Functiones et Approximatio 47.2 (2012), 149–156 doi: 10.7169/facm/2012.47.2.2

A RELATION BETWEEN THE BRAUER GROUP AND THE TATE-SHAFAREVICH GROUP

CHUANGXUN CHENG

Abstract: In this paper, we prove a relation between the Brauer group and the Tate-Shafarevich group for genus one curves over number fields. This is a generalization of a result of Milne in genus one curves case.

Keywords: Brauer group, Tate-Shafarevich group.

1. Introduction

Let K be a number field, and let Ω_K be the set of primes of K. The completion of K at $v \in \Omega_K$ is denoted by K_v . Let E be an elliptic curve over K. Define $\operatorname{III}(E, K)$ and $\mathcal{H}_v(E, K)$ by

$$\operatorname{III}(E,K) = Ker(H^1(G_K,E) \to \bigoplus_{v' \in \Omega_K} H^1(G_{K_{v'}},E)),$$
$$\mathcal{H}_v(E,K) = Ker(H^1(G_K,E) \to \bigoplus_{v' \neq v} H^1(G_{K_{v'}},E)).$$

Then we define $\mathcal{H}(E, K) = \bigcup_v \mathcal{H}_v(E, K) \supset \mathrm{III}(E, K)$. The set $\mathcal{H}(E, K)$ is called Kolyvagin set in [1]. Let $C \in \mathcal{H}(E, K)$, then $C(K_v) = \emptyset$ for at most one $v \in \Omega_K$. Set

$$Br(C)' = Ker\left(Br(C_K) \to \bigoplus_{v \in \Omega_K} Br(C_v)\right).$$

In [5], the author proves a comparison result between Br(C)' and III(E) in the case $C \in III(E, K)$. (Note that the result in [5] is for general abelian varieties.) In this paper, we extend the result in [5] to the case that $C \in \mathcal{H}(E, K)$, and draw some consequences on the Brauer-Manin obstruction.

To state our theorems, we first recall some results about *period* and *index*. Let $C \in \mathcal{H}(E, K)$. Let $\mathfrak{p} \in \Omega_K$ such that $C(K_v) \neq \emptyset$ for $v \neq \mathfrak{p}$. By Proposition 6 of [1],

²⁰¹⁰ Mathematics Subject Classification: primary: 11G05; secondary: 11G35

we know that the period and the index of C are equal. We denote it by d. By Theorem 3 of [3], we know that the period and the index of $C_{K_{\mathfrak{p}}}$ are equal. Denote it by $d_{\mathfrak{p}}$. It is obvious that $d_{\mathfrak{p}}|d$. Let $d'_{\mathfrak{p}} = d/d_{\mathfrak{p}}$. We also write Q for the group \mathbb{Q}/\mathbb{Z} , and Q' the quotient of \mathbb{Q}/\mathbb{Z} by the subgroup $\frac{1}{d_{\mathfrak{p}}}\mathbb{Z}/\mathbb{Z}$. For $q \in Q$, we write \bar{q} the image of q in Q' under the obvious map $Q \to Q'$. Note that Q' is isomorphic to Q.

Theorem 1.1. With the notations as above, let $C \in \mathcal{H}(E, K)$, and assume that $\mathrm{III}(E, K)$ has no nonzero infinitely divisible elements. Then there is an exact sequence

$$0 \to Br(C)' \to \operatorname{III}(E, K)/T_1 \to T_2 \to 0$$

in which T_1 and T_2 are finite groups of order $d'_{\mathfrak{p}}$. In particular, if one of Br(C)'or $\mathrm{III}(E, K)$ is finite, so is the other, and their orders are related by

$$(d'_{\mathfrak{p}})^2 \sharp Br(C)' = \sharp \mathrm{III}(E, K).$$

Remark 1.2. If C is actually an element in III(E, K), then $d_{\mathfrak{p}} = 1$ and $d'_{\mathfrak{p}} = d$. The result in Theorem 1.1 then recovers the main theorem of [5] in the case of genus one curves.

Let $B = Ker(Br(C_K) \to \bigoplus_{v \in \Omega_K} H^1(G_{K_v}, Pic(C_{\bar{K}_v})))$. (See (2.2) for the construction of this map.) In section 2.1, we define a pairing

$$<,>^b: B \times \prod_{v \neq \mathfrak{p}} C(K_v) \to Q'.$$

Then define

$$\left(\prod_{v\neq\mathfrak{p}}C(K_v)\right)^B = \left\{ (x_v)_{v\neq\mathfrak{p}} \in \prod_{v\neq\mathfrak{p}}C(K_v) \mid \langle b, (x_v) \rangle^b = 0 \text{ for all } b \in B \right\}.$$

We have the following theorem which is an analogue of a result in [6].

Theorem 1.3. Let $C \in \mathcal{H}(E, K)$, assume that $\mathrm{III}(E, K)$ is finite, then

$$(\prod_{v\neq\mathfrak{p}}C(K_v))^B\neq\emptyset\Leftrightarrow d'_{\mathfrak{p}}=1.$$

We fix some notation. If L is a perfect field, we write G_L for the absolute Galois group $Gal(\overline{L}/L)$. If X is a variety over L and $L \subset L'$ is an inclusion of fields, we write $X_{L'}$ for the base change $X \times_{SpecL} SpecL'$. We also write K(X) for the function field of X.

2. Proof of the theorems

2.1. Some definitions

The Hochschild-Serre spectral sequence

$$H^{r}(G_{K}, H^{s}(C_{\bar{K}}, \mathbb{G}_{m})) \Rightarrow H^{r+s}(C_{K}, \mathbb{G}_{m})$$

yields

$$0 \to Pic(C_K) \to (Pic(C_{\bar{K}}))^{G_K} \to Br(K) \to Br(C_K) \to H^1(G_K, Pic(C_{\bar{K}})) \to H^3(G_K, \bar{K}^{\times}) = 0$$
(2.1)

If L is any local or global field then $H^3(G_L, \bar{L}^{\times}) = 0$. If $v \neq \mathfrak{p}$, then $C(K_v) \neq \emptyset$, the local points provide section maps $Br(C_{K_v}) \to Br(K_v)$, so that in the corresponding sequence for K_v , $Br(K_v) \to Br(C_{K_v})$ is injective. If $v = \mathfrak{p}$, then from the proof of Theorem 3 in [3], the image of $(Pic(C_{\bar{K}_v}))^{G_{K_v}}$ in $Br(K_\mathfrak{p}) = \mathbb{Q}/\mathbb{Z}$ is $\frac{1}{d_\mathfrak{p}}\mathbb{Z}/\mathbb{Z}$. We have the following diagram.

We only have to check the injectivity of $Br(K) \to Br(C_K)$. If $D \in Ker(Br(K) \to Br(C_K))$, then D maps to 0 in $Br(C_{K_v})$ for all $v \neq \mathfrak{p}$. Therefore $D \otimes K_v \in Br(K_v)$ is trivial for all $v \neq \mathfrak{p}$ and therefore $D \otimes K_v$ is trivial for all v. So D is zero by the injectivity of $Br(K) \to \bigoplus_v Br(K_v)$. From the diagram, we have

$$Pic(C_K) = (Pic(C_{\bar{K}}))^{G_K}$$

Remark 2.1. This identity shows that there is no obstruction for a rational divisor class being represented by a rational divisor. Therefore, the index of C and the period of C are the same.

We define

$$\operatorname{III}(P,K) = Ker(H^1(G_K, Pic(C_{\bar{K}}))) \to \bigoplus_v H^1(G_{K_v}, Pic(C_{\bar{K}_v})))$$

and

$$B = Ker(Br(C_K) \to \bigoplus_{v \in \Omega_K} H^1(G_{K_v}, Pic(C_{\bar{K}_v}))).$$

152 Chuangxun Cheng

Suppose $b \in B$, and let (b_v) be its image in $\bigoplus_v Br(C_{K_v})$. By the definition of of B, (b_v) is the image of an element $(a_v) \in \bigoplus_v Br(K_v)$. Note that a_v is unique if $v \neq \mathfrak{p}$, $a_\mathfrak{p}$ is not uniquely determined. For any $(x_v)_{v\neq\mathfrak{p}} \in \prod_{v\neq\mathfrak{p}} C(K_v)$, we have $ev_v(b_v, x_v) = a_v$. (Here ev_v is the evaluation map $Br(C_{K_v}) \times C(K_v) \to Br(K_v)$.) Thus $\langle b, (x_v) \rangle^b = (\sum_{v\neq\mathfrak{p}} ev_v(b_v, x_v) + inv_\mathfrak{p}(a_\mathfrak{p}))^-$ is a well-defined pairing

$$<,>^b: B \times \prod_{v \neq \mathfrak{p}} C(K_v) \to Q'.$$

This pairing gives us a map $\chi: B \to Q'$. In particular, we see that

$$\left(\prod_{v\neq\mathfrak{p}}C(K_v)\right)^B\neq\emptyset\iff\chi=0.$$

Lemma 2.2. There is an exact sequence

$$0 \to Br(C)' \to \operatorname{III}(P,K) \xrightarrow{\phi} Q'$$

Proof. This is essentially the Snake lemma. The difference is that in (2.2), the first map in second row is not injective. Let $p \in \text{III}(P, K)$. By diagram chasing, it is easy to get an element $(b_v^p)_v \in \bigoplus_v Br(C_{K_v})$ which maps to zero in $\bigoplus_{v \in \Omega_K} H^1(G_{K_v}, Pic(C_{\bar{K}_v}))$. Every lift $(b_v)_v$ of $(b_v^p)_v$ in $\bigoplus_v Br(K_v)$ gives an element in Q. All the elements give the same element in Q' under the map $Q \to Q'$. So we obtain a well defined map $\phi : \text{III}(P, K) \to Q'$. We have to check that $Ker(\phi) \subset Br(C)'$.

Assume that $p \in Ker(\phi)$. Let $b^p \in Br(C_K)$ be a preimage of p, $(b^p_v)_v$ be the image of b^p in $\bigoplus_v Br(C_{K_v})$, and $(b_v)_v$ a lift of $(b^p_v)_v$ in $\bigoplus_v Br(K_v)$. Then $(\sum_v inv_v(b_v))^- = 0 \in Q'$. Note that the image of $(Pic(C_{\bar{K}_p}))^{G_{K_p}}$ in $Br(K_p)$ is $\frac{1}{d_p}\mathbb{Z}/\mathbb{Z}$, we may choose a different lift b'_p of b^p_p , such that $\sum_v inv_v(b'_v) = 0 \in Q$, where $b'_v = b_v$ if $v \neq \mathfrak{p}$. Let $b \in Br(K)$ be the preimage of $(b'_v)_v$ in Br(K), b' be the image of b in $Br(C_K)$, then $b^p - b'$ is an element in Br(C)' which maps to p. The lemma follows.

2.2. Cassels-Tate pairing

The following definition is from [5]. From the exact sequence of G_K modules

$$1 \to \bar{K}^{\times} \to K(C_{\bar{K}})^{\times} \to Div(C_{\bar{K}}) \to Pic(C_{\bar{K}}) \to 0$$

we obtain the following diagram

$$H^{1}(G_{K}, Div(C_{\bar{K}})) = 0$$

$$\downarrow$$

$$Br(K) \qquad H^{1}(G_{K}, Pic(C_{\bar{K}}))$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{2}(G_{K}, K(C_{\bar{K}})^{\times}) \rightarrow H^{2}(G_{K}, K(C_{\bar{K}})^{\times}/\bar{K}^{\times}) \rightarrow H^{3}(G_{K}, \bar{K}^{\times}) = 0$$

$$\downarrow$$

$$H^{2}(G_{K}, Div(C_{\bar{K}}))$$

$$(2.3)$$

In the following, we use δ to denote the boundary operator. Write S for the map $Div(C_{\bar{K}}) \to Pic(C_{\bar{K}})$. Represent $\alpha \in III(P,K)$ by a cocycle $a \in Z^1(G_K, Pic(C_{\bar{K}}))$, and let $\mathfrak{a} \in C^1(G_K, Div(C_{\bar{K}}))$ be such that $S(\mathfrak{a}) = a$. Then $\delta(\mathfrak{a}) \in Z^2(G_K, K(C_{\bar{K}})^{\times}/\bar{K}^{\times})$. We can lift it to an element $f \in Z^2(G_K, K(C_{\bar{K}})^{\times})$. On the other hand, a is locally trivial. Write $Res_v a = \delta(a_v)$ with $a_v \in C^0(G_{K_v}, Pic(C_{\bar{K}_v}))$ and let $\mathfrak{a}_v \in C^0(G_{K_v}, Div(C_{\bar{K}_v}))$ such that $S(\mathfrak{a}_v) = a_v$. We see that $S(Res_v \mathfrak{a}) = Res_v a = \delta(a_v) = S(\delta(\mathfrak{a}_v))$, therefore $Res_v \mathfrak{a} = \delta(\mathfrak{a}_v) + (f_v)$ with $f_v \in C^1(G_{K_v}, K(C_{\bar{K}_v})^{\times})$. Since $\delta(Res_v f/\delta f_v) = 0$, we see that $Res_v f/\delta f_v \in Z^2(G_{K_v}, \bar{K}_v^{\times})$. Let γ_v be the class of $Res_v f/\delta f_v$ in $Br(K_v)$, then $\phi(\alpha)$ is $(\sum_v inv_v(\gamma_v))^-$, i.e., the image of $\sum_v inv_v(\gamma_v)$ in Q'.

Note that if \mathbf{c}_v is any divisor of degree $d_{\mathfrak{p}}$ on C_{K_v} such that neither f nor δf_v has a zero or a pole in the support of \mathbf{c}_v , then $(Res_v f)(\mathbf{c}_v)/\delta f_v(\mathbf{c}_v) = d_{\mathfrak{p}}(Res_v f/\delta f_v)$. Because $\delta f_v(\mathbf{c}_v) = \delta(f_v(\mathbf{c}_v))$ with $f_v(\mathbf{c}_v) \in C^1(G_{K_v}, \bar{K}_v^{\times})$, we have that $d_{\mathfrak{p}}\gamma_v$ is represented by $f(\mathbf{c}_v)$. See section 4 of [4] for more details.

Now we recall the definition of Cassels-Tate pairing

$$\langle \rangle >: \mathrm{III}(E, K) \times \mathrm{III}(E, K) \to Q.$$

Let $\alpha \in \operatorname{III}(E, K)$ be represented by $a \in Z^1(G_K, E(\bar{K}))$, and let $\operatorname{Res}_v a = \delta a_v$ with $a_v \in Z^0(G_{K_v}, E(\bar{K}_v))$. Write

$$a = S(\mathfrak{a}), \qquad \mathfrak{a} \in C^1(G_K, Div^0(C_{\bar{K}}))$$
$$a_v = S(\mathfrak{a}_v), \qquad \mathfrak{a}_v \in C^0(G_{K_v}, Div^0(C_{\bar{K}_v})).$$

We have $\operatorname{Res}_v \mathfrak{a} = \delta \mathfrak{a}_v + (f_v)$ in $C^1(G_{K_v}, Div^0(C_{\bar{K}_v}))$ with $f_v \in C^1(G_{K_v}, K(C_{\bar{K}_v}))^{\times})$. Moreover, $\delta \mathfrak{a} = (f)$ where $f \in Z^2(G_K, K(C_{\bar{K}})^{\times})$. Let β be another element of $\operatorname{III}(E, K)$ and define $\mathfrak{b}, \mathfrak{b}_v, g_v$ and g as for α . Note that $g \cup \mathfrak{a} - f \cup \mathfrak{b}$ is an element in $C^3(G_K, \bar{K}^{\times})$ such that $\delta(g \cup \mathfrak{a} - f \cup \mathfrak{b}) = 0$. We may assume that $g \cup \mathfrak{a} - f \cup \mathfrak{b} = \delta \theta$ where $\theta \in C^2(G_K, \bar{K}^{\times})$.

Let $\gamma_v \in Br(K_v)$ be the class of $g_v \cup Res_v \mathfrak{a} - \mathfrak{b}_v \cup Res_v f - Res_v \theta$, where \cup is the cup-product pairing induced by $(f, \mathfrak{a}) \mapsto f(\mathfrak{a})$ for $f \in K(C_{\bar{K}})^{\times}$ and $\mathfrak{a} \in Div(C_{\bar{K}})$. Then the Cassels-Tate pairing is defined by

$$< \alpha, \beta > = \sum_{v} inv_v(\gamma_v).$$

Remark 2.3. Note that in the definition in [5], the θ is omitted.

Let \langle , \rangle' : III $(E, K) \times III(E, K) \rightarrow Q'$ be the composition of the Cassels-Tate pairing and the natural map $Q \rightarrow Q'$.

2.3. The proof

The idea is to give another description of ϕ using Cassels-Tate pairing. Consider the cohomology sequence of

$$0 \to E \to Pic(C) \to \mathbb{Z} \to 0$$

154 Chuangxun Cheng

we get the following diagram

Note that $Im(deg) = d\mathbb{Z}$, $Im(deg_{\mathfrak{p}}) = d_{\mathfrak{p}}\mathbb{Z}$, and deg_v is surjective if $v \neq \mathfrak{p}$. By Snake lemma, we have a short exact sequence

$$0 \to \mathbb{Z}/d'_{\mathfrak{p}}\mathbb{Z} \to \mathrm{III}(E,K) \xrightarrow{\rho} \mathrm{III}(P,K) \to 0.$$

Let T_1 be the image of $\mathbb{Z}/d'_{\mathfrak{p}}\mathbb{Z}$ in $\mathrm{III}(E, K)$, and let T_2 be the image of the map $\phi: \mathrm{III}(P, K) \to Q'$ in Lemma 2.1. From the diagram

we get a short exact sequence

$$0 \to Br(C)' \to \operatorname{III}(E, K)/T_1 \to T_2 \to 0.$$

The theorems follows from the following lemma.

Lemma 2.4. Let $\beta \in \text{III}(E, K)$ be a generator of T_1 . Then the composite

$$\mathrm{III}(E,K) \xrightarrow{\rho} \mathrm{III}(P,K) \xrightarrow{\phi} Q'$$

is $\alpha \mapsto < \alpha, \beta >'$.

Proof. Let $\alpha \in \text{III}(E, K)$ and define $\mathfrak{a}, \mathfrak{a}_v, f_v$ and f as above. We know that $\phi(\rho(\alpha))$ is the image of $\sum inv_v(\gamma_v)$ in Q' where $d_{\mathfrak{p}}\gamma_v$ is represented by $f(\mathfrak{c}_v)$ for some divisor \mathfrak{c}_v of degree $d_{\mathfrak{p}}$ on C_{K_v} .

On the other hand, let P be any point of $C_{\overline{K}}$. Let $\mathfrak{b} = d_{\mathfrak{p}}(\delta P)$. Then $\beta \in \operatorname{III}(E, K)$ is represented by $b = S(\mathfrak{b})$. In the construction of Cassels-Tate pairing, we choose $\mathfrak{b}_v = d_{\mathfrak{p}}P - \mathfrak{c}_v$. First, since $\delta(S(\mathfrak{b}_v)) = S(\delta(d_{\mathfrak{p}}P)) = \operatorname{Res}_v b$, we may choose $g_v = 1$. Second, since $\delta(\mathfrak{b}) = 0$, we may choose g = 0. Now, with the choices of g and g_v , we have $g \cup \mathfrak{a} - f \cup \mathfrak{b} = -f \cup \mathfrak{b} = -d_{\mathfrak{p}}\delta(f(P)) = 0$ because $\delta(f) = 0$ from the construction. Therefore $\langle \alpha, \beta \rangle = -\sum_v inv_v(\gamma'_v)$ where γ'_v is represented by $f(\mathfrak{b}_v) = f(d_{\mathfrak{p}}P)/f(\mathfrak{c}_v)$. Let γ be the class of $f(d_{\mathfrak{p}}P)$ in Br(K). Then

$$<\alpha,\beta>'=(<\alpha,\beta>)^{-}$$
$$=(-\sum_{v}inv_{v}(\gamma'_{v}))^{-}=(-\sum_{v}inv_{v}(\gamma/\gamma_{v}))^{-}$$
$$=(\sum_{v}inv_{v}(\gamma_{v})-\sum_{v}inv_{v}(\gamma))^{-}=(\sum_{v}inv_{v}(\gamma_{v}))^{-}$$
$$=\phi(\rho(\alpha)).$$

Remark 2.5.

- (1) The reason for the assumption that III(K, E) is finite in Theorem 1.3 is that the Cassels-Tate pairing is non degenerate under this assumption.
- (2) For any $C \in H^1(G_K, E)$, we know that $C(K_v) \neq \emptyset$ for almost all $v \in \Omega_K$. We can generalize Theorem 1.1, and get a relation between Br(C)' and $\operatorname{III}(K, E)$. But this relation will be more complicated because in general the relation between the period of C and the index of C is not as simple as in the case we considered. After the author wrote these notes, he found out that in [2], Cristian D. Gonzalez-Aviles proved a general theorem which gave a relation between the Brauer groups and the Tate-Shafarevich groups. The idea in [2] is essentially the same as the idea in [5].

Acknowledgements. The author would like to thank the referee for helpful suggestions.

References

P. Clark, There are genus one curves of every index over every number field.
 J. Reine Angew. Math. 594 (2006), 201–206.

- 156 Chuangxun Cheng
 - [2] C.D. Gonzalez-Aviles, Brauer groups and Tate-Shafarevich groups, J. Math. Sci. Univ. Tokyo 10 (2003), 391–419.
 - [3] S. Lichtenbaum, The period-index problem for elliptic curves, Amer. J. of Math. 90 (1968), 1209–1223.
 - [4] S. Lichtenbaum, Duality theorems for curves over p-adic fields, Inventiones Math. 7 (1969), 120–136.
 - [5] J. Milne, Comparison of the Brauer group with the Tate-Shafarevich group, J. Fac. Science, Univ. Tokyo, Sec. IA
 - [6] V. Scharaschkin, The Brauer-Manin obstruction for curves.
 - [7] J. Silverman, The arithmetic of elliptic curves, GTM 106, Springer-Verlag.
- **Address:** Chuangxun Cheng: Department of Mathematics, Northwestern University, Evanston, IL, USA 60208.

E-mail: cxcheng@math.northwestern.edu **Received:** 4 August 2011