressions of following forms

JQ
(3)
α,β,n =

3∑
s=0

J
(3)
n+ses = J (3)

n +
3∑
s=1

J
(3)
n+ses, J (3)

n 1 = J (3)
n (14)

and

jQ
(3)
α,β,n =

3∑
s=0

j
(3)
n+ses = j(3)n +

3∑
s=1

j
(3)
n+ses, j(3)n 1 = j(3)n (15)

where J (3)
n is the n-th third-order Jacobsthal number, j(3)n is the n-th third-order

Jacobsthal-Lucas number and e1, e2 and e3 are quaternionic units which satisfy the
equalities{

e21 = −α, e22 = −β, e23 = −αβ
e1e2 = e3 = −e2e1, e2e3 = βe1 = −e3e2, e3e1 = αe2 = −e1e3.

Let us denote the sets of the third-order Jacobsthal and third-order Jacobsthal-
Lucas generalized quaternions by JQ(3)

α,β and jQ(3)
α,β respectively and their natural

basis by choosing α and β:
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• For α = β = 1, JQ(3)
1,1 is the set of third-order Jacobsthal real quaternions

and jQ(3)
1,1 is the set of third-order Jacobsthal-Lucas real quaternions [6].

• For α = 1, β = −1, JQ(3)
1,−1 is the set of split third-order Jacobsthal quater-

nions and jQ(3)
1,−1 is the set of split third-order Jacobsthal-Lucas quaternions.

• Forα = 1, β = 0, JQ(3)
1,0 is the set of third-order Jacobsthal semi-quaternions.

• For α = −1, β = 0, JQ(3)
−1,0 is the set of split third-order Jacobsthal semi-

quaternions.
• For α = β = 0, JQ(3)

0,0 is the set of third-order Jacobsthal 1
4 -quaternions.

Throughout this paper, we study on third-order Jacobsthal generalized quaternions
JQ

(3)
α,β . Similar relations hold for third-order Jacobsthal-Lucas generalized quater-

nions jQ(3)
α,β . In the following we will study the important properties of the third-

order Jacobsthal generalized quaternions and third-order Jacobsthal-Lucas gener-
alized quaternions:

• The sum and subtract of JQ(3)
α,β,n and jQ(3)

α,β,n is defined as

JQ
(3)
α,β,n ± jQ

(3)
α,β,n =

7∑
s=0

(J
(3)
n+s ± j

(3)
n+s)es (16)

where JQ(3)
α,β,n, jQ

(3)
α,β,n ∈ H(α,β).

Furthermore, we can be written as JQ(3)
α,β,n = S

JQ
(3)
α,β,n

+ V
JQ

(3)
α,β,n

, where

S
JQ

(3)
α,β,n

= J
(3)
n and V

JQ
(3)
α,β,n

=
∑7

s=1 J
(3)
n+ses are called the scalar and

vector parts, respectively.
• The multiplication of these quaternions are defined by

JQ
(3)
α,β,n · jQ

(3)
α,β,n = J (3)

n j(3)n − h
(
V
JQ

(3)
α,β,n

, V
jQ

(3)
α,β,n

)
(17)

+J (3)
n V

jQ
(3)
α,β,n

+ j(3)n V
JQ

(3)
α,β,n

+ V
JQ

(3)
α,β,n

× V
jQ

(3)
α,β,n

where

h

(
V
JQ

(3)
α,β,n

, V
jQ

(3)
α,β,n

)
= αJQ

(3)
α,β,n+1 · jQ

(3)
α,β,n+1 + βJQ

(3)
α,β,n+2 · jQ

(3)
α,β,n+2

+ αβJQ
(3)
α,β,n+3 · jQ

(3)
α,β,n+3
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and

V
JQ

(3)
α,β,n

× V
jQ

(3)
α,β,n

= βe1

(
JQ

(3)
α,β,2 · jQ

(3)
α,β,3 − JQ

(3)
α,β,3 · jQ

(3)
α,β,2

)
+ αe2

(
JQ

(3)
α,β,3 · jQ

(3)
α,β,1 − JQ

(3)
α,β,1 · jQ

(3)
α,β,3

)
+ e3

(
JQ

(3)
α,β,1 · jQ

(3)
α,β,2 − JQ

(3)
α,β,2 · jQ

(3)
α,β,1

)
.

• The conjugate of JQ(3)
α,β,n is defined by

JQ
(3)
α,β,n = S

JQ
(3)
α,β,n

− V
JQ

(3)
α,β,n

= J (3)
n −

7∑
s=1

J
(3)
n+ses (18)

and this operation satisfies

JQ
(3)
α,β,n = JQ

(3)
α,β,n

JQ
(3)
α,β,n + jQ

(3)
α,β,n = JQ

(3)
α,β,n + jQ

(3)
α,β,n

JQ
(3)
α,β,n · jQ

(3)
α,β,n = jQ

(3)
α,β,n · JQ

(3)
α,β,n

(19)

for all JQ(3)
α,β,n, jQ

(3)
α,β,n ∈ H(α,β).

• The norm of an third-order Jacobsthal generalized quaternion, which agrees
with the standard Euclidean norm on R4 is defined as

Nr(JQ
(3)
α,β,n) =

∣∣∣JQ(3)
α,β,n · JQ

(3)
α,β,n

∣∣∣ = ∣∣∣JQ(3)
α,β,n · JQ

(3)
α,β,n

∣∣∣. (20)

• The inverse of JQ(3)
α,β,n 6= 0 is given by

(
JQ

(3)
α,β,n

)−1
=

JQ
(3)
α,β,n

Nr(JQ
(3)
α,β,n)

·

From the above two definitions it is deduced that(
JQ

(3)
α,β,n · jQ

(3)
α,β,n

)−1
=
(
jQ

(3)
α,β,n

)−1
·
(
JQ

(3)
α,β,n

)−1
. (21)

Now, by the addition, subtraction and multiplication we can give the following
theorems.

Theorem 1. Let JQ(3)
α,β,n be the third-order Jacobsthal generalized quaternion.

For n ≥ 1, the following relations hold

2JQ
(3)
α,β,n + JQ

(3)
α,β,n+1 + JQ

(3)
α,β,n+2 = JQ

(3)
α,β,n+3 (22)
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JQ
(3)
α,β,n − e1JQ

(3)
α,β,n+1 − e2JQ

(3)
α,β,n+2 − e3JQ

(3)
α,β,n+3

=

{
(1 + 2β + 10αβ)J

(3)
n + (3β + 9αβ)J

(3)
n+1

+(α+ 2β + 9αβ)J
(3)
n+2

}
(23)

where α and β are real numbers and J (3)
n is the n-th third-order Jacobsthal num-

ber.

Proof: (22): By the using the equations (14) and (16), we have

2JQ
(3)
α,β,n + JQ

(3)
α,β,n+1 + JQ

(3)
α,β,n+2

= 2
(
J (3)
n +

3∑
s=1

J
(3)
n+ses

)
+
(
J
(3)
n+1 +

3∑
s=1

J
(3)
n+s+1es

)
+
(
J
(3)
n+2 +

3∑
s=1

J
(3)
n+s+2es

)
=
(
2J (3)

n + J
(3)
n+1 + J

(3)
n+2

)
+

3∑
s=1

(
2J

(3)
n+s + J

(3)
n+s+1 + J

(3)
n+s+2

)
es

= J
(3)
n+3 +

3∑
s=1

J
(3)
n+s+3es = JQ

(3)
α,β,n+3.

Using the identity of third-order Jacobsthal numbers J (3)
n+3 = J

(3)
n+2+J

(3)
n+1+2J

(3)
n

in (4), the last equation becomes

2JQ
(3)
α,β,n + JQ

(3)
α,β,n+1 + JQ

(3)
α,β,n+2 = JQ

(3)
α,β,n+3.

(23): From equations (14) and (1), we conclude that

JQ
(3)
α,β,n − e1JQ

(3)
α,β,n+1 − e2JQ

(3)
α,β,n+2 − e3JQ

(3)
α,β,n+3

=
(
J (3)
n +

3∑
s=1

J
(3)
n+ses

)
− e1

(
J
(3)
n+1 +

3∑
s=1

J
(3)
n+s+1es

)
− e2

(
J
(3)
n+2 +

3∑
s=1

J
(3)
n+s+2es

)
− e3

(
J
(3)
n+3 +

3∑
s=1

J
(3)
n+s+3es

)
=J (3)

n + αJ
(3)
n+2 + βJ

(3)
n+4 + αβJ

(3)
n+6.

Substituting the identities of third-order Jacobsthal numbers J (3)
n+4 = 2J

(3)
n+2 +

3J
(3)
n+1 +2J

(3)
n and J (3)

n+6 = 9J
(3)
n+2 +10J

(3)
n+1 +9J

(3)
n which are well-known using
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relation (16) into the last equation and after simplifying we can assert that

JQ
(3)
α,β,n − e1JQ

(3)
α,β,n+1 − e2JQ

(3)
α,β,n+2 − e3JQ

(3)
α,β,n+3

=

{
(1 + 2β + 10αβ)J

(3)
n + (3β + 9αβ)J

(3)
n+1

+(α+ 2β + 9αβ)J
(3)
n+2

}
.

Special Cases:

• For α = β = 1, the equation (23) is equivalent to{
JQ

(3)
1,1,n − e1JQ

(3)
1,1,n+1

−e2JQ(3)
1,1,n+2 − e3JQ

(3)
1,1,n+3

}
= 37J (3)

n + 12j(3)n

which was studied by Cerda-Morales in [6].
• For the case α = 1 and β = −1, the equation (23) becomes{

JQ
(3)
1,−1,n − e1JQ

(3)
1,−1,n+1

−e2JQ(3)
1,−1,n+2 − e3JQ

(3)
1,−1,n+3

}
= −

(
J (3)
n + 17J

(3)
n+1 + 5j

(3)
n+1

)
.

• Let β = 0. For α = 1, α = −1 and α = 0, there are following relations

JQ
(3)
1,0,n − e1JQ

(3)
1,0,n+1 − e2JQ

(3)
1,0,n+2 − e3JQ

(3)
1,0,n+3 = J (3)

n + J
(3)
n+2

JQ
(3)
−1,0,n − e1JQ

(3)
−1,0,n+1 − e2JQ

(3)
−1,0,n+2 − e3JQ

(3)
−1,0,n+3 = J (3)

n − J
(3)
n+2

JQ
(3)
0,0,n − e1JQ

(3)
0,0,n+1 − e2JQ

(3)
0,0,n+2 − e3JQ

(3)
0,0,n+3 = J (3)

n .

�

Theorem 2 (Quadratics Identities). Let J (3)
n and j(3)n be the third-order Jacob-

sthal and third-order Jacobsthal-Lucas numbers, JQ(3)
α,β,n and jQ(3)

α,β,n be the third-
order Jacobsthal and third-order Jacobsthal-Lucas generalized quaternions, re-
spectively. In this case, the following equations can be given(

JQ
(3)
α,β,n

)2
+
(
JQ

(3)
α,β,n+1

)2
+
(
JQ

(3)
α,β,n+2

)2

=
1

7


14
(
J
(3)
n · JQ(3)

α,β,n + J
(3)
n+1 · JQ

(3)
α,β,n+1 + J

(3)
n+2 · JQ

(3)
α,β,n+2

)
−3 · 22(n+1)(1 + 4α+ 16β + 64αβ)

−2n+2
(
U

(3)
n + 2αU

(3)
n+1 + 4βU

(3)
n+2 + 8αβU

(3)
n+3

)
−2(1 + α+ β + αβ)


(24)
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(
jQ

(3)
α,β,n

)2
− 9

(
JQ

(3)
α,β,n

)2
=

 2j
(3)
n · jQ(3)

α,β,n − 18J
(3)
n · JQ(3)

α,β,n

−2n+2
(
j
(3)
n−3 + 2αj

(3)
n−2 + 4βj

(3)
n−1 + 8αβj

(3)
n

)
(25)

where α and β are real numbers, and U (3)
n = j

(3)
n−1 − J

(3)
n+1 as equation (7).

Proof: (24): From equation (14), we get(
JQ

(3)
α,β,n

)2
=
(
J (3)
n +

3∑
s=1

J
(3)
n+ses

)
·
(
J (3)
n +

3∑
s=1

J
(3)
n+ses

)
=−

((
J (3)
n

)2
+ α

(
J
(3)
n+1

)2
+ β

(
J
(3)
n+2

)2
+ αβ

(
J
(3)
n+3

)2)
+ 2J (3)

n · JQ
(3)
α,β,n.

Combining the equation (16) with the last equation gives(
JQ

(3)
α,β,n

)2
+
(
JQ

(3)
α,β,n+1

)2
+
(
JQ

(3)
α,β,n+2

)2
=−

((
J (3)
n

)2
+
(
J
(3)
n+1

)2
+
(
J
(3)
n+2

)2)
− α

((
J
(3)
n+1

)2
+
(
J
(3)
n+2

)2
+
(
J
(3)
n+3

)2)
− β

((
J
(3)
n+2

)2
+
(
J
(3)
n+3

)2
+
(
J
(3)
n+4

)2)
− αβ

((
J
(3)
n+3

)2
+
(
J
(3)
n+4

)2
+
(
J
(3)
n+5

)2)
+ 2

(
J (3)
n · JQ

(3)
α,β,n + J

(3)
n+1 · JQ

(3)
α,β,n+1 + J

(3)
n+2 · JQ

(3)
α,β,n+2

)
.

Thus, using the identity of the third-order Jacobsthal numbers
(
J
(3)
n

)2
+
(
J
(3)
n+1

)2
+(

J
(3)
n+2

)2
= 1

7

(
3 · 22(n+1) − 2n+2U

(3)
n + 2

)
by (8) into the last equation and after

simplifying we obtain that(
JQ

(3)
α,β,n

)2
+
(
JQ

(3)
α,β,n+1

)2
+
(
JQ

(3)
α,β,n+2

)2

=


2
(
J
(3)
n · JQ(3)

α,β,n + J
(3)
n+1 · JQ

(3)
α,β,n+1 + J

(3)
n+2 · JQ

(3)
α,β,n+2

)
−3

7 · 2
2(n+1)(1 + 4α+ 16β + 64αβ)

−1
7 · 2

n+2
(
U

(3)
n + 2αU

(3)
n+1 + 4βU

(3)
n+2 + 8αβU

(3)
n+3

)
−2

7(1 + α+ β + αβ)





Third-Order Jacobsthal Generalized Quaternions 21

where U (3)
n = j

(3)
n−1 − J

(3)
n+1.

(25): In the same manner, from the equations (14), (15) and (16) we can see that(
jQ

(3)
α,β,n

)2
− 9

(
JQ

(3)
α,β,n

)2
=2j(3)n · jQ

(3)
α,β,n − 18J (3)

n · JQ
(3)
α,β,n

−
((

j(3)n

)2
− 9

(
J (3)
n

)2)
− α

((
j
(3)
n+1

)2
− 9

(
J
(3)
n+1

)2)
− β

((
j
(3)
n+2

)2
− 9

(
J
(3)
n+2

)2)
− αβ

((
j
(3)
n+3

)2
− 9

(
J
(3)
n+3

)2)
.

Putting the identity
(
j
(3)
n

)2
− 9

(
J
(3)
n

)2
= 2n+2j

(3)
n−3 of the third-order Jacobsthal

numbers (see [8]) into the last equations and after an easy computation we obtain(
jQ

(3)
α,β,n

)2
− 9

(
JQ

(3)
α,β,n

)2
=2j(3)n · jQ

(3)
α,β,n − 18J (3)

n · JQ
(3)
α,β,n

− 2n+2
(
j
(3)
n−3 + 2αj

(3)
n−2 + 4βj

(3)
n−1 + 8αβj(3)n

)
.

Special cases:

• For α = β = 1, we have the following relations for the third-order Jacob-
sthal quaternions which were given by Cerda-Morales in [6].(

jQ
(3)
1,1,n

)2
− 9

(
JQ

(3)
1,1,n

)2
= 2

{
j
(3)
n · jQ(3)

1,1,n − 9J
(3)
n · JQ(3)

1,1,n

−2n
(
17j

(3)
n + 7j

(3)
n−1 + 3j

(3)
n−2

) } .
• Let α = 1 and β = −1. In this case, we have the following relations for the

split third-order Jacobsthal quaternions(
jQ

(3)
1,−1,n

)2
−9
(
JQ

(3)
1,−1,n

)2
= 2

{
j
(3)
n · jQ(3)

1,−1,n − 9J
(3)
n · JQ(3)

1,−1,n

+3 · 2n
(
5j

(3)
n + 3j

(3)
n−1 − j

(3)
n−2

) } .
• Let β = 0. For α = 1, α = −1 and α = 0, the equation (25) becomes(

jQ
(3)
1,0,n

)2
− 9

(
JQ

(3)
1,0,n

)2
= 2

{
j
(3)
n · jQ(3)

1,0,n − 9J
(3)
n · JQ(3)

1,0,n

−2n+1
(
j
(3)
n − j(3)n−1

) }
(
jQ

(3)
−1,0,n

)2
− 9

(
JQ

(3)
−1,0,n

)2
= 2

{
j
(3)
n · jQ(3)

−1,0,n − 9J
(3)
n · JQ(3)

−1,0,n

−2n+1
(
j
(3)
n−3 − 2j

(3)
n−2

) }
(
jQ

(3)
0,0,n

)2
− 9

(
JQ

(3)
0,0,n

)2
= 2

{
j
(3)
n · jQ(3)

0,0,n − 9J
(3)
n · JQ(3)

0,0,n

−2n+1j
(3)
n−3

}
.
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�

In Theorem 3, the first identity of norm for α = β = 1 is analogous to the ordinary
third-order Jacobsthal quaternions

Nr(JQ(3)
n ) =

1

49


340 · 22n − 64 · 2n + 18 if n ≡ 0 (mod 3)
340 · 22n + 68 · 2n + 23 if n ≡ 1 (mod 3)
340 · 22n − 4 · 2n + 15 if n ≡ 2 (mod 3)

(26)

(for more details see [6]).

Theorem 3. Let J (3)
n be the third-order Jacobsthal number, JQ(3)

α,β,n be the third-

order Jacobsthal generalized quaternion and JQ(3)
α,β,n be the conjugate of JQ(3)

α,β,n.
Then, the following equation hold

Nr(JQ
(3)
α,β,n) =

1

49


22(n+1)(1 + 4α+ 16β + 64αβ)

−2n+2
(
(1 + 8αβ − 4β)V

(3)
n + (2α− 4β)V

(3)
n+1

)
+(1 + αβ)

(
V

(3)
n

)2
+ α

(
V

(3)
n+1

)2
+ β

(
V

(3)
n+2

)2
 (27)

and V (3)
n as in equation (10).

Proof: By multiplication of two third-order Jacobsthal generalized quaternions,
and by using the identity of the third-order Jacobsthal numbers J (3)

n+3 = J
(3)
n+2 +

J
(3)
n+1 + 2J

(3)
n it may be concluded that

Nr(JQ
(3)
α,β,n) =

(
J (3)
n +

3∑
s=1

J
(3)
n+ses

)
·
(
J (3)
n −

3∑
s=1

J
(3)
n+ses

)
=
(
J (3)
n

)2
+ α

(
J
(3)
n+1

)2
+ β

(
J
(3)
n+2

)2
+ αβ

(
J
(3)
n+3

)2
.

Finally, from the Binet formula (12) of J (3)
n it is obvious that

(
J (3)
n

)2
=

1

49

(
2n+1 − V (3)

n

)2
=

1

49

(
22(n+1) − 2n+2V (3)

n +
(
V (3)
n

)2)
.



Third-Order Jacobsthal Generalized Quaternions 23

Then, we have

Nr(JQ
(3)
α,β,n) =

1

49


22(n+1)(1 + 4α+ 16β + 64αβ)

−2n+2
(
V

(3)
n + 2αV

(3)
n+1 + 4βV

(3)
n+2 + 8αβV

(3)
n+3

)
+
(
V

(3)
n

)2
+ α

(
V

(3)
n+1

)2
+ β

(
V

(3)
n+2

)2
+ αβ

(
V

(3)
n+3

)2


=
1

49


22(n+1)(1 + 4α+ 16β + 64αβ)

−2n+2
(
(1 + 8αβ − 4β)V

(3)
n + (2α− 4β)V

(3)
n+1

)
+(1 + αβ)

(
V

(3)
n

)2
+ α

(
V

(3)
n+1

)2
+ β

(
V

(3)
n+2

)2


using the relations V (3)
n + V

(3)
n+1 + V

(3)
n+2 = 0 and V (3)

n = V
(3)
n+3 for n ≥ 0.

Special Cases:
By scrutinizing α and β, the equation (27) becomes as follow:

Nr(JQ
(3)
1,1,n) =

1

49

{
85 · 22(n+1) − 2n+2

(
5V

(3)
n − 2V

(3)
n+1

)
+
(
V

(3)
n

)2
+ 14

}
Nr(JQ

(3)
1,−1,n) =

1

49

 −75 · 2
2(n+1) − 3 · 2n+2

(
2V

(3)
n+1 − V

(3)
n

)
+
(
V

(3)
n+1

)2
−
(
V

(3)
n+2

)2


Nr(JQ
(3)
1,0,n) =

1

49

 5 · 22(n+1) − 2n+2
(
V

(3)
n + 2V

(3)
n+1

)
+
(
V

(3)
n

)2
+
(
V

(3)
n+1

)2
 .

�

In the following theorem, the first and second formulas are analogous to the Theo-
rem 3.3 and 3.4 in [6].

Theorem 4 (Binet’s Formulas). Let 2̂ = 1 + 2e1 + 4e2 + 8e3, ω̂1 = 1 + ω1e1 +

ω2
1e2+e3 and ω̂2 = 1+ω2e1+ω

2
2e2+e3 generalized quaternions. Let JQ(3)

α,β,n and

jQ
(3)
α,β,n be the third-order Jacobsthal and third-order Jacobsthal-Lucas general-

ized quaternions, respectively. For n ≥ 0, the Binet formulas for these quaternions
are given as

JQ
(3)
α,β,n =

1

7

(
2n+12̂− V Q(3)

n

)
(28)

and

jQ
(3)
α,β,n =

1

7

(
2n+32̂ + 3V Q(3)

n

)
(29)
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respectively. Here, the sequence V Q(3)
n is defined by

V Q(3)
n =

Aωn1 ω̂1 −Bωn2 ω̂2

ω1 − ω2
=


2− 3e1 + e2 + 2e3 if n ≡ 0 (mod 3)
−3 + e1 + 2e2 − 3e3 if n ≡ 1 (mod 3)
1 + 2e1 − 3e2 + e3 if n ≡ 2 (mod 3)

(30)
where A = −3 − 2ω2 and B = −3 − 2ω1. Furthermore, note that for all n ≥ 0

we have V Q(3)
n+2 = −V Q

(3)
n+1 − V Q

(3)
n .

The following theorem gives d’Ocagne’s identities for third-order Jacobsthal gen-
eralized quaternion.

Theorem 5. If JQ(3)
α,β,n be the n-th third-order Jacobsthal generalized quaternion.

Then, for any integers n and m, we have

JQ
(3)
α,β,m · JQ

(3)
α,β,n+1 − JQ

(3)
α,β,m+1 · JQ

(3)
α,β,n

=
1

7

 2m+12̂UQ
(3)
n+1 − 2n+1UQ

(3)
m+12̂

−
√
3

3
i
(
ωm−n
1 ω̂1ω̂2 − ωm−n

2 ω̂2ω̂1

)
 (31)

where 2̂ = 1+2e1+4e2+8e3, ω̂1 = 1+ω1e1+ω
2
1e2+e3, ω̂2 = 1+ω2e1+ω

2
2e2+e3

and UQ(3)
n = jQ

(3)
α,β,n−1 − JQ

(3)
α,β,n+1.

Proof: Using the Binet formula for the third-order Jacobsthal generalized quater-
nions and V Q(3)

n in (30) gives

JQ
(3)
α,β,m · JQ

(3)
α,β,n+1 − JQ

(3)
α,β,m+1 · JQ

(3)
α,β,n

=
1

49


(
2m+12̂− V Q(3)

m

)(
2n+22̂− V Q(3)

n+1

)
−
(
2m+22̂− V Q(3)

m+1

)(
2n+12̂− V Q(3)

n

) 
=

1

49

{
−2m+12̂V Q

(3)
n+1 − 2n+2V Q

(3)
m 2̂ + 2m+22̂V Q

(3)
n + 2n+1V Q

(3)
m+12̂

+V Q
(3)
m V Q

(3)
n+1 − V Q

(3)
m+1V Q

(3)
n

}

=
1

7

(
2m+12̂UQ

(3)
n+1 − 2n+1UQ

(3)
m+12̂−

√
3

3
i
(
ωm−n
1 ω̂1ω̂2 − ωm−n

2 ω̂2ω̂1

))
where UQ(3)

n = jQ
(3)
α,β,n−1 − JQ

(3)
α,β,n+1 for all n ≥ 1. �

Taking m = n+ 1 in the Theorem 5 and using the identity

ω1ω̂1ω̂2 − ω2ω̂2ω̂1 = (ω1 − ω2)


(2− e1 − e2 + 2e3)
−(1 + α+ β + αβ)
+(βe1 + αe2 + e3)


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we obtain a type of Cassini-like identity for third-order Jacobsthal generalized
quaternions. Then

Corollary 6. For any integer n ≥ 0, we have

(
JQ

(3)
α,β,n+1

)2
− JQ(3)

α,β,n+2 · JQ
(3)
α,β,n =

1

7


2n+1

(
22̂UQ

(3)
n+1 − UQ

(3)
n+22̂

)
+(2− e1 − e2 + 2e3)
−(1 + α+ β + αβ)
+(βe1 + αe2 + e3)

 .

Special Cases: In particular, for the third-order Jacobsthal and third-order Jacobsthal-
Lucas generalized quaternions by considering the special cases of α and β, respec-
tively, the Cassini-like Identities are as follows:

•
(
JQ

(3)
1,1,n+1

)2
−JQ(3)

1,1,n+2·JQ
(3)
1,1,n =

1

7

{
2n+1

(
22̂UQ

(3)
n+1 − UQ

(3)
n+22̂

)
−2 + 3e3

}

•
(
JQ

(3)
1,−1,n+1

)2
−JQ(3)

1,−1,n+2·JQ
(3)
1,−1,n=

1

7

{
2n+1

(
22̂UQ

(3)
n+1 − UQ

(3)
n+22̂

)
+2− 2e2 + 3e3

}

•
(
JQ

(3)
1,0,n+1

)2
−JQ(3)

1,0,n+2·JQ
(3)
1,0,n =

1

7

{
2n+1

(
22̂UQ

(3)
n+1 − UQ

(3)
n+22̂

)
−e1 + 3e3

}

•
(
JQ

(3)
−1,0,n+1

)2
−JQ(3)

−1,0,n+2·JQ
(3)
−1,0,n=

1

7

{
2n+1

(
22̂UQ

(3)
n+1 − UQ

(3)
n+22̂

)
2− e1 − 2e2 + 3e3

}

•
(
JQ

(3)
0,0,n+1

)2
−JQ(3)

0,0,n+2·JQ
(3)
0,0,n =

1

7

{
2n+1

(
22̂UQ

(3)
n+1 − UQ

(3)
n+22̂

)
−1 + 3e3

}
.

4. Conclusions

The third-order Jacobsthal generalized quaternions are given by

JQ
(3)
α,β,n = J (3)

n + e1J
(3)
n+1 + e2J

(3)
n+2 + e3J

(3)
n+3

where J (3)
n is the n-th third-order Jacobsthal number and e1, e2 and e3 are quater-

nionic units which satisfy the equalities

e21 =− α, e22 =− β, e23 =− αβ
e1e2 = e3 = −e2e1, e2e3 =βe1 = −e3e2, e3e1 =αe2 = −e1e3.

For α = β = 1, the third-order Jacobsthal generalized quaternion JQ(3)
1,1,n which

was given by [6] becomes the real third-order Jacobsthal quaternions. For α = 1
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and β = −1, the third-order Jacobsthal generalized quaternion JQ(3)
1,−1,n becomes

the split third-order Jacobsthal quaternion. Starting from ideas given by Horadam
[12], Pottman and Wallner [20], the third-order Jacobsthal generalized quaternions
are studied and the relations related to these quaternions are obtained (i.e., for third-
order Jacobsthal semi-quaternions, split third-order Jacobsthal semi-quaternions
and third-order Jacobsthal 1

4 -quaternions).
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