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FIXED POINT IN CAT(0) SPACES

Ismat Beg, Mujahid Abbas

Abstract: We obtained sufficient conditions for existence of fixed points of involutions in CAT(0)
spaces. Convergence results of Mann and Ishikawa iterates of weakly contractive mappings are
also proved.
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1. Introduction and preliminaries

The interplay between the geometry of Banach spaces and fixed point theory has
been very strong and fruitful. In particular, geometric properties play a key role
in metric fixed point problems, see for example [11, 12], and references therein.
The parallelogram law is one of fundamental property of Hilbert spaces which
distinguishes them from general Banach spaces. This law is used in solving many
problems in Hilbert spaces. Recently several authors have tried this idea for solv-
ing problems in Banach spaces by establishing equalities and usually inequali-
ties analogous to the parallelogram law, see for example Goebel and Kirk [10].
Beg [2] established some inequalities in uniformly convex metric spaces analogous
to the parallelogram law in Hilbert spaces and obtained some fixed point theo-
rem. Gromov [15] introduced the notion of CAT(0) spaces. For application of
these spaces in various branches of mathematics and for a vigorous discussion
on these spaces, we refer to Bridson and Haefliger [5], Burago-Burago-Ivanov [7]
and Beg and Abbas [3]. The results obtained in this direction were the start-
ing point for a new mathematical field: the application of geometric theory of
Banach spaces to fixed point theory. The aim of this paper is to use Bruhat and
Tits [6, CN inequality] results to obtain fixed point of involutions. We also study
convergence problem of Mann and Ishikawa iterates of weakly contractive mapping
in CAT(0) spaces.

First we recall some basics. Let (X, d) be a metric space. A geodesic path
joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x to y) is a map c from
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a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t), c(t′)) =
|t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The
image of c is called a geodesic (or metric) segment joining x and y. When it
is unique this geodesic segment is denoted by [x, y]. The space (X, d) is said to
be a geodesic space if every two points of X are joined by a geodesic, and X
is said to be uniquely geodesic if there is exactly one geodesic joining x and y
for each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y includes every
geodesic segment joining any two of its points. A geodesic triangle △(x1, x2, x3)
in a geodesic metric space (X, d) consists of three points x1, x2, x3 in X (the
vertices of △) and a geodesic segment between each pair of vertices (the edges
of △ ). A comparison triangle for the geodesic triangle △(x1, x2, x3) in (X, d)
is a triangle △(x1, x2, x3) := △(x̄1, x̄2, x̄3) in the Euclidean plane E2 such that
dE2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}. A geodesic space is said to be a CAT(0)
space if all geodesic triangles of appropriate size satisfy the following comparison
axiom.

CAT(0): Let △ be a geodesic triangle in X and let △ be a comparison triangle
for △. Then △ is said to satisfy the CAT(0) inequality if for all x, y ∈ △ and all
comparison points x̄, ȳ ∈ △ ,

d(x, y) 6 dE2(x̄, ȳ).

If x, y1, y2 are points in a CAT(0) space and if y0 is the midpoint of the segment
[y1, y2], then the CAT(0) inequality implies

d(x, y0)
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2 − 1

4
d(y1, y2)

2 (CN)

This is the (CN) inequality of Bruhat and Tits [6]. In fact (cf. [5, p. 163]), a
geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality.

A metric space X is called a CAT(0) space [15] if it is geodesically connected
and if every geodesic triangle in X is at least as "thin" as its comparison triangle in
Euclidean plane. The complex Hilbert ball with a hyperbolic metric is a CAT(0)
space, see [11, 19].

Following are some elementary facts about CAT(0) spaces, see Dhompongsa
and Panyanak [8].

Lemma 1.1. Let (X, d) be a CAT(0) space. Then

(i) (X, d) is uniquely geodesic (see [5, pp.160]).
(ii) Let p, x, y be points of X, let α ∈ [0, 1], and let m1 and m2 denote, re-

spectively, the points of [p, x] and [p, y] satisfying d(p,m1) = αd(p, x) and
d(p,m2) = αd(p, y). Then

d(m1,m2) 6 αd(x, y)

(see [16, Lemma 3]).
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(iii) Let x, y ∈ X,x ̸= y and z, w ∈ [x, y] such that d(x, z) = d(x,w). Then
z = w.

(iv) Let x, y ∈ X. For each t ∈ [0, 1], there exists a unique point z ∈ [x, y] such
that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y) (1.1)

For convenience, from now on we will use the notation (1 − t)x ⊕ ty for the
unique point z satisfying (1.1).

Definition 1.2. Let X be a nonempty subset of a metric space X. A mapping
T : X −→ X is call k-Lipschitzian if for all x, y in X,

d(Tx, Ty) 6 kd(x, y).

A mapping T : X −→ X is called an involution if T 2 = I, where I denotes the
identity map (see [12, 13]).

2. Fixed point of involutions

Let X be a complete CAT(0) space. Let T : X −→ X be a mapping. For x0 ∈ X,
we define,

xn+1 =
1

2
xn ⊕

1

2
Txn (2.1)

If there exists a c, 0 6 c < 1 such that

d (xn+2, xn+1) 6 cd (xn+1, xn) (2.2)

(n = 0, 1, 2, · · · ). Then the sequence {xn} converges in X. Indeed, from (2.2), it
follows that d (xn+1, xn) 6 cnd(x1, x0) and {xn} converges to a point p (say) in X.

Theorem 2.1. Let X be a complete CAT(0) space. Let T : X −→ X be
a k-Lipschitzian involution. If 1 6 k < 2 then T has a fixed point in X.

Proof. For arbitrary x0 ∈ X, define inductively a sequence {xn} ⊂ X by

xn+1 =
1

2
xn ⊕

1

2
Txn,

for n = 0, 1, 2, · · · .
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Now,
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Where by assumption
k

2
< 1. It implies that

d (xn+1, xn) 6
1
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)n

d (Tx0, x0) .

If further implies that {xn} is a convergent sequence. Let lim
n→∞

xn = x (say). Then,

d(Tx, x) 6 d(Tx, Txn) + d(Txn, xn) + d(xn, x)

6 (1 + k)d(x, xn) +

(
k

2

)n

d(Tx0, x0) −→ 0 as n −→ +∞.

Hence Tx = x. �

Remark 2.2. As an immediate corollary to Theorem 2.1 we have Goebel [9].

Theorem 2.3. Let X be a complete CAT(0). Let T : X −→ X be a k-Lipschitzian
involution. If 0 6 k <

√
5, then T has a fixed point.



Fixed point in CAT(0) spaces 55

Proof. For any x ∈ X, let u =
1

2
x⊕ 1

2
Tx. Then, using [8, Lemma 2.5], we obtain
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where by assumption
k2 − 1

4
< 1. For arbitrary x0 ∈ X, defining inductively

a sequence {xn} ⊂ X by xn+1 = 1
2xn ⊕

1
2Txn, n = 0, 1, 2, · · · . Theorem 2.1

implies that this sequence is convergent, let lim
n→∞

xn = x. Then Tx = x. �

Theorem 2.4. Let X be a CAT(0) space. If T : X → X satisfies for every x, y
in X,

(i) d
(
T 2x, T 2y

)
6 d(x, y),

and
(ii) d(Tx, Ty) 6 k d(x, y),

with 0 6 k <
√
5, then T has a fixed point in X.

Proof. By Theorem 2.3, K1 =
{
x ∈ X : T 2x = x

}
is nonempty and closed. Also

K1 is convex. To prove this fact let x1, x2 ∈ K1 and t ∈ (0, 1), then we have

d(x1, x2) 6 d(x1, T
2((1− t)x1 ⊕ tx2)) + d(T 2((1− t)x1 ⊕ tx2), x2)

= d(T 2x1, T
2((1− t)x1 ⊕ tx2)) + d(T 2((1− t)x1 ⊕ tx2), T 2x2)

6 d(x1, (1− t)x1 ⊕ tx2) + d((1− t)x1 ⊕ tx2, x2)
6 td(x1, x2) + (1− t)d(x1, x2) = d(x1, x2).

It implies that

d(x1, T
2((1− t)x1 ⊕ tx2)) + d(T 2((1− t)x1 ⊕ tx2), x2)

= d(x1, ((1− t)x1 ⊕ tx2) + d((1− t)x1 ⊕ tx2, x2) = d(x1, x2).
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Since
d(T 2x, T 2y) 6 d(x, y), T 2x1 = x1 and T 2x2 = x2,

therefore
d(x1, T

2((1− t)x1 ⊕ tx2)) = d(x1, (1− t)x1 ⊕ tx2),
which implies that

T 2((1− t)x1 ⊕ tx2)) = (1− t)x1 ⊕ tx2.

It further implies that K1 is convex. Moreover T (K1) = K1 and T 2 = I on K1.
Hence Theorem 2.3 implies that T has a fixed point in X. �

Remark 2.5. Gornicki and Pupka [14] obtained some fixed point results for Lip-
schitzian 2− rotative mappings in framework of complete metric spaces of hyper-
bolic type. The Lipschitzian constant k in Theorems 2.1 and 2.3 can be viewed as
an improved estimate of its counterpart appeared in Theorem 3 of [14].

3. Convergence results for weakly contractive mappings

The concept of △-convergence in general metric spaces was coined by Lim [18].
Kirk and Panyanak [17] specialized this concept to CAT(0) spaces and showed
that many Banach space results involving weak convergence have precise analogs
in this setting. Dhompongsa and Panyanak [8] continued to work in this direction.
Their results involved Mann and Ishikawa iteration schemes involving nonexpan-
sive mapping. In this section, we establish different iterative schemes for weakly
contractive maps and it is proved that if the iterative sequence is convergent, it
will converge to the fixed point of the map defined in the frame work of CAT(0)
spaces.

Definition 3.1 ([1]). Let X be a complete metric space. A mapping T : X −→ X
is said to be weakly contractive if for each x, y ∈ X, we have,

d(T (x), T (y)) 6 d(x, y)−Ψ(d(x, y)),

where Ψ : [0,∞) −→ [0,∞) is a continuous and non decreasing such that Ψ is
positive on (0,∞), Ψ(0) = 0, and limt→∞ Ψ(t) =∞.

Remark 3.2. If Ψ(t) = (1 − k)t for a constant k ∈ (0, 1), then the weakly
contractive map becomes a contraction mapping and it has a unique fixed point by
Banach contraction principle. Weakly contractive maps lie between those which
satisfy Banach contraction principle and contractive maps. Weakly contractive
maps also satisfy the definition of Boyd and Wong [4]. It is also known [20] that
a complete metric space has a fixed point property for weakly contractive maps.
Moreover the fixed point in this case is also unique.

Theorem 3.3. Let X be a complete CAT(0) space X and T be a weakly contractive
self map on X. Let x0 ∈ X, define, xn+1 = (1 − αn)xn ⊕ αnTxn, n > 0, where
0 6 αn 6 1 and

∑
αn =∞. Then, lim

n→∞
d(xn, p) = 0, where p is the unique fixed

point of T.
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Proof. The existence of unique fixed point of T follows from [20]. Consider,

d(xn+1, p) = d((1− αn)xn ⊕ αnTxn), p)

6 αnd(xn, p) + (1− αn)d(T (xn), T (p))

6 αnd(xn, p) + (1− αn)[d(xn, p)−Ψ(d(xn, p))]

6 d(xn, p).

So, {d(xn, p)} is a non-negative non-increasing sequence of real numbers which
converges to the real number q. Suppose q > 0. Obviously, q 6 d(xn, p). Now, for
any fixed positive integer n0 we have,

∞∑
n=n0

αnΨ(q) 6
∞∑

n=n0

αnΨ(d(xn, p)) 6
∞∑

n=n0

[d(xn, p)− d(xn+1, p)] 6 d(xn0 , p).

Which contradicts
∑
αn =∞. Hence the result follows. �

Theorem 3.4. Let X be a complete metric space X and T be a weakly contractive
self map on X. Let x0 ∈ X, define,

xn+1 = (1− αn)xn ⊕ αnTyn, and
yn = (1− βn)xn ⊕ βnTxn), n > 0

where 0 6 αn, βn 6 1 for all n ∈ N, and
∑
αnβn =∞. Then lim

n→∞
d(xn, p) = 0,

where p is the unique fixed point of T.

Proof. The existence of unique fixed point p (say) of T follows from [20]. Consider

d(xn+1, p) = d((1− αn)xn ⊕ αnTyn, p)

6 αnd(xn, p) + (1− αn)d(T (yn), T (p))

6 αnd(xn, p) + (1− αn)[d(yn, p)−Ψ(d(yn, p))

6 αnd(xn, p) + (1− αn), d((1− βn)xn ⊕ βnTxn)p)
− (1− αn)Ψ(d((1− βn)xn ⊕ βnTxn), p))

6 αnd(xn, p) + (1− αn)[βnd(xn, p) + (1− βn)d(T (xn), T (p))]
− (1− αn)Ψ(d(yn, p))

6 αnd(xn, p) + (1− αn)βnd(xn, p) + (1− αn)(1− βn)d(xn, p)
− (1− αn)(1− βn)Ψ(d(xn, p))− (1− αn)Ψ(d(yn, p))

6 d(xn, p)− (1− αn)(1− βn)Ψ(d(xn, p))− (1− αn)Ψ(d(yn, p))

6 d(xn, p).

So, {d(xn, p)} is a non-negative non-increasing sequence of real numbers which
converges to the real number q. Suppose q > 0, Obviously, q 6 d(xn, p). Now, for
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any fixed positive integer n0 we have,

∞∑
n=n0

(1− αn)(1− βn)Ψ(q) 6
∞∑

n=n0

(1− αn)(1− βn)Ψ(d(xn, p))

6
∞∑

n=n0

d(xn, p)− d(xn+1, p)

6 d(xn0 , p).

Which contradicts that
∑
αnβn =∞, hence, the result follows. �
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