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Abstract: All complex, pure quartic fields with maximal orders generated by their units are
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1. Introduction

In the 1960’s Jacobson [7] observed that the rings of integers of the number fields
Q(

√
2) and Q(

√
5) have the property, that each algebraic integer can be written

as the sum of distinct units. Some years later Śliwa [10] proved that these are the
only quadratic fields with this property. Moreover, Belcher [2], [3] investigated
cubic and quartic number fields.

A similar question is, to ask which number fields admit representations of
integers as sums of units, or more generally, which rings are additively generated
by their units. The first result in this direction was found by Zelinsky [13] who
investigated endomorphism rings of vector spaces. Investigations of this kind led
Goldsmith et. al. [6] to the following definition.

Definition 1.1. Let R be a ring (with identity). An element r is called k-good if
r = e1 + · · · + ek, with units e1, . . . , ek ∈ R∗. If every element of R is k-good we
call also the ring k-good.

The unit sum number u(R) is defined as min{k : R is k − good}. If the
minimum does not exist but the units generate R additively we set u(R) = ω. If
the units do not generate R we set u(R) = ∞.

In the case of algebraic integers Ashrafi and Vàmos [1] showed that quadratic,
cubic and certain cyclotomic fields have no finite unit sum number. Later this
result was succeeded by Jarden and Narkiewicz [8] who proved that no ring of
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algebraic integers has finite unit sum number. However, the question remains
which rings of algebraic integers are generated by their units. This question has
been solved independently for quadratic fields by Belcher [2] and Ashrafi and
Vàmos [1] and for cubic fields by Tichy and Ziegler [11].

Another question which arises (see for instance [8, Problem C] or [14, Section
2]) is, how many integers with bounded norm do exist so that they can be written
as a sum of exactly m units. The simple case of imaginary quadratic fields has
been discussed by Ziegler [14].

In this paper we investigate the additive unit structure of pure quartic complex
fields Q( 4

√
D), where 0 > D ∈ Z is not −4. Note that without loss of generality

we may assume D = −ab2c3, with

1. a 6= −1, b and c, square-free and pairwise relatively prime;
2. b and c positive;
3. |a| ≥ c if a is odd;
4. c is odd;
5. D 6= −4.

We prove the following theorem:

Theorem 1.1. Let 0 > D ∈ Z and assume D fulfills the restrictions made above.
Let K = Q( 4

√
D) and let OD be the maximal order of K. Define the following sets:

S1 := { − (2(2n + 1)2 ± 4)2 + 16 : n ∈ Z, 2n + 1 and (2n + 1)2 ± 4 square-free,

− (2(2n + 1)2 ± 4)2 + 16 < 0};
S2 := { − 1,−3,−7,−36,−100,−135,−129735};
S3 := { − 4

(

(2n + 1)2 ± 4
)2

: n ∈ Z, 2
(

(2n + 1)2 ± 4
)

square-free};
S4 := { − (2n2 ± 1)2 : n ∈ Z, 2n2 ± 1 square-free};
S5 := { − 3b2

n : bn+3 = 15bn+2 − 15bn+1 + bn, n ≥ 0, b0 = 1, b1 = 8, b2 = 105,

3 ∤ bn, bn square-free};
S6 := { − 3b2

n : bn+3 = 15bn+2 − 15bn+1 + bn, n ≥ 0, b0 = 7, b1 = 104, b2 = 1455,

3 ∤ bn, bn square-free}.

Moreover, let S := S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6. Then OD is generated by its units
if and only if D ∈ S. In particular, there exists a unit ǫ ∈ O∗

D such that

• {1, ǫ, ǫ2, ǫ3} is a basis of OK if D ∈ S1 ∪ S2;
• {1,

√
−1, ǫ, ǫ

√
−1} is a basis of OK if D ∈ S3 ∪ S4 ∪ {−36,−100};

• {1, ρ, ǫ, ǫρ} is a basis of OK if D ∈ S5 ∪ S6 ∪ {−36};
where ρ = −1+

√
−3

2 .

Note that the proof of Theorem 1.1 is constructive, i.e. for each case we
compute the unit ǫ whose existence is claimed in the theorem.

The paper is organized as follows. In the next section we discuss properties of
the ring of integers of K = Q( 4

√
D). In order to prove Theorem 1.1 completely
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we have to consider several cases. First, we study the case D 6= −b2,−3b2 in
section 3. Then we investigate the special cases D = −3b2 (section 4 ) and
D = −b2 (section 5). In the last section we consider a quantitative version of
the unit sum number problem for fields of the form Q( 4

√
−b2).

2. Rings of integers

In this section we state a result of Funakura [5], who computed the integral bases
of pure quartic number fields. In the real case this result has been established by
Ljunggren [9] but without proof.

Throughout the rest of the paper we assume the restrictions on D made in
Theorem 1.1. Furthermore we put α =

√
D/bc, β = 4

√
D and γ =

4
√

D3/bc2.
Obviously, {1, α, β, γ} is a Q-basis for K = Q( 4

√
D). With this notation Funakura

[5] proved the following result:

Theorem 2.1 (Funakura). The numbers 1, λ, µ and ν given in Table 1 form an
integral basis of OD.

Table 1: Integral basis for OD

D 1 λ µ ν

1 mod 8 1 1+α
2 β −ab+α+bβ+γ

4

2 mod 4

3 mod 4
1 α β γ

4 mod 16

5 mod 8
1 1+α

2 β β+γ
2

12 mod 32 1 α 1+α+β
2

β+γ
2

28 mod 32 1 α 1+α+β
2

4α+bβ+2γ
8

Note that Table 1 contains all cases since by assumption 8 ∤ D. Furthermore,
we remark that OD ⊆ 1

4Z[α, β, γ]. Indeed, the only not obvious case is d ≡
28 mod 32, but in this case 4|D and therefore 2|b, hence ν ∈ 1

4Z[α, β, γ].

Next, let us consider the roots of unity in the field K = Q( 4
√

D).

Proposition 2.1. Let K = Q( 4
√

D) and assume D < 0 fulfills the assumptions of
Theorem 1.1. Then

• ζ4 ∈ K if and only if D = −b2;

• ζ6 ∈ K if and only if D = −3b2 or D = −36;

• ζ8 ∈ K if and only if D = −1;

• ζ12 ∈ K if and only if D = −36.

Proof. The assertions of the proposition are standard facts which can be verified
easily. �
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Because of Proposition 2.1 we will consider the cases D = −b2 and D = −3b2

separately. We also know Q( 4
√

D) is not Galois except for the case D = −b2. In
this case we have Q( 4

√
D) = Q(

√
−1,

√
2b) and we use the following corollary of

Theorem 2.1 (cf. [5]):

Corollary 2.1 (Funakura). Let l ≥ 2 be a square free integer. An integral basis
of Q(

√
−1,

√
l) is given by

1,
√
−1, 1+

√
l

2 ,
√
−1+

√
−l

2 , if l ≡ 1 mod 4;

1,
√
−1,

√
l+

√
−l

2 ,
√

l−
√
−l

2 , if l ≡ 2 mod 4;

1,
√
−1, 1+

√
−l

2 ,
√
−1−

√
l

2 , if l ≡ 3 mod 4.

Now we establish the main result of this section:

Proposition 2.2. Let D < 0 and assume OD is generated by its units. Then
there exists a unit ǫ ∈ O∗

D such that

• The basis {1, ǫ, ǫ2, ǫ3} generates OD if D 6= −3b2,−b2;
• The basis {1, ζ6, ǫ, ǫζ6} generates OD if D = −3b2 or D = −36;
• The basis {1, ζ4, ǫ, ǫζ4} generates OD if D = −b2.

Moreover, in each case the bases with ǫ replaced by ǫ−1 also generate OD.

In the proof of Proposition 2.2 we will need the following lemma.

Lemma 2.1. Let ζ ∈ ODbe an n-th root of unity, with n maximal. Then the ring
OD is generated by its units if and only if it is generated by {1, ζ, ζ2, . . . , ζn−1, ǫ, ζǫ,
. . . , ζn−1ǫ3}, where ǫ is the fundamental unit of OD.

Proof of Lemma 2.1. By Dirichlet’s unit theorem we may assume that OD is
generated by

{ζk1ǫl1 , ζk2ǫl2 , ζk3ǫl3 , ζk4ǫl4}.
Since ǫ is an algebraic integer of degree at most four, ζkǫl can be written as a
linear combination of ζk, ζkǫ, ζkǫ2, ζkǫ3, which already proves the lemma. �

Proof of Proposition 2.2. In the first case our assertion follows from Proposi-
tion 2.1 and Lemma 2.1.

In the case of D = −3b2 we have D ≡ 4 mod 16 or D ≡ 5 mod 8. Note that
the case 8|D is excluded. Therefore 1, λ = (1 + α)/2, µ = β and ν = (β + γ)/2
form an integral basis (see Theorem 2.1). By Dirichlet’s unit theorem and Lemma
2.1 we know if OD is generated by its units, then there exists a unit ǫ and a
subset B ⊂ {1, ζ6, ǫ, ǫζ6, ǫ

2, ǫ2ζ6, ǫ
3, ǫ3ζ6} with four elements that is a basis for

OD. Assume ǫ = x + yλ + zµ + wν. Note that a subset B = {ǫ1, ǫ2, ǫ3, ǫ4} is
a basis of OD, if and only if the matrix M corresponding to the base change
from B to {1, λ, µ, ν} has determinant ±1. Therefore for each possible subset B
we compute the corresponding determinant, using for computations the equality
ζ6 = 1+α

2 = λ. Each determinant contains the factor w2 + wz + z2 and the
determinant corresponding to {1, ζ6, ǫ, ǫζ6} is exactly w2 + wz + z2. This implies,
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whenever B is a basis then w2 + wz + z2 = ±1, hence {1, ζ6, ǫ, ǫζ6} is also a basis.
Thus the second case is settled.

The case of D = −b2 is similar. We have to consider the base change from the
base proposed by Corollary 2.1 to a subset B as above, where we have to use ζ4

instead of ζ6. Moreover, we have to handle three subcases which are indicated by
Corollary 2.1. But in each subcase the determinant corresponding to the subset
{1, ζ4, ǫ, ǫζ4} is exactly z2 + w2 and this is a factor for each other subset in each
subcase. Note that we write ǫ = x + yζ4 + zλ + wµ, where λ respectively µ is the
third (respectively fourth) basis element in Corollary 2.1. �

If D ∈ {−1,−36} then K = Q( 4
√

D) is cyclotomic, so the assertion of Theorem
1.1 is evident, as every integer of K is a Z-linear combination of roots of unity.
Henceforth, we shall not consider these cases in the sequel.

3. The case D 6= −b2, −3b2

If D 6= −b2,−3b2 then Proposition 2.1 shows that OD is generated by its units if
and only if there exists a unit ǫ such that OD = Z[ǫ]. Since OD ⊂ 1

4Z[α, β, γ] we
write

ǫ =
x + yα + zβ + wγ

4
= ξ + ηλ + ζµ + τν,

with ξ, η, ζ, τ, x, y, z, w ∈ Z. As mentioned above OD = Z[ǫ] holds if and only
if the matrix transforming A = {1, λ, µ, ν} to C = {1, ǫ, ǫ2, ǫ3} has determinant
±1. In order to simplify computations we perform first the base change from A to
B = {1, α, β, γ} (represented by the matrix M1) and then the base change from B to
C (represented by the matrix M2). Then we have to show that detM1 detM2 = ±1.

We distinguish between three cases: D ≡ 1 mod 8 or D ≡ 28 mod 32 (case I),
D ≡ 5 mod 8, D ≡ 4 mod 16 or D ≡ 12 mod 32 (case II) and D ≡ 2, 3 mod 4
(case III). Since the treatment of these three cases is nearly the same we give the
details only for the first case. Because of Theorem 2.1 we write

ǫ =
x + yα + zβ + wγ

4
case I;

ǫ =
x + yα + zβ + wγ

2
case II;

ǫ = x + yα + zβ + wγ case III;

with x, y, z, w ∈ Z. Moreover, we deduce that detM2 = 8, 4, 1 according to the
cases I, II, and III.

Now let us compute detM1. We have

detM1 =
detM ′

m
=

1

m
det









1 0 0 0
x y z w
x2 y2 z2 w2

x3 y3 z3 w3









, (3.1)
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where m = 4096 in case I. Moreover, x2, y2, z2, w2 (respectively x3, y3, z3, w3) are
the coefficients in ǫ2 (respectively ǫ3) of 1, α, β, γ. In particular, we have

x2 = x2 − ac(y2 + 2bzw), y2 = 2xy + b(cz2 − aw2),

z2 = 2(xz − ayw), w2 = 2(cyz + xw),

x3 = x3 + 3a2bcyw2 − 3ac(xy2 + bz(cyz + 2xw)),

y3 = 3x(bcz2 + xy) − a(3bxw2 + c(y3 + 6byzw)),

z3 = 3x2z + a2bw3 − 3a(2xyw + cz(y2 + bzw)),

w3 = 3x2w − 3cy(ayw − 2xz) + bcz(cz2 − 3aw2).

Now we compute

det M ′ = −(cz2 + aw2)
(

8abcy2zw + b2(cz2 − aw2)2 − 4acy4
)

,

and therefore we obtain

(cz2 + aw2)(8abcy2zw + b2(cz2 − aw2)2 − 4acy4) + 512e1 = 0, (3.2)

where e1 = ±1 according to the sign of detM . Moreover, we deduce cz2+aw2|512.
Since c, a > 0, we have |z|, |w| ≤

√
512 < 23.

Next we observe that ǫ is a unit, hence NK/Q(ǫ) = 1. Note that the norm in
K is always positive since K has an imaginary quadratic subfield. Thus we have
NK/Q(4ǫ) = 256. In terms of x, y, z and w we obtain

x4 + a3b2cw4 + a2c
(

cy4 − 4bcy2zw + 2b(bcz2 + 2xy)w2
)

+ac
(

b2c2z4 + 2y2x2 + 4bxz(xw − cyz)
)

− 256 = 0.
(3.3)

Let ǫ−1 = x−1+y−1α+z−1β+w−1γ
4 . Then we find

z−1 =
acy2z − x2z − abcz2w − 2axyw − a2bw3

16
, (3.4)

w−1 =
2cxyz − bc2z3 + acy2w − x2w − abczw2

16
. (3.5)

Note that with 1, ǫ, ǫ2 and ǫ3 also 1, ǫ−1, ǫ−2 and ǫ−3 generate OD. Therefore
equation (3.2) is satisfied with x, y, z and w replaced by x−1, y−1, z−1 and w−1.
In particular we have cz2

−1 + aw2
−1|512, hence |z−1|, |w−1| ≤

√
512 < 23.

We have thus reduced our problem to the Diophantine system consisting of the
equations (3.2), (3.3), (3.4) and (3.5) with unknowns a, b, c, x, y. Note that for the
other quantities there are only finitely many possibilities. In order to solve this
system we distinguish between three further cases, i.e. w = 0, z = 0 and zw 6= 0.
As noted above we restrict our considerations to case I. Cases II and III can be
settled by similar arguments; for instance, the value of m in formula (3.1) has to
be changed to 64 in case II and to 1 in case III.
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3.1. The case w = 0

Under the assumption w = 0 we obtain cz2|512. Since c is odd and positive we
obtain c = 1. Moreover z ∈ {±16,±8,±4,±2,±1}. From (3.2), (3.3), (3.4) and
(3.5) we obtain the system

0 = z2(b2z4 − 4ay4) + 512e1,

0 = a2y4 + x4 + a(b2z4 − 4bz2xy + 2x2y2) − 256,

0 = ay2z − x2z − 16z−1,

0 = 2xyz − bz3 − 16w−1.

(3.6)

Since 512 is not a square we may assume y 6= 0. Now let us assume w−1 = 0.
Solving the third and the last equation of (3.6) for a (respectively b) under the
assumption w−1 = 0 we obtain (note that we assume y 6= 0)

a =
x2z + 16z−1

y2z
, b =

2xy

z2
.

We insert these results into the first and the second equation. After some manip-
ulations we have

z2
−1 − z2 = 0, 8e1 − y2zz−1 = 0.

The first equation implies z = ±z−1, and therefore the second equation turns into
8 = ±z2y2, yielding a contradiction. Thus we conclude w−1 6= 0.

Assuming w = 0, yw−1 6= 0 and solving the third and fourth equation of (3.6)
for a (respectively b) we obtain

a =
x2z + 16z−1

y2z
, b = 2

xyz − 8w−1

z3
.

Furthermore we derive the equations

0 = 4w2
−1 − yz(z−1y + xw−1) + 8e1,

0 = −y2z3 + y2zz2
−1 + 16z−1w

2
−1 + x2zw2

−1.

Solving the first equation for x we get

x =
8e1 − y2zz−1 + 4w2

−1

yzw−1
,

and the equation

(2z2z2
−1 − z4)y4 − (16e1zz−1 − 8zz−1w

2
−1)y

2 + 16(4 + 4e1w
2
−1 + 16w4

−1) = 0.

As mentioned above we have only finitely many possibilities for e1, z, z−1 and w−1.
Solving the equation for y in all cases and inserting into the expression for x, a
and b, we obtain all solutions to system (3.6). After discarding all solutions that
yield non integral values for x, y, a or b or negative values for a or b we obtain the
solutions a = c = 1, b = 24 and a = 4, b = 3, c = 1. Since b (respectively a) are
not square-free there is no admissible solution.
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3.2. The case z = 0

This case runs along similar lines as case w = 0. Note that we have to consider the
cases y = 0 and z−1 = 0 separately again. Moreover, we conclude a = 1 or a = 2
only, and we have to distinguish between these cases. In particular, the following
Diophantine system must be solved:

0 = 512e1 + aw2(a2b2w4 − 4acy4),

256 = 2acy2x2 + x4 + a3b2cw4 + a2c(cy4 + 4bxyw2),

0 = 16z−1 + 2axyw + a2bw3,

0 = 16w−1 − acy2w + x2w.

(3.7)

Let us consider the case y = 0 and thus b2a3w6 = ±512. This is possible only
for a = 2, b = 1 and w = ±2. If we insert this in the second equation, we find
128c − 256 = −x4. Since c is odd we derive that 27 = 128 is the exact power
of 2 that divides x4. Since 128 is not a fourth power we obtain a contradiction,
showing that y 6= 0.

Now we investigate the case z−1 = 0. Solving the last two equations of (3.7)
we derive

b = − 2xy

aw2
, c =

x2w + 16w−1

ay2w
.

Moreover, the first two equations can be written as

0 = 8e1 − ay2ww−1, 0 = w2
−1 − w2.

The only integral solutions to this system are a = 2, w = ±w−1 = ±1, y = ±2 and
a = 2, w = ±w−1 = ±2, y = ±1. If we insert this result in the expressions for b

and c we obtain for the first solution b = ±2x and c = ±x2±16
8 and for the second

b = ±x
4 and c = ±x2±16w−1

2 . In the first case we get a contradiction because a
and b are both even. In the second case 4|x since b is an integer, but therefore 8|c,
which contradicts the fact that c is square-free. Thus we have shown z−1 6= 0 and
we may assume from now on yz−1 6= 0.

Analogously to the case w = 0 and yw−1 6= 0 we get the only positive solutions
a = 1, b = 24, c = 1 and a = 1, b = 3, c = 4. These solutions do not yield solutions
for our problem since in any case either b or c has a square factor.

3.3. The case zw 6= 0

By equation (3.2) we know cz2+aw2|512. Since a, c > 0 we have only finitely many
possibilities for the quadruple (a, c, z, w). Since with 1, ǫ, ǫ2, ǫ3 also 1, ǫ−1, ǫ−2, ǫ−3

generate OD we also have cz2
−1 + aw2

−1|512. Therefore we obtain only 14288
possibilities for the sextuple (a, c, z, w, z−1, w−1). Inserting each possibility for
a, c, z, w, z−1 and w−1 in the system obtained from (3.2), (3.3), (3.4) and (3.5)
yields systems in the three variables b, x and y. Solving all these systems, e.g. by
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Table 2: Integral solutions

a b c x y z w z−1 w−1

7 1 1 ∓3 ±1 ±1 ±1 ±1 ±1
7 1 1 ±3 ∓1 ±1 ±1 ±1 ±1
1 6 1 0 ±2 ±1 ∓1 ∓1 ±1
1 6 1 0 ∓2 ±1 ∓1 ∓1 ±1
1 10 1 0 ±2 ±1 ±1 ±1 ±1
1 10 1 0 ∓2 ±1 ±1 ±1 ±1
5 1 3 ±1 ∓1 ±1 ±1 ±1 ±1
5 1 3 ∓1 ±1 ±1 ±1 ±1 ±1
5 31 3 ±31 ∓1 ∓1 ±1 ∓1 ±1
5 31 3 ∓31 ±1 ∓1 ±1 ∓1 ±1

Table 3: The unit ǫ written as linear combination of 1, λ, µ and ν. (mixed signs)

a b c D ǫ

3 1 1 −3 ±λ ± µ

7 1 1 −7 ±(1 + ν) ± (3 − λ + ν)

1 6 1 −36 ±(1 − 2µ + ν) ± (1 + λ − 2µ + ν)

1 10 1 −100 ±(1 − 2µ + ν) ± (1 + λ − 2µ + ν)

5 1 3 −135 ±(1 + ν) ± (2 − 2λ + ν)

5 31 3 −129735 ±(26 − 8µ + ν) ± (42 − λ − 8µ + ν)

computing their Groebner bases, we find that 12760 systems have a solution but
only for 20 systems we have integral solutions (see Table 2) such that b > 0 and b
square-free.

We are left to check that these solutions yield integral units ǫ. Indeed by
Theorem 2.1 we can compute the corresponding units ǫ as a linear combination
of 1, λ, µ and ν (see Table 3). Table 3 shows that these solutions yield indeed
integral units. Note that in Table 3 we have included the solutions for a = 3 and
b = c = 1. Since we did not find any solutions that are not listed in Theorem 1.1,
the theorem is proved for D 6= −b2,−3b2.

Finally we note that simple changes give the result also in cases II and III.

4. The case D = −3b2

In this case we have D ≡ 5 mod 8 (respectively D ≡ 4 mod 16). We use the
basis 1, λ, µ, ν given in Theorem 2.1. By Proposition 2.2 we know that we have
to find a unit ǫ such that {1, ζ6, ǫ, ǫζ6} is a basis for OD. Let us assume ǫ =
x + yλ + zµ + wν is such a unit. By the proof of Proposition 2.2 we know that
z2 + wz + w2 = ±1. Since with {1, ζ6, ǫ, ǫζ6} also {1, ζ6, ǫ

−1, ǫ−1ζ6} is a basis we
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Table 4: Solutions for x

z w z−1 w−1 Groebner Basis

0 ±1 0 ±1 (x − y)2 − 3y2 + 1, b + 2xy + y2

0 ∓1 0 ±1 (x − y)2 − 3y2 − 1, b + 2xy + y2

±1 ∓1 0 ±1 (x + 2y)2 − 3y2 − 2, b + 2xy + y2 − 1

∓1 ±1 0 ±1 (x + 2y)2 − 3y2 + 2, b + 2xy + y2 + 1

±1 0 0 ±1 2
(

(x + y/2)2 − 3(y/2)2
)

+ 1, 2b − 2xy − y2 + 1

∓1 0 0 ±1 2
(

(x + y/2)2 − 3(y/2)2
)

− 1, 2b − 2xy − y2 − 1

0 ±1 ±1 ∓1 (x − y)2 − 3y2 − 2, b + 2xy + y2 + 1

0 ∓1 ±1 ∓1 (x − y)2 − 3y2 + 2, b + 2xy + y2 − 1

±1 ∓1 ±1 ∓1 (x + 2y)2 − 3y2 + 1, b + 2xy + y2

∓1 ±1 ±1 ∓1 (x + 2y)2 − 3y2 − 1, b + 2xy + y2

±1 0 ±1 ∓1 2
(

(x + y/2)2 − 3(y/2)2
)

+ 1, 2b − 2xy − y2 − 1

∓1 0 ±1 ∓1 2
(

(x + y/2)2 − 3(y/2)2
)

− 1, 2b − 2xy − y2 + 1

0 ±1 ±1 0 (x − y)2 − 3y2 − 1, b + 2xy + y2 + 1

0 ∓1 ±1 0 (x − y)2 − 3y2 + 1, b + 2xy + y2 − 1

±1 ∓1 ±1 0 (x + 2y)2 − 3y2 − 1, b + 2xy + y2 − 1

∓1 ±1 ±1 0 (x + 2y)2 − 3y2 + 1, b + 2xy + y2 + 1

±1 0 ±1 0 (x + y/2)2 − 3(y/2)2 + 1, 2b − 2xy − y2

∓1 0 ±1 0 (x + y/2)2 − 3(y/2)2 − 1, 2b − 2xy − y2

have z2
−1 + w−1z−1 + w2

−1 = ±1. Computing the norm of ǫ and its inverse we find

1 = (x2 + xy + y2)2 + 3b(wx − yz)(w(x + 2y) + (2x + y)z)

+ 3b2(w2 + wz + z2)2,

z−1 = −bw3 − 2wxy − wy2 − x2z − 2xyz + bz3,

w−1 = −bw3 − wx2 + wy2 − 3bw2z + 2xyz + y2z − 3bwz2 − 2bz3.

(4.1)

We remind the reader that the Diophantine equation

X2 + XY + Y 2 = ±1

has the six solutions (X, Y ) = (±1, 0), (0,±1), (±1,∓1). Inserting all possible
values for e, z, w, z−1 and w−1 we get 72 systems of equations in x, y and b. We
compute the Groebner bases for these systems (see Table 4).

The first element of the Groebner basis yields a Pellian equation of the form
X2 − 3Y 2 = ±1,±2,±4. These equations have integral solutions if and only if the
right side is 1,−2 or 4. Note that 2 +

√
3 is a fundamental unit of Q(

√
3) and is

also a fundamental solution to X2 − 3Y 2 = 1. Hence for all systems the solutions
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Table 5: Initial values for the recurring sequences (xn), (yn) and (bn)

z w z−1 w−1 (x0, x1, x2, x3) (y0, y1, y2, y3) (b0, b1, b2, b3, b4)

±1 0 ±1 ∓1 ±(1, 1, 3, 11) ∓(0, 1, 4, 15) −(−1, 0, 7, 104, 1455)

±(1, 1, 3, 11) ±(−1, 0, 1, 4) (0, 1, 8, 105, 1456)

±1 0 0 ±1 ±(1, 1, 3, 11) ∓(0, 1, 4, 15) −(0, 1, 8, 105, 1456)

±(1, 1, 3, 11) ±(−1, 0, 1, 4) (−1, 0, 7, 104, 1455)

±1 0 ∓1 0 ±(0, 2, 8, 30) ±(1, 1, 3, 11) (0, 4, 56, 780, 10864)

±(0, 2, 8, 30) ∓(1, 3, 11, 41) −(0, 4, 56, 780, 10864)

±1 ∓1 ±1 0 ±(0, 1, 4, 15) ∓(−1, 0, 1, 4) (−1, 0, 7, 104, 1455)

±(0, 1, 4, 15) ∓(1, 4, 15, 56) (1, 8, 105, 1456, 20273)

±1 ∓1 0 ±1 ±(1, 1, 3, 11) ∓(1, 3, 11, 41) (0, 4, 56, 780, 10864)

±(1, 1, 3, 11) ∓(3, 1, 1, 3) −(−4, 0, 4, 56, 780)

±1 ∓1 ∓1 ±1 ±(0, 1, 4, 15) ∓(−1, 0, 1, 4) (0, 1, 8, 105, 1456)

±(0, 1, 4, 15) ∓(1, 4, 15, 56) (0, 7, 104, 1455, 20272)

0 ±1 ±1 0 ±(0, 1, 4, 15) ±(1, 3, 11, 41) −(1, 8, 105, 1456, 20273)

±(0, 1, 4, 15) ∓(1, 1, 3, 11) (−1, 0, 7, 104, 1455)

0 ±1 0 ∓1 ±(0, 1, 4, 15) ±(1, 3, 11, 41) −(0, 7, 104, 1455, 20272)

±(0, 1, 4, 15) ∓(1, 1, 3, 11) (0, 1, 8, 105, 1456)

0 ±1 ∓1 ±1 ±(1, 1, 3, 11) ∓(−2, 0, 2, 8) (−4, 0, 4, 56, 780)

±(1, 1, 3, 11) ±(0, 2, 8, 30) −(0, 4, 56, 780, 10864)

can be written in the form (x, y, b) = (xn, yn, bn) with

xn = ax(2 +
√

3)n + bx(2 −
√

3)n,

yn = ay(2 +
√

3)n + by(2 −
√

3)n,

bn = ab(7 + 4
√

3)n + bb(7 − 4
√

3)n + cb,

where ax, ay, ab, bx, by, bb and cb are suitable constants and 0 ≤ n ∈ Z. Therefore
we conclude that xn and yn fulfill the recursions xn+2 = 4xn+1 − xn and yn+2 =
4yn+1 − yn, while bn fulfills bn+3 = 15bn+2 − 15bn+1 + bn for n ≥ 0. Therefore we
are left to compute all possible initial values. All possibilities are listed in Table 5.

The signs in Table 5 cannot be arbitrarily mixed. That means, if we choose the
upper/lower sign for z, then we must also choose the upper/lower sign for w, z−1

and w−1. Similarly we must choose for x0, x1, x2, x3, y0, y1, y2 and y3 the same
case (upper or lower sign). But we can choose independently the signs of z and
x0. From Table 4 above we obtain all units ǫ such that {1, ζ6, ǫ, ǫζ6} is a basis of
OD. These units are listed in Table 6. Note that we only list the initial values of
the sequences.
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5. The case D = −b2

In this case we have K = Q( 4
√

D) = Q(
√
−1,

√
2b) as mentioned above. Let

l = b/2 if b is even and l = 2b otherwise, then l is a square-free integer and
Q( 4

√
D) = Q(

√
−1,

√
l). We use the notation of Corollary 2.1, and therefore we

have to distinguish the three different cases l = 4k + 1, l = 4k + 2 and l = 4k + 3,
respectively. In order to prove Theorem 1.1 we have to find all units ǫ such that
{1, ζ4, ǫ, ǫζ4} generates OD (see Proposition 2.2). Let us write ǫ = x+yλ+zµ+wν,
where λ = ζ4 and µ and ν are the third and fourth basis elements of the bases
described in Corollary 2.1. We know by the proof of Proposition 2.2 that z2+w2 =
1, i.e. (z, w) = (±1, 0), (0,±1). Since with {1, ζ4, ǫ, ǫζ4} also {1, ζ4, ǫ

−1, ǫ−1ζ4}
generates OD we find z2

−1 + w2
−1 = 1, where ǫ−1 = x−1 + y−1λ + z−1µ + w−1ν.

Similar as in the sections above we deduce

NK/Q(ǫ) = k2(z2 + w2)2 + (y2 + x2)((z + x)2 + (y + w)2)

− 2k
(

z3x + zxw(4y + w) + z2(x2 + y(w − y))

+ w2(−x2 + y(y + w))
)

,

if l ≡ 1 mod 4;

NK/Q(ǫ) = (1 + 2k)2z4 + (y2 + x2)2 + (4 + 8k)z(y2 − x2)w

+ (4 + 8k)yxw2 + (1 + 2k)2w4 + (2 + 4k)z2((1 + 2k)w2 − 2yx),

if l ≡ 2 mod 4; and finally if l ≡ 3 mod 4

NK/Q(ǫ) = (1 + k)2z4 + (2 + 2k)z3x + (y2 + x2)2 + 2y(y2 + x2)w

+ ((3 + 2k)y2 − (1 + 2k)x2)w2 + (2 + 2k)yw3 + (1 + k)2w4

+ 2zx(y2 + x2 + 4(1 + k)yw + (1 + k)w2)

+ z2(−(1 + 2k)y2 + (3 + 2k)x2 + (2 + 2n)yw + 2(1 + k)2w2).

Moreover, we have

z−1 = kz3 + zy2 − z2x − zx2 − 2yxw + kzw2 − xw2,

w−1 = z2y + 2zyx− kz2w + y2w − x2w + yw2 − kw3,

Table 6: Units generating OD (mixed signs)

(b0, b1, b2) (x0, x1) (y0, y1) ǫ

(1, 8, 105) (0, 1) (1, 3) ±(xn + ynλ) ± µ

(1, 4) (0,−1) ±(xn + ynλ) ± (µ − ν)

(1, 3) (−1,−4) ±(xn + ynλ) ± ν

(7, 104, 1455) (1, 4) (3, 11) ±(xn + ynλ) ± µ

(4, 15) (−1,−4) ±(xn + ynλ) ± (µ − ν)

(3, 11) (−4,−15) ±(xn + ynλ) ± ν
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if l ≡ 1 mod 4;

z−1 = z(y2 − x2) + (1 + 2k)wz2 + 2xyw + (1 + 2k)w3,

w−1 = (1 + 2k)z3 − 2xyz + w(y2 − x2) + (1 + 2k)zw2,

if l ≡ 2 mod 4; and finally if l ≡ 3 mod 4

z−1 = −(1 + k)z3 + zy2 − z2x − zx2 − 2xyw − zw2 − kzw2 − xw2,

w−1 = z2y + 2xyz + (1 + k)wz2 + w(y2 − x2) + yw2 + (1 + k)w3.

Inserting for z, w, z−1 and w−1 all possible values we derive several systems of
equations. In the following we treat the subcases separately.

5.1. The case l = 4k + 1

As already mentioned above we have either z = 0 or w = 0. First, let us assume
z = 0. Then our system is of the form

0 = z−1 + 2yxw + xw2, 0 = y2w − x2w + yw2 − kw3 − w−1,

1 = k2w4 − 2kw2(y2 + yw − x2) + (y2 + x2)(x2 + (y + w)2).

Solving the second equation for k we find

k =
y2w − x2w + yw2 − w−1

w3
= y2 − x2 + wy − ww−1

and

0 = z−1 + xw(2y + w), 1 = x2(2y + w)2 + w2
−1.

Since 2y + w 6= 0 we have either x2 = (2y + w)2 = 1 or x = 0. Let us treat the
first case. We see (2y + w)2 = 1 implies either y = 0 or y = −w = ±1. Therefore
we have k = 0,−1. The case k = −1 yields a negative b and k = 0 yields D = −4.
In the case of x = 0 we instantly have z−1 = 0 (first equation), w2

−1 = 1 and
k = y2 + wy − ww−1. Let us write y = ±|n| and w = ±1 (with the same sign),
then we find k = |n|2 + |n| ± 1 where the “+” holds if w = −w−1 and “−” holds if
w = w−1. Note that for y = ±(|n| − 1) and w = ∓1 we also get k = |n|2 + |n| ± 1,
with the same last sign as above if we choose a suitable sign for w−1. Note that the
sign of w−1 can be chosen independently from the signs of y and w. Furthermore,
the polynomial |n|2−|n|±1 takes the same values as the polynomial |n|2 + |n|±1.
Hence we have found all possible solutions in this subcase (see Table 7).

The case w = 0 is similar. This time our system turns into

0 = z2y + 2xyz − w−1, 0 = kz3 − z−1 + zy2 − z2x − zx2,

1 = k2z4 + (y2 + x2)(y2 + (z + x)2) − 2k(z3x + z2(−y2 + x2)).

If we perform the change of variables x → −y, y → x, z → −w, w → z, z−1 → w−1,
w−1 → −z−1, multiply the second equation by −1 and exchange the first and the
second equation, then we obtain the same system as in the case above, i.e. we are
done also in this case.
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5.2. The case l = 4k + 3

This case is similar to the case above. Let us assume z = 0 first. Then we obtain
the system

0 = z−1 + 2xyw + xw2,

0 = y2w − x2w + yw2 + w3 + kw3 − w−1,

1 = (y2 + x2)2 + 2yw(y2 + x2)

+ ((3 + 2k)y2 − (1 + 2k)x2)w2 + 2(1 + k)yw3 + (1 + k)2w4.

(5.1)

We treat the case x = 0 separately. In this case the system turns into

0 = z−1, 0 = y2 + wy + 1 + k − ww−1,

1 = y4 + 2y3w + (3 + 2k)y2 + 2(1 + k)yw + (1 + k)2,

if we take into account w = ±1. The first equation yields z−1 = 0, hence w−1 = ±1.
Solving the second equation for k yields k = −y2 − wy − 1 + ww−1. Since k has
to be ≥ 0 we find k = 0 and 0 = −y2 − wy (note −y2 − wy − 2 < 0). Therefore
we have y = 0 or y = −w. This yields the solution b = 6 (see Table 7).

Now we assume x 6= 0 and we solve the first equation of (5.1) for y. We get
y = −x+z−1

2wx = −w/2 ± 1/2x,−w/2 if we take into account that w2 = 1. Since
y is an integer and w = ±1 we conclude x = ±1. Then we have either y = 0 or
y = −w. Inserting this into the second equation yields k = ±1 if y = −w and
k = 1, 3 if y = 0. But for each case we obtain a contradiction to the third equation.
Hence we have no solution in the case x 6= 0.

The case w = 0 yields by the change of variables x → −y, y → x, z → −w,
w → z, z−1 → w−1, w−1 → −z−1 the same system as in the case z = 0. Therefore
we are done also in this case.

5.3. The case l = 4k + 2

In this case we obtain the system

0 = −z−1 + z(y2 − x2) + (2k + 1)w(z2 + w2) + 2xyw,

0 = −w−1 + (2k + 1)z(z2 + w2) − 2xyz + w(y2 − x2),

1 = (1 + 2k)2(z4 + w4) + (x2 + y2)2 + 4(1 + 2n)zw(y2 − x2)

+ 4(1 + 2k)xyw2 + 2(1 + 2k)z2((1 + 2k)w2 − 2xy).

By the same reasons as above we have to treat only the case z = 0. Therefore the
system turns into

0 = z−1 + (2k + 1)w + 2xyw, 0 = w−1 + w(y2 − x2),

1 = (1 + 2k)2 + (x2 + y2)2 + 4(1 + 2k)xy,

if we take into account w2 = 1. The second equation can be written in the form
y2 − x2 = ±1, 0. In the case of y2 − x2 = ±1 we have (x, y) = ±(1, 0),±(0, 1) and
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inserting this into the third equation we find (1+2k)2 = 0 yielding a contradiction,
since k is integral. In the case y2 − x2 = 0 the third equation turns into

(1 + 2k)2 ± 4(1 + 2k)x2 + 4x4 = ((1 + 2k) ± 2x2)2 = 1.

Solving for k we obtain k = ±x2 − 1 or k = ±x2. Since k has to be non-negative
we find k = x2 − 1 or k = x2, i.e. in the equation above the − sign holds and
therefore y = −x. Let us put x = n, with n ∈ Z. Then we have parameterized all
solutions in this case (see Table 7).

5.4. List of units

We have listed all D = −b2 for which OD is generated by its units. According to
Proposition 2.2 in each case there exists a unit ǫ such that {1, ζ4, ǫ, ǫζ4} is a basis
of OD. These units have been explicitly computed in the paragraphs above. Table
7 lists all possible units.

Table 7: Units generating OD, with D = −b2, and t = 0, 1, 2, 3.

k l b ǫ

|n|2 + |n| ± 1 1 2((2|n| + 1)2 ± 4) ζt
4

(

|n| + 1+
√

(2|n|+1)2±1

2

)

ζt
4

(

|n| − 1 − 1+
√

(2|n|+1)2±1

2

)

0 3 6 ζt
4

(

1 − 1−
√
−3

2

)

ζt
4

(

1−
√
−3

2

)

ζt
4

(

1 ± i
(

1 − 1−
√
−3

2

))

ζt
4

(

1 + i+
√

3
2

)

n2 2 (2n2 + 1) ζt
4

(

n(1 − ζ4) ±
√

4n2+2−
√
−4n2−2

2

)

n2 − 1 2 (2n2 − 1) ζt
4

(

n(1 − ζ4) ±
√

4n2−2−
√
−4n2+2

2

)

6. Quantitative results

In this last section we want to investigate a quantitative version of the unit sum
number problem. In particular we want to know how many non-associated integers
with norm ≤ x exist that admit a representation as sum of less than m units.
For the simple case of imaginary quadratic fields Ziegler [14] found asymptotic
formulas. To give a precise statement we need the following definition.



128 Alan Filipin, Robert Tichy, Volker Ziegler

Definition 6.1. We define the counting function uK(m; x) as the number of
classes of associated integers α such that

|NK/Q(α)| ≤ x, α =

m
∑

i=1

ǫi, ǫi ∈ O
∗
K ,

and no subsum vanishes.

Note that the counting function uK(m; x) is well defined since |NK/Q(α)| =
|NK/Q(β)| if α ∽ β.

In this section we find an asymptotic expansion for uK(m; x) in the case of
K = Q( 4

√
−b2) and m small. Note that in our case the norm is always positive.

Before we state our results we investigate the unit group of K = Q( 4
√
−b2).

Proposition 6.1. Let K = Q( 4
√
−b2), η > 1 the fundamental unit of the quadratic

field Q(
√

2b) and |ǫ| > 1 the fundamental unit of K. Then either η = ζǫ or η = ζǫ2,
where ζ is a suitable root of unity.

Proof. Let us note that K is a so called CM-field, this is a totally complex field,
which is the quadratic extension of a totally real field. For these fields we know
that Q := [U : WU+] = 1, 2 where U is the unit group of K, U+ the unit group of
the maximal real subfield of K and W the roots of unity of K (see [12, Theorem
4.12]). In the case Q = 1 obviously η is the fundamental unit. In the case of
Q = 2, ζǫ2 (with suitable root of unity ζ) generates the unit group of Q(

√
2b),

hence η = ζǫ2. �

For the rest of the paper we use the notation Q := [U : WU+], where U, U+

and W are defined as in the proof above. Now let us state the main theorem of
this section.

Theorem 6.1. Let K = Q( 4
√
−b2), b 6= 2 square-free and η > 1 the fundamental

unit of Q(
√

2b). For m ≤ η1/Q

2 we have the following asymptotics

uK(m; x) =
1

(m − 1)!

(

2Q logx

log η

)m−1

+ O
(

(log x)m−2
)

.

Note that the constants implied by the O-term depend only on m and η.

In order to prove Theorem 6.1, we need following inequalities:

Lemma 6.1. Let 0 < x ≤ xi ≤ X for i = 1, . . . , n and write C1 = x1 + . . . + xn

and C−1 = 1
x1

+ . . . + 1
xn

. Then

C1 + xXC−1 ≤ n(x + X) (6.1)

and

C1C−1 ≤ n2(x + X)2

4xX
, (6.2)

respectively
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Proof. Let us consider the inequality

(X − xi)(x − xi)

xi
=

xX

xi
+ xi − (X + x) ≤ 0.

If we sum up all these inequalities for i = 1, . . . , n we obtain (6.1). The second
inequality follows from (6.1) and the arithmetic-geometric mean inequality. �

Proof of Theorem 6.1. Let α = η1 + · · ·+ηm be an algebraic integer with norm
≤ x that admits a representation as sum of m units ηi, i = 1, . . . , m. Because we
consider equivalence classes we may assume α = 1+η2+· · ·+ηm, where ηi = ζli

4 ǫki ,
with |ǫ| > 1 and ǫ the fundamental unit of K, li = 0, 1, 2, 3 and 0 = k1 ≤ · · · ≤ km.
Let σ be the automorphism induced by

√
2b 7→ −

√
2b and ζ4 7→ ζ4. Because

|σ(ǫ)| = |ǫ−1|, we have

NK/Q(1 + η2 + . . . + ηm) = |(1 + η2 + . . . + ηm)σ(1 + η2 + . . . + ηm)|2 =

|(1 + ζl2
4 ǫk2 + . . . + ζlm

4 ǫkm)(1 + ζ
l′
2

4 ǫ−k2 + . . . + ζ
l′m
4 ǫ−km)|2,

with l′i = 0, 1, 2, 3.

The idea of the proof is as follows. First, we find an upper bound N1 for
the largest exponent, such that km ≤ N1 implies NK/Q(α) ≤ x. Next, we find a
lower bound N2 for the largest exponent, such that km > N2 implies NK/Q(α) > x.
Therefore we conclude, if α has a representation as sum of m units, then km ≤ N2.
By these bounds we deduce lower and upper bounds for uK(m; x). Note that every
representation of an integer as sum of m units is unique, if m ≤ |ǫ/2|. This is easy
to see if we interpret the representation as a digit expansion with basis ǫ and digit
set {−m,−m + 1, . . . , m}.

Let r be the number of ηi’s such that ki = 0, and let s be the number of ηi’s
such that ki = km. Then

NK/Q(α)1/2 ≤
∣

∣(r + C1 + s|ǫ|km)(r + C−1 + s|ǫ|−km)
∣

∣ ,

where C1 =
∑m−s

i=r+1 |ǫ|ki , C−1 =
∑m−s

i=r+1 |ǫ|−ki . Using Lemma 6.1 we get

NK/Q(α)
1

2 ≤ r2 + s2 +
r + s

|ǫ| (m − r − s) +
rs

|ǫ| +

(

m − r − s

2

)2
(|ǫ| + |ǫ|km−1)2

|ǫ|km

+ (r + s)(m − r − s)|ǫ|km−1 + rs|ǫ|km

< 2rs|ǫ|km < m2|ǫ|km < |ǫ|km+2.

Therefore |ǫ|2km+4 ≤ x implies NK/Q(α) ≤ x and we may choose N1 = log x
2 log |ǫ| − 2.
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On the other hand we have

NK/Q(α)1/2 ≥
(

s|ǫ|km

√
2

− C1 − r

)(

r√
2
− C−1 − s|ǫ|km

)

≥
(

s|ǫ|km

√
2

− (m − r − s)|ǫ|km−1 − r

)(

r√
2
− m − r − s

|ǫ| − s|ǫ|−km

)

>

(

s|ǫ|km
√

2
− m|ǫ|km−1

)(

r|ǫ|km
√

2
− m|ǫ|km−1

)

|ǫ|km
≥
(√

2 − 1

2

)2

|ǫ|km .

Therefore we take N2 = log x
2 log |ǫ| + 2(log 2−log(

√
2−1))

log |ǫ| .

It remains to prove that there are (4N)m−1

(m−1)! + O(Nm−2) algebraic integers α

with km ≤ N . We choose the exponents (ki, li) of ηi = ζli
4 ǫki in the following way:

1. There is a number r with 1 ≤ r ≤ m such that k1 = · · · = kr = 0. For these
units we have 2r − 1 possibilities to choose admissible exponents l1, . . . , lr
for ζ4.

2. Assume that we have chosen 1 ≤ j ≤ m − r different pairs (k, l) for the

remaining exponents. Then we have
(

m−r−1
j−1

)

possibilities to choose for

each unit η out of the remaining m− r units a pair (k, l), such that each pair
corresponds to at least one unit.

3. It remains to determine how many possibilities we have to choose j pairs
(k, l) of admissible exponents.

• For a fixed exponent k we can choose at most two different exponents
l, i.e. we have to choose ⌈j/2⌉ ≤ n ≤ j exponents k.

• For the n distinct exponents k we have
(

N
n

)

possibilities.

• We have
(

j
n

)

possibilities to choose which exponents k are attached to
two different exponents l.

• If there is only one exponent l attached to a fixed exponent k we have
4 possibilities to choose this exponent. If there are two exponents l
attached to k we have 4 possibilities to choose these two exponents l.

All together we have

m
∑

r=1

(2r − 1)

m−r
∑

j=1

(

m − r − 1

j − 1

) j
∑

n=⌈j/2⌉

(

j

n

)(

N

n

)

4n

=
(4N)m−1

(m − 1)!
+ O(Nm−2)

possibilities for α. �

Remark. The restriction m ≤ η1/Q

2 is essential, because otherwise the term ǫkm

may not be the dominant summand. In a forthcoming paper [4] we will show how
to handle the case of m large.
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