A RELATION BETWEEN THE BRAUER GROUP AND THE TATE-SHAFAREVICH GROUP

Chuangxun Cheng

Abstract

In this paper, we prove a relation between the Brauer group and the Tate-Shafarevich group for genus one curves over number fields. This is a generalization of a result of Milne in genus one curves case.

Keywords: Brauer group, Tate-Shafarevich group.

1. Introduction

Let K be a number field, and let Ω_{K} be the set of primes of K. The completion of K at $v \in \Omega_{K}$ is denoted by K_{v}. Let E be an elliptic curve over K. Define $\amalg(E, K)$ and $\mathcal{H}_{v}(E, K)$ by

$$
\begin{aligned}
& \amalg(E, K)=\operatorname{Ker}\left(H^{1}\left(G_{K}, E\right) \rightarrow \bigoplus_{v^{\prime} \in \Omega_{K}} H^{1}\left(G_{K_{v^{\prime}}}, E\right)\right), \\
& \mathcal{H}_{v}(E, K)=\operatorname{Ker}\left(H^{1}\left(G_{K}, E\right) \rightarrow \bigoplus_{v^{\prime} \neq v} H^{1}\left(G_{K_{v^{\prime}}}, E\right)\right) .
\end{aligned}
$$

Then we define $\mathcal{H}(E, K)=\cup_{v} \mathcal{H}_{v}(E, K) \supset \amalg(E, K)$. The set $\mathcal{H}(E, K)$ is called Kolyvagin set in [1]. Let $C \in \mathcal{H}(E, K)$, then $C\left(K_{v}\right)=\emptyset$ for at most one $v \in \Omega_{K}$. Set

$$
\operatorname{Br}(C)^{\prime}=\operatorname{Ker}\left(\operatorname{Br}\left(C_{K}\right) \rightarrow \bigoplus_{v \in \Omega_{K}} \operatorname{Br}\left(C_{v}\right)\right)
$$

In [5], the author proves a comparison result between $\operatorname{Br}(C)^{\prime}$ and $\amalg(E)$ in the case $C \in \amalg(E, K)$. (Note that the result in [5] is for general abelian varieties.) In this paper, we extend the result in [5] to the case that $C \in \mathcal{H}(E, K)$, and draw some consequences on the Brauer-Manin obstruction.

To state our theorems, we first recall some results about period and index. Let $C \in \mathcal{H}(E, K)$. Let $\mathfrak{p} \in \Omega_{K}$ such that $C\left(K_{v}\right) \neq \emptyset$ for $v \neq \mathfrak{p}$. By Proposition 6 of [1],
we know that the period and the index of C are equal. We denote it by d. By Theorem 3 of [3], we know that the period and the index of $C_{K_{\mathrm{p}}}$ are equal. Denote it by $d_{\mathfrak{p}}$. It is obvious that $d_{\mathfrak{p}} \mid d$. Let $d_{\mathfrak{p}}^{\prime}=d / d_{\mathfrak{p}}$. We also write Q for the group \mathbb{Q} / \mathbb{Z}, and Q^{\prime} the quotient of \mathbb{Q} / \mathbb{Z} by the subgroup $\frac{1}{d_{\mathfrak{p}}} \mathbb{Z} / \mathbb{Z}$. For $q \in Q$, we write \bar{q} the image of q in Q^{\prime} under the obvious map $Q \rightarrow Q^{\prime}$. Note that Q^{\prime} is isomorphic to Q.

Theorem 1.1. With the notations as above, let $C \in \mathcal{H}(E, K)$, and assume that $Ш(E, K)$ has no nonzero infinitely divisible elements. Then there is an exact sequence

$$
0 \rightarrow B r(C)^{\prime} \rightarrow \amalg(E, K) / T_{1} \rightarrow T_{2} \rightarrow 0
$$

in which T_{1} and T_{2} are finite groups of order $d_{\mathfrak{p}}^{\prime}$. In particular, if one of $\operatorname{Br}(C)^{\prime}$ or $\amalg(E, K)$ is finite, so is the other, and their orders are related by

$$
\left(d_{\mathfrak{p}}^{\prime}\right)^{2} \sharp B r(C)^{\prime}=\sharp \amalg(E, K) .
$$

Remark 1.2. If C is actually an element in $\amalg(E, K)$, then $d_{\mathfrak{p}}=1$ and $d_{\mathfrak{p}}^{\prime}=d$. The result in Theorem 1.1 then recovers the main theorem of [5] in the case of genus one curves.

Let $B=\operatorname{Ker}\left(\operatorname{Br}\left(C_{K}\right) \rightarrow \oplus_{v \in \Omega_{K}} H^{1}\left(G_{K_{v}}, \operatorname{Pic}\left(C_{\bar{K}_{v}}\right)\right)\right.$). (See (2.2) for the construction of this map.) In section 2.1, we define a pairing

$$
<,>^{b}: B \times \prod_{v \neq \mathfrak{p}} C\left(K_{v}\right) \rightarrow Q^{\prime}
$$

Then define

$$
\left(\prod_{v \neq \mathfrak{p}} C\left(K_{v}\right)\right)^{B}=\left\{\left(x_{v}\right)_{v \neq \mathfrak{p}} \in \prod_{v \neq \mathfrak{p}} C\left(K_{v}\right) \mid<b,\left(x_{v}\right)>^{b}=0 \text { for all } b \in B\right\} .
$$

We have the following theorem which is an analogue of a result in [6].
Theorem 1.3. Let $C \in \mathcal{H}(E, K)$, assume that $\amalg(E, K)$ is finite, then

$$
\left(\prod_{v \neq \mathfrak{p}} C\left(K_{v}\right)\right)^{B} \neq \emptyset \Leftrightarrow d_{\mathfrak{p}}^{\prime}=1
$$

We fix some notation. If L is a perfect field, we write G_{L} for the absolute Galois group $\operatorname{Gal}(\bar{L} / L)$. If X is a variety over L and $L \subset L^{\prime}$ is an inclusion of fields, we write $X_{L^{\prime}}$ for the base change $X \times_{\text {SpecL }} \operatorname{Spec} L^{\prime}$. We also write $K(X)$ for the function field of X.

2. Proof of the theorems

2.1. Some definitions

The Hochschild-Serre spectral sequence

$$
H^{r}\left(G_{K}, H^{s}\left(C_{\bar{K}}, \mathbb{G}_{m}\right)\right) \Rightarrow H^{r+s}\left(C_{K}, \mathbb{G}_{m}\right)
$$

yields

$$
\begin{align*}
0 & \rightarrow \operatorname{Pic}\left(C_{K}\right) \rightarrow\left(\operatorname{Pic}\left(C_{\bar{K}}\right)\right)^{G_{K}} \rightarrow \operatorname{Br}(K) \\
& \rightarrow \operatorname{Br}\left(C_{K}\right) \rightarrow H^{1}\left(G_{K}, \operatorname{Pic}\left(C_{\bar{K}}\right)\right) \rightarrow H^{3}\left(G_{K}, \bar{K}^{\times}\right)=0 \tag{2.1}
\end{align*}
$$

If L is any local or global field then $H^{3}\left(G_{L}, \bar{L}^{\times}\right)=0$. If $v \neq \mathfrak{p}$, then $C\left(K_{v}\right) \neq$ \emptyset, the local points provide section maps $\operatorname{Br}\left(C_{K_{v}}\right) \rightarrow \operatorname{Br}\left(K_{v}\right)$, so that in the corresponding sequence for $K_{v}, \operatorname{Br}\left(K_{v}\right) \rightarrow \operatorname{Br}\left(C_{K_{v}}\right)$ is injective. If $v=\mathfrak{p}$, then from the proof of Theorem 3 in [3], the image of $\left(\operatorname{Pic}\left(C_{\bar{K}_{v}}\right)\right)^{G_{K_{v}}}$ in $\operatorname{Br}\left(K_{\mathfrak{p}}\right)=\mathbb{Q} / \mathbb{Z}$ is $\frac{1}{d_{\mathfrak{p}}} \mathbb{Z} / \mathbb{Z}$. We have the following diagram.

We only have to check the injectivity of $\operatorname{Br}(K) \rightarrow \operatorname{Br}\left(C_{K}\right)$. If $D \in \operatorname{Ker}(\operatorname{Br}(K) \rightarrow$ $\left.\operatorname{Br}\left(C_{K}\right)\right)$, then D maps to 0 in $\operatorname{Br}\left(C_{K_{v}}\right)$ for all $v \neq \mathfrak{p}$. Therefore $D \otimes K_{v} \in \operatorname{Br}\left(K_{v}\right)$ is trivial for all $v \neq \mathfrak{p}$ and therefore $D \otimes K_{v}$ is trivial for all v. So D is zero by the injectivity of $\operatorname{Br}(K) \rightarrow \oplus_{v} \operatorname{Br}\left(K_{v}\right)$. From the diagram, we have

$$
\operatorname{Pic}\left(C_{K}\right)=\left(\operatorname{Pic}\left(C_{\bar{K}}\right)\right)^{G_{K}} .
$$

Remark 2.1. This identity shows that there is no obstruction for a rational divisor class being represented by a rational divisor. Therefore, the index of C and the period of C are the same.

We define

$$
\amalg(P, K)=\operatorname{Ker}\left(H^{1}\left(G_{K}, \operatorname{Pic}\left(C_{\bar{K}}\right)\right) \rightarrow \oplus_{v} H^{1}\left(G_{K_{v}}, \operatorname{Pic}\left(C_{\bar{K}_{v}}\right)\right)\right),
$$

and

$$
B=\operatorname{Ker}\left(\operatorname{Br}\left(C_{K}\right) \rightarrow \oplus_{v \in \Omega_{K}} H^{1}\left(G_{K_{v}}, \operatorname{Pic}\left(C_{\bar{K}_{v}}\right)\right)\right) .
$$

Suppose $b \in B$, and let $\left(b_{v}\right)$ be its image in $\oplus_{v} B r\left(C_{K_{v}}\right)$. By the definition of of $B,\left(b_{v}\right)$ is the image of an element $\left(a_{v}\right) \in \oplus_{v} \operatorname{Br}\left(K_{v}\right)$. Note that a_{v} is unique if $v \neq \mathfrak{p}, a_{\mathfrak{p}}$ is not uniquely determined. For any $\left(x_{v}\right)_{v \neq \mathfrak{p}} \in \prod_{v \neq \mathfrak{p}} C\left(K_{v}\right)$, we have $e v_{v}\left(b_{v}, x_{v}\right)=a_{v}$. (Here $e v_{v}$ is the evaluation map $\operatorname{Br}\left(C_{K_{v}}\right) \times C\left(K_{v}\right) \rightarrow \operatorname{Br}\left(K_{v}\right)$.) Thus $<b,\left(x_{v}\right)>^{b}=\left(\sum_{v \neq \mathfrak{p}} e v_{v}\left(b_{v}, x_{v}\right)+i n v_{\mathfrak{p}}\left(a_{\mathfrak{p}}\right)\right)^{-}$is a well-defined pairing

$$
<,>^{b}: B \times \prod_{v \neq \mathfrak{p}} C\left(K_{v}\right) \rightarrow Q^{\prime}
$$

This pairing gives us a map $\chi: B \rightarrow Q^{\prime}$. In particular, we see that

$$
\left(\prod_{v \neq \mathfrak{p}} C\left(K_{v}\right)\right)^{B} \neq \emptyset \Longleftrightarrow \chi=0
$$

Lemma 2.2. There is an exact sequence

$$
0 \rightarrow B r(C)^{\prime} \rightarrow \amalg(P, K) \xrightarrow{\phi} Q^{\prime} .
$$

Proof. This is essentially the Snake lemma. The difference is that in (2.2), the first map in second row is not injective. Let $p \in \amalg(P, K)$. By diagram chasing, it is easy to get an element $\left(b_{v}^{p}\right)_{v} \in \oplus_{v} B r\left(C_{K_{v}}\right)$ which maps to zero in $\oplus_{v \in \Omega_{K}} H^{1}\left(G_{K_{v}}, \operatorname{Pic}\left(C_{\bar{K}_{v}}\right)\right)$. Every lift $\left(b_{v}\right)_{v}$ of $\left(b_{v}^{p}\right)_{v}$ in $\oplus_{v} \operatorname{Br}\left(K_{v}\right)$ gives an element in Q. All the elements give the same element in Q^{\prime} under the map $Q \rightarrow Q^{\prime}$. So we obtain a well defined map $\phi: \amalg(P, K) \rightarrow Q^{\prime}$. We have to check that $\operatorname{Ker}(\phi) \subset B r(C)^{\prime}$.

Assume that $p \in \operatorname{Ker}(\phi)$. Let $b^{p} \in \operatorname{Br}\left(C_{K}\right)$ be a preimage of $p,\left(b_{v}^{p}\right)_{v}$ be the image of b^{p} in $\oplus_{v} B r\left(C_{K_{v}}\right)$, and $\left(b_{v}\right)_{v}$ a lift of $\left(b_{v}^{p}\right)_{v}$ in $\oplus_{v} \operatorname{Br}\left(K_{v}\right)$. Then $\left(\sum_{v} i n v_{v}\left(b_{v}\right)\right)^{-}=0 \in Q^{\prime}$. Note that the image of $\left(\operatorname{Pic}\left(C_{\bar{K}_{\mathfrak{p}}}\right)\right)^{G_{K_{\mathfrak{p}}}}$ in $\operatorname{Br}\left(K_{\mathfrak{p}}\right)$ is $\frac{1}{d_{\mathfrak{p}}} \mathbb{Z} / \mathbb{Z}$, we may choose a different lift $b_{\mathfrak{p}}^{\prime}$ of $b_{\mathfrak{p}}^{p}$, such that $\sum_{v} i n v_{v}\left(b_{v}^{\prime}\right)=0 \in Q$, where $b_{v}^{\prime}=b_{v}$ if $v \neq \mathfrak{p}$. Let $b \in \operatorname{Br}(K)$ be the preimage of $\left(b_{v}^{\prime}\right)_{v}$ in $\operatorname{Br}(K), b^{\prime}$ be the image of b in $\operatorname{Br}\left(C_{K}\right)$, then $b^{p}-b^{\prime}$ is an element in $\operatorname{Br}(C)^{\prime}$ which maps to p. The lemma follows.

2.2. Cassels-Tate pairing

The following definition is from [5]. From the exact sequence of G_{K} modules

$$
1 \rightarrow \bar{K}^{\times} \rightarrow K\left(C_{\bar{K}}\right)^{\times} \rightarrow \operatorname{Div}\left(C_{\bar{K}}\right) \rightarrow \operatorname{Pic}\left(C_{\bar{K}}\right) \rightarrow 0
$$

we obtain the following diagram

In the following, we use δ to denote the boundary operator. Write S for the map $\operatorname{Div}\left(C_{\bar{K}}\right) \rightarrow \operatorname{Pic}\left(C_{\bar{K}}\right)$. Represent $\alpha \in \amalg(P, K)$ by a cocycle $a \in$ $Z^{1}\left(G_{K}, \operatorname{Pic}\left(C_{\bar{K}}\right)\right)$, and let $\mathfrak{a} \in C^{1}\left(G_{K}, \operatorname{Div}\left(C_{\bar{K}}\right)\right)$ be such that $S(\mathfrak{a})=a$. Then $\delta(\mathfrak{a}) \in Z^{2}\left(G_{K}, K\left(C_{\bar{K}}\right)^{\times} / \bar{K}^{\times}\right)$. We can lift it to an element $f \in Z^{2}\left(G_{K}, K\left(C_{\bar{K}}\right)^{\times}\right)$. On the other hand, a is locally trivial. Write Res $a=\delta\left(a_{v}\right)$ with $a_{v} \in$ $C^{0}\left(G_{K_{v}}, \operatorname{Pic}\left(C_{\bar{K}_{v}}\right)\right)$ and let $\mathfrak{a}_{v} \in C^{0}\left(G_{K_{v}}, \operatorname{Div}\left(C_{\bar{K}_{v}}\right)\right)$ such that $S\left(\mathfrak{a}_{v}\right)=a_{v}$. We see that $S\left(\operatorname{Res}_{v} \mathfrak{a}\right)=\operatorname{Res}_{v} a=\delta\left(a_{v}\right)=S\left(\delta\left(\mathfrak{a}_{v}\right)\right)$, therefore $\operatorname{Res}_{v} \mathfrak{a}=\delta\left(\mathfrak{a}_{v}\right)+\left(f_{v}\right)$ with $f_{v} \in C^{1}\left(G_{K_{v}}, K\left(C_{\bar{K}_{v}}\right)^{\times}\right)$. Since $\delta\left(\operatorname{Res}_{v} f / \delta f_{v}\right)=0$, we see that $\operatorname{Res}_{v} f / \delta f_{v} \in$ $Z^{2}\left(G_{K_{v}}, \bar{K}_{v}^{\times}\right)$. Let γ_{v} be the class of $\operatorname{Res}_{v} f / \delta f_{v}$ in $\operatorname{Br}\left(K_{v}\right)$, then $\phi(\alpha)$ is $\left(\sum_{v} i n v_{v}\left(\gamma_{v}\right)\right)^{-}$, i.e., the image of $\sum_{v} i n v_{v}\left(\gamma_{v}\right)$ in Q^{\prime}.

Note that if \mathfrak{c}_{v} is any divisor of degree $d_{\mathfrak{p}}$ on $C_{K_{v}}$ such that neither f nor δf_{v} has a zero or a pole in the support of \mathfrak{c}_{v}, then $\left(\operatorname{Res}_{v} f\right)\left(\mathfrak{c}_{v}\right) / \delta f_{v}\left(\mathfrak{c}_{v}\right)=d_{\mathfrak{p}}\left(\operatorname{Res}_{v} f / \delta f_{v}\right)$. Because $\delta f_{v}\left(\mathfrak{c}_{v}\right)=\delta\left(f_{v}\left(\mathfrak{c}_{v}\right)\right)$ with $f_{v}\left(\mathfrak{c}_{v}\right) \in C^{1}\left(G_{K_{v}}, \bar{K}_{v}^{\times}\right)$, we have that $d_{\mathfrak{p}} \gamma_{v}$ is represented by $f\left(\mathfrak{c}_{v}\right)$. See section 4 of [4] for more details.

Now we recall the definition of Cassels-Tate pairing

$$
<,>: \amalg(E, K) \times \amalg(E, K) \rightarrow Q
$$

Let $\alpha \in \amalg(E, K)$ be represented by $a \in Z^{1}\left(G_{K}, E(\bar{K})\right)$, and let Res $s_{v} a=\delta a_{v}$ with $a_{v} \in Z^{0}\left(G_{K_{v}}, E\left(\bar{K}_{v}\right)\right)$. Write

$$
\begin{aligned}
a & =S(\mathfrak{a}), & \mathfrak{a} \in C^{1}\left(G_{K}, \operatorname{Div}^{0}\left(C_{\bar{K}}\right)\right) \\
a_{v} & =S\left(\mathfrak{a}_{v}\right), & \mathfrak{a}_{v} \in C^{0}\left(G_{K_{v}}, \operatorname{Div}^{0}\left(C_{\bar{K}_{v}}\right)\right) .
\end{aligned}
$$

We have $\operatorname{Res}_{v} \mathfrak{a}=\delta \mathfrak{a}_{v}+\left(f_{v}\right)$ in $C^{1}\left(G_{K_{v}}, \operatorname{Div}^{0}\left(C_{\bar{K}_{v}}\right)\right)$ with $\left.f_{v} \in C^{1}\left(G_{K_{v}}, K\left(C_{\bar{K}_{v}}\right)\right)^{\times}\right)$. Moreover, $\delta \mathfrak{a}=(f)$ where $f \in Z^{2}\left(G_{K}, K\left(C_{\bar{K}}\right)^{\times}\right)$. Let β be another element of $\amalg(E, K)$ and define $\mathfrak{b}, \mathfrak{b}_{v}, g_{v}$ and g as for α. Note that $g \cup \mathfrak{a}-f \cup \mathfrak{b}$ is an element in $C^{3}\left(G_{K}, \bar{K}^{\times}\right)$such that $\delta(g \cup \mathfrak{a}-f \cup \mathfrak{b})=0$. We may assume that $g \cup \mathfrak{a}-f \cup \mathfrak{b}=\delta \theta$ where $\theta \in C^{2}\left(G_{K}, \bar{K}^{\times}\right)$.

Let $\gamma_{v} \in \operatorname{Br}\left(K_{v}\right)$ be the class of $g_{v} \cup \operatorname{Res}_{v} \mathfrak{a}-\mathfrak{b}_{v} \cup \operatorname{Res}_{v} f-\operatorname{Res}{ }_{v} \theta$, where \cup is the cup-product pairing induced by $(f, \mathfrak{a}) \mapsto f(\mathfrak{a})$ for $f \in K\left(C_{\bar{K}}\right)^{\times}$and $\mathfrak{a} \in \operatorname{Div}\left(C_{\bar{K}}\right)$. Then the Cassels-Tate pairing is defined by

$$
<\alpha, \beta>=\sum_{v} i n v_{v}\left(\gamma_{v}\right) .
$$

Remark 2.3. Note that in the definition in [5], the θ is omitted.
Let $<,>^{\prime}: \amalg(E, K) \times \amalg(E, K) \rightarrow Q^{\prime}$ be the composition of the Cassels-Tate pairing and the natural map $Q \rightarrow Q^{\prime}$.

2.3. The proof

The idea is to give another description of ϕ using Cassels-Tate pairing. Consider the cohomology sequence of

$$
0 \rightarrow E \rightarrow \operatorname{Pic}(C) \rightarrow \mathbb{Z} \rightarrow 0
$$

we get the following diagram

Note that $\operatorname{Im}(\operatorname{deg})=d \mathbb{Z}, \operatorname{Im}\left(\operatorname{deg}_{\mathfrak{p}}\right)=d_{\mathfrak{p}} \mathbb{Z}$, and deg_{v} is surjective if $v \neq \mathfrak{p}$. By Snake lemma, we have a short exact sequence

$$
0 \rightarrow \mathbb{Z} / d_{\mathfrak{p}}^{\prime} \mathbb{Z} \rightarrow \amalg(E, K) \xrightarrow{\rho} \amalg(P, K) \rightarrow 0 .
$$

Let T_{1} be the image of $\mathbb{Z} / d_{\mathfrak{p}}^{\prime} \mathbb{Z}$ in $\amalg(E, K)$, and let T_{2} be the image of the map $\phi: Ш(P, K) \rightarrow Q^{\prime}$ in Lemma 2.1. From the diagram

we get a short exact sequence

$$
0 \rightarrow B r(C)^{\prime} \rightarrow \amalg(E, K) / T_{1} \rightarrow T_{2} \rightarrow 0 .
$$

The theorems follows from the following lemma.
Lemma 2.4. Let $\beta \in \amalg(E, K)$ be a generator of T_{1}. Then the composite

$$
\amalg(E, K) \xrightarrow{\rho} \amalg(P, K) \xrightarrow{\phi} Q^{\prime}
$$

is $\alpha \mapsto<\alpha, \beta>^{\prime}$.
Proof. Let $\alpha \in \amalg(E, K)$ and define $\mathfrak{a}, \mathfrak{a}_{v}, f_{v}$ and f as above. We know that $\phi(\rho(\alpha))$ is the image of $\sum i n v_{v}\left(\gamma_{v}\right)$ in Q^{\prime} where $d_{\mathfrak{p}} \gamma_{v}$ is represented by $f\left(\mathfrak{c}_{v}\right)$ for some divisor \mathfrak{c}_{v} of degree $d_{\mathfrak{p}}$ on $C_{K_{v}}$.

On the other hand, let P be any point of $C_{\bar{K}}$. Let $\mathfrak{b}=d_{\mathfrak{p}}(\delta P)$. Then $\beta \in$ $Ш(E, K)$ is represented by $b=S(\mathfrak{b})$. In the construction of Cassels-Tate pairing, we choose $\mathfrak{b}_{v}=d_{\mathfrak{p}} P-\mathfrak{c}_{v}$. First, since $\delta\left(S\left(\mathfrak{b}_{v}\right)\right)=S\left(\delta\left(d_{\mathfrak{p}} P\right)\right)=\operatorname{Res}_{v} b$, we may choose $g_{v}=1$. Second, since $\delta(\mathfrak{b})=0$, we may choose $g=0$. Now, with the choices of g and g_{v}, we have $g \cup \mathfrak{a}-f \cup \mathfrak{b}=-f \cup \mathfrak{b}=-d_{\mathfrak{p}} \delta(f(P))=0$ because $\delta(f)=0$ from the construction. Therefore $<\alpha, \beta>=-\sum_{v} i n v_{v}\left(\gamma_{v}^{\prime}\right)$ where γ_{v}^{\prime} is represented by $f\left(\mathfrak{b}_{v}\right)=f\left(d_{\mathfrak{p}} P\right) / f\left(\mathfrak{c}_{v}\right)$. Let γ be the class of $f\left(d_{\mathfrak{p}} P\right)$ in $\operatorname{Br}(K)$. Then

$$
\begin{aligned}
<\alpha, \beta>^{\prime} & =(<\alpha, \beta>)^{-} \\
& =\left(-\sum_{v} i n v_{v}\left(\gamma_{v}^{\prime}\right)\right)^{-}=\left(-\sum_{v} i n v_{v}\left(\gamma / \gamma_{v}\right)\right)^{-} \\
& =\left(\sum i n v_{v}\left(\gamma_{v}\right)-\sum i n v_{v}(\gamma)\right)^{-}=\left(\sum i n v_{v}\left(\gamma_{v}\right)\right)^{-} \\
& =\phi(\rho(\alpha)) .
\end{aligned}
$$

Remark 2.5.

(1) The reason for the assumption that $\amalg(K, E)$ is finite in Theorem 1.3 is that the Cassels-Tate pairing is non degenerate under this assumption.
(2) For any $C \in H^{1}\left(G_{K}, E\right)$, we know that $C\left(K_{v}\right) \neq \emptyset$ for almost all $v \in \Omega_{K}$. We can generalize Theorem 1.1, and get a relation between $\operatorname{Br}(C)^{\prime}$ and $Ш(K, E)$. But this relation will be more complicated because in general the relation between the period of C and the index of C is not as simple as in the case we considered. After the author wrote these notes, he found out that in [2], Cristian D. Gonzalez-Aviles proved a general theorem which gave a relation between the Brauer groups and the Tate-Shafarevich groups. The idea in [2] is essentially the same as the idea in [5].

Acknowledgements. The author would like to thank the referee for helpful suggestions.

References

[1] P. Clark, There are genus one curves of every index over every number field. J. Reine Angew. Math. 594 (2006), 201-206.
[2] C.D. Gonzalez-Aviles, Brauer groups and Tate-Shafarevich groups, J. Math. Sci. Univ. Tokyo 10 (2003), 391-419.
[3] S. Lichtenbaum, The period-index problem for elliptic curves, Amer. J. of Math. 90 (1968), 1209-1223.
[4] S. Lichtenbaum, Duality theorems for curves over p-adic fields, Inventiones Math. 7 (1969), 120-136.
[5] J. Milne, Comparison of the Brauer group with the Tate-Shafarevich group, J. Fac. Science, Univ. Tokyo, Sec. IA
[6] V. Scharaschkin, The Brauer-Manin obstruction for curves.
[7] J. Silverman, The arithmetic of elliptic curves, GTM 106, Springer-Verlag.

Address: Chuangxun Cheng: Department of Mathematics, Northwestern University, Evanston, IL, USA 60208.
E-mail: cxcheng@math.northwestern.edu
Received: 4 August 2011

